Surface Treatment of UHMWPE Fibers for Adhesion Promotion in Epoxy Polymers
- 格式:pdf
- 大小:245.82 KB
- 文档页数:4
MWCNTs表面对玻璃纤维增强复合材料力学及其界面粘合性的影响作者:陶文竹申明霞曾少华郑益飞郝凌云韩彦馨来源:《粘接》2021年第04期摘要:采用三種不同种类的硅烷改性分散碳纳米管(MWCNTs),通过超声辅助浸渍法制备了MWCNTs/玻璃纤维预增强体,通过真空灌注法制备了含MWCNTs的玻璃纤维增强环氧复合材料(GFRP),研究了硅烷组成和结构对MWCNTs的表面及其对GFRP力学性能、层间粘合性能、动态粘弹性以及断裂形貌等的影响。
结果表明,氨基、乙烯基和长链硅烷均可以改善MWCNTs的分散性,其中含氨基硅烷改性MWCNTs的GFRP(MGFE-a)呈韧性断裂,性能提升最为明显,其拉伸强度和模量分别提升了19.2%和19.7%,弯曲强度和模量分别提升了18.9%和19.3%;层间剪切强度和断裂功分别提升了15.2%和48.2%;MWCNTs表面组成与树脂之间的相互作用对玻璃化转变和内耗的影响有一定的温度依赖性,MGFE-a的储能模量值最大,提高了13.0%,玻璃化温度提高了约5.2℃,损耗因子降低了15.6%。
关键词:复合材料;多壁碳纳米管;玻璃纤维;环氧树脂;硅烷中图分类号:TQ171.77 文献标识码:A 文章编号:1001-5922(2021)04-0001-06Abstract:Three kinds of silane were used to modify and disperse carbon nanotubes (MWCNTs), MWCNTs/glass fiber prereinforcers body were prepared by ultrasound-assisted impregnation method, GFRP composites with MWCNTs were prepared by vacuum infusion method. The effects of silane composition and structure on the surface of MWCNTs and on the mechanical properties of GFRP, interlaminar shear properties, dynamic viscoelasticity and fracture morphology were studied. The results showed that amino, vinyl and long-chain silanes can all improve the dispersion stability of MWCNTs, among them, GFRP (MGFE-a) containing amino silane-modified MWCNTs exhibits ductile fracture and the performance improvement was the most obvious, the tensile strength and modulus of the composites increased by 19.2% and 19.7% respectively, the bending strength and modulus increased by 18.9% and 19.3% respectively, and the interlaminar shear strength and the work of fracture increased by 15.2% and 48.2% respectively. The interaction between the surface composition of MWCNTs and the resin had a certain temperature dependence on the vitrification transition and internal consumption. The energy storage modulus value of MGFE-a was the highest, with an increase of 13.0%, the vitrification temperature increased by about 5.2℃, and the loss factor decreased by 15.6%.Key words:composite materials; multi-walled carbon nanotubes; glass fiber; epoxy resin; silane0 引言玻璃纤维增强环氧复合材料(GFRP)具有比强度比模量高、耐高温、耐腐蚀性好且性价比高等特点,可用于建筑、风电、化工、航空航天等领域,近年来在智能、通讯和商业领域也呈现出潜在应用前景[1-3]。
手枪弹对带UHMWPE软防护明胶靶标冲击效应的数值分析孙非;马力;朱一辉;徐诚【摘要】超高分子量聚乙烯纤维(UHMWPE)防弹衣可以有效地阻止手枪弹的侵彻作用,但仍会对有生目标的机体产生非贯穿钝击伤,其详细机理尚不清楚.非贯穿钝击伤机理可以采用带防护的明胶模拟靶标进行研究,建立了手枪弹高速撞击带UHMWPE软防护明胶模拟靶标有限元计算模型,数值模拟了某7.62 mm手枪弹对带纤维软防护明胶靶标冲击响应过程,数值计算结果与实验结果基本一致,验证了有限元模型的正确性.研究结果揭示了在该7.62 mm手枪弹侵彻过程中,弹体速度、加速度变化规律、软纤维防护层的吸能比例和破坏特征;获得了明胶内瞬时空腔和压力波形成与发展规律,更进一步揭示了手枪弹非贯穿钝击作用力学机理.【期刊名称】《振动与冲击》【年(卷),期】2018(037)013【总页数】7页(P20-26)【关键词】超高分子量聚乙烯纤维防弹衣;明胶;钝性撞击;非贯穿钝击伤;瞬时空腔演化【作者】孙非;马力;朱一辉;徐诚【作者单位】南京理工大学机械工程学院,南京210094;63856部队,吉林白城137000;南京理工大学机械工程学院,南京210094;南京理工大学机械工程学院,南京210094【正文语种】中文【中图分类】TP391.9超高分子量聚乙烯纤维(UHMWPE)具有重量轻、比强度高和比模量高等特性,通常被用来制作防护手枪弹的软质防弹衣,尽管该材料可以阻止手枪弹的侵彻作用,但仍会对有生目标的机体产生非贯穿钝击伤,开展手枪弹侵彻带纤维软防护机体靶标的非贯穿钝击伤产生机理研究,对软质防弹衣结构和材料的改进设计、以及软防护状态钝击伤的医学诊疗具有一定指导意义。
非贯穿钝击伤可以采用带防护的生物靶标和带防护的明胶模拟靶标进行研究,生物靶标内部冲击响应难于测量,试验重复性差。
10%明胶材料密度肌肉相同,力学性能与肌肉相似,具有性能稳定、埋设传感器和高速摄像测量方便等优点,常常被用作有生目标的模拟物,故带防护的明胶模拟靶标在创伤弹道学研究非贯穿钝击伤中广泛应用[1-3]。
UHMWPE纤维混凝土动态压缩力学性能研究张玉武;晏麓晖;李凌锋【摘要】试验研究了一种捻制超高分子量聚乙烯(UHMWPE)纤维增强的新型纤维混凝土动态压缩力学性能.研制了4种纤维体积掺量(0.3%、0.5%、0.7%、1.0%)的C70等级纤维混凝土,采用Φ100 mm分离式霍普金森压杆进行冲击压缩试验,研究了纤维混凝土在140~255 s-1应变率下的动态压缩力学性能.试验结果表明:UHMWPE纤维混凝土抗压强度、峰值应变和弹性模量具有明显的应变率敏感性;纤维混凝土抗压强度应变率敏感性弱于素混凝土,但其弹性模量应变率敏感性强于素混凝土;动态强度增长因子与应变率对数呈线性关系,具体关系与纤维掺量相关.%The dynamic compressive mechanical properties of a new type of fiber reinforced concrete with twisted UHMWPE fiber were experimentally studied.The C70 high strength concrete with four different fiber volume fractions (0.3%、0.5%、0.7%、1.0%)was developed,and the impact compression experiment was conducted to study the dynamic compressive mechanical behaviors of fiber concrete under 140 ~255 s-1 with Φ100 mm split Hopkinson pressure bar.The experiment result shows the compressive strength,peak strain,and elastic modulus of the UHMWPE fiber concrete have significant strain rate sensitivity.The strain rate sensitivity of compressive strength of the UHMWPE fiber reinforced concrete is lower than that of the plain concrete,while the strain rate sensitivity of the elastic modulus of UHMWPE fiber reinforced concrete is higher than that of the plain concrete.The dynamic increase factor has linear relationship with logarithmic strain rate,which is influenced by the fiber volume fraction.【期刊名称】《振动与冲击》【年(卷),期】2017(036)008【总页数】5页(P92-96)【关键词】UHMWPE;纤维混凝土;动态压缩性能;动态强度;试验【作者】张玉武;晏麓晖;李凌锋【作者单位】国防科技大学指挥军官基础教育学院,长沙410072;诺丁汉大学工程学院,诺丁汉NG7 2RD;国防科技大学指挥军官基础教育学院,长沙410072;国防科技大学指挥军官基础教育学院,长沙410072【正文语种】中文【中图分类】TU528.572纤维混凝土(FRC)是以水泥、水、砂、石等成分组成的素混凝土为基体,掺入乱向分布短纤维作为增强体而形成的复合材料[1]。
隐形防弹衣英语作文奇思妙想The Invisible Armor: A Paradigm Shift in Personal Protection.In an era characterized by heightened security concerns and escalating threats to personal safety, the quest for effective protective gear has become paramount. Traditional body armor, while providing essential protection, suffers from limitations in terms of visibility, mobility, and comfort. To address these challenges, a revolutionary concept has emerged: the invisible bulletproof vest.The Imperceptible Shield.The concept of an invisible bulletproof vest defies conventional wisdom, challenging the belief that protective gear must be bulky and conspicuous. The key to this innovation lies in the use of advanced materials andcutting-edge manufacturing techniques. By integrating flexible, lightweight fibers with nanocomposites andmetamaterials, scientists have engineered vests that are virtually indistinguishable from ordinary clothing. This stealthy design allows individuals to wear their protection without compromising their appearance or drawing unwanted attention.Advanced Materials and Nanotechnology.The invisible bulletproof vest is a testament to the extraordinary capabilities of modern materials science and nanotechnology. The incorporation of ultra-high-molecular-weight polyethylene (UHMWPE) fibers provides exceptional strength and impact resistance, while the integration of carbon nanotubes and graphene enhances energy absorption and dissipates kinetic force. Metamaterials, with their negative index of refraction, redirect light waves to create an illusion of invisibility, rendering the vest practically undetectable.Enhanced Mobility and Comfort.Beyond its invisibility, the invisible bulletproof vestoffers unparalleled mobility and comfort. The flexible materials conform to the wearer's body, allowing them to move freely and engage in strenuous activities without restrictions. The reduced weight and breathable fabrics ensure that the vest can be worn for extended periods without causing discomfort or fatigue. This enhanced mobility and comfort make the invisible vest ideal for covert operations, law enforcement, and personal self-defense.Applications and Implications.The invisible bulletproof vest has far-reaching applications in various domains. It empowers law enforcement officers to protect themselves while maintaining a discreet presence in sensitive situations. Bodyguards and security personnel can safeguard their clients without raising suspicion or drawing attention to their protective measures. In the realm of personal self-defense, invisible vests offer an unobtrusive and effective means of protection against potential threats and acts of violence.Furthermore, the technology behind the invisible bulletproof vest has implications beyond the realm of personal safety. It can be adapted to create invisible protective gear for vehicles, buildings, and other assets, enhancing security measures across the board. The potential to develop invisible armor for soldiers and military personnel holds immense promise, revolutionizing warfare and improving the protection of those who serve on thefront lines.Ethical Considerations and Future Directions.The development of invisible bulletproof vests raises ethical considerations regarding privacy and potential misuse. It is imperative to establish clear guidelines and regulations to prevent the exploitation of this technology for malicious purposes. Moreover, ongoing research and innovation promise to push the boundaries of invisible armor, exploring new materials and designs to enhance protection levels and address emerging threats.Conclusion.The invisible bulletproof vest represents a groundbreaking advancement in personal protection, combining unparalleled protection, invisibility, mobility, and comfort. By harnessing the power of advanced materials and nanotechnology, scientists have created a revolutionary garment that redefines the concept of body armor and opens up new possibilities for safeguarding individuals and enhancing security measures worldwide. As research and innovation continue to progress, the future of invisible armor holds immense promise, empowering us to live in a safer and more secure world.。
超高分子质量聚乙烯纤维分散染料染色性能王晓春;闫金龙;张丽平;赵国樑;张健飞【摘要】为解决染料难以对超高分子质量聚乙烯(UHMWPE)纤维上染的问题,筛选具有超高疏水、良好结构平面性的甲基黄分散染料对UHMWPE纤维进行染色,并探讨其染色性能.讨论了染色温度、时间、分散剂(AEO?9)用量及pH值等因素的影响,测定了甲基黄染料对UHMWPE纤维的染色动力学与热力学行为.结果表明,甲基黄染料对UHMWPE纤维具有良好的染色性能,其优化工艺为:染色温度130℃,分散剂用量0.3%,时间60 min,pH值5,此时染色所得纤维各项色牢度均达到3~4级以上;通过拟合计算甲基黄染料对UHMWPE纤维吸附等温线类型为Nernst型吸附,半染时间为24.34 min,130℃时的扩散系数为5.21×10-17 m2/s,标准亲和力约为5.56 kJ/mol.%In order to solve dyeing problem of ultrahigh molecular weight polyethylene ( UHMWPE ) fibers, the dyeing properties of methyl yellow disperse dye with high planarity and super hydrophobic structure were studied. The effects of dyeing parameters such as temperature, time, pH value and the dosage of AEO-9 on the properties of the dyed UHMWPE fiber were investigated. Furthermore, The dyeing kinetics and thermodynamics of methyl yellow dye on UHMWPE fiber were studied. The results show that methyl yellow dye has good dyeing performance on UHMWPE fiber. The optimization process is achieved at the dispersant concentration of 0. 3%, 130 ℃ for 60 min, pH=5,and the rating of color fastness of dyed fibers are higher than 3-4. By simulating and calculating the experimental data, it is indicated that the adsorption process of methyl yellow dye onto UHMWPE fiber fits with the Nernst distributionmechanism, the half-staining time is 24. 34 min, the diffusion coefficiencyat 130 ℃ is 5. 21 × 10 -17 m2/s, and the standard affinity is about 5. 56kJ/mol.【期刊名称】《纺织学报》【年(卷),期】2017(038)011【总页数】7页(P84-90)【关键词】超高分子质量聚乙烯纤维;分散染料;热力学;染色;动力学【作者】王晓春;闫金龙;张丽平;赵国樑;张健飞【作者单位】天津工业大学纺织学院,天津 300387;北京服装学院材料科学与工程学院,北京 100029;北京服装学院材料科学与工程学院,北京 100029;北京服装学院材料科学与工程学院,北京 100029;北京服装学院材料科学与工程学院,北京100029;天津工业大学纺织学院,天津 300387【正文语种】中文【中图分类】TQ342.61超高分子质量聚乙烯(UHMWPE)纤维以其高强度、高模量、低密度、耐磨擦、耐切割等优良特性,在军工国防、航空航海、民用等诸多领域发挥着重要作用,各行业对有色UHMWPE纤维的需求也日趋旺盛。
第26卷第4期2006年12月北京服装学院学报Journal of Beijing Institute of Clot hing T echnology V ol.26N o.4Dec.2006用于增强复合材料的聚乙烯纤维表面改性技术*张玉芳1,庞雅莉2(1 北京服装学院科技处,北京100029;2 北京服装学院材料科学与工程学院,北京100029)摘 要:对复合材料要求增强纤维表面具有良好黏合力.针对这一情况,详细综述了提高超高分子质量聚乙烯纤维表面润湿性的各种改性技术的发展状况,并对各种方法的作用机理、影响因素和工业化实施的可行性进行了比较;同时介绍了改性纤维的性能表征方法.关键词:聚乙烯纤维;表面改性;层间剪切强度;等离子;辐射;接枝聚合中图分类号:T Q 325 12 文献标识码:A 文章编号:1001-0564(2006)04-0060-07收稿日期:2005-09-07*基金项目:北京市教委科技与发展计划面上项目(KM 200510012006);北京市服装材料研究开发与评价重点实验室开放课题(2005ZK 07)作者简介:张玉芳(1965-),女,高级工程师.联系电话:010-********由凝胶或熔融纺丝经过高倍拉伸而形成的超高分子质量聚乙烯(UH MWPE)纤维[1-2],是继碳纤维、Kevlar 纤维之后出现的又一种颇具竞争力的高科技纤维.其具有的轻质、高强、耐磨损、耐弯曲、耐化学腐蚀、耐冲击、耐低温等优良特性,使它在防护材料、绳索、耐低温材料、防弹材料上得以广泛应用;由它增强的复合材料在航空、航天及汽车等诸多领域也具有极强的竞争力[3].特别是近年来随着成本较高的碳纤维复合材料在民用工业领域中应用的迅速增长,寻找和生产成本较低的高性能纤维作为碳纤维的代用品成为一种必然趋势.高强聚乙烯纤维是很有潜力的竞争者之一[4].然而,由于UHM WPE 纤维本身的高度结晶与高度取向,使得它的表面能极低,不易被树脂润湿;而且无任何活性官能团的纤维表面,也很难与基体树脂形成化学键合,这在很大程度上限制了UHMWPE 纤维在复合材料中的应用.因此,要充分利用UHM WPE 纤维优良的机械特性就必须对它的表面进行改性,以提高其复合材料的界面结合强度,这也正是近年来世界各工业强国一直关注与研究的焦点问题.本文重点介绍近期应用较广的几种表面改性技术及其性能表征方法.1 聚乙烯纤维表面改性方法复合材料的界面结合强度通常与纤维和基体界面之间的黏合力有关,这种黏合力主要通过化学键合、较强的范德华力、纤维表面的可润湿性、粗糙性以及表面的机械咬合来获得[5].对聚乙烯纤维表面进行改性的目的,就是为了清除或强化弱边界层,使惰性表面层活化,以增加它的润湿性、粗糙性、机械咬合性及化学反应活性[6].1 1 化学浸蚀法化学浸蚀处理方法是用强酸对聚乙烯纤维进行酸洗,使纤维表面氧化,通过引入极性基团来改善纤维表面的润湿性,它包括浸蚀氧化和浸蚀接枝2种[7-9]方法.浸蚀氧化是利用酸液对聚乙烯纤维进行处理,一方面使纤维表面生成含氧基团(C O, COH , COOH 等),增强纤维与基体界面的相互吸引和相互扩散作用;另一方面酸液溶掉纤维表面的部分非晶区,使纤维表面变得粗糙,增加纤维的比表面积,从而提高纤维与树脂基体之间的黏结性.浸蚀接枝是在浸蚀氧化的基础上,将纤维与接枝单体进一步反应,使纤维表面引入多官能团化合物,这些基团可以与基体树脂起化学键合反应,从而形成稳定的、具有化学键合结构的界面相[10].目前,最常见的浸蚀氧化液有氯酸 硫酸体系、高锰酸钾 硫酸体系、重铬酸钾 硫酸体系、三氧化铬 硫酸体系、过硫酸铵 硫酸银体系、发烟硫酸、发烟硝酸、氯磺酸、铬酸等[11].就不同氧化剂而言,由于氧化性强弱不同,其对聚乙烯纤维的作用效果也就不同.如吴越等人[12]分别用浓硝酸、过硫酸铵 硫酸银体系、铬酸、重铬酸钾 硫酸体系对UHM WPE 纤维织物进行处理后,发现重铬酸钾和铬酸的处理效果最好,它可使UHMWPE 纤维织物与基体树脂复合材料的层间剪切强度提高3倍以上,过硫酸铵溶液则次之.由于存在铬酸废液的处理问题,在对材料性能要求不是太高的场合,建议采用过硫酸铵溶液作为处理介质.UH MWPE 纤维的处理效果除与浸蚀液的氧化性有关外,还与纤维暴露在浸蚀液中的时间、温度等因素有关.Silverstein 等人[13]采用铬酸氧化处理聚乙烯纤维时发现,随着纤维在浸蚀液中暴露时间的延长,其层间剪切强度将下降,纤维自身的强力也会过度下降;被氧化后的纤维,其破坏机理由原纤剥离变成脆性断裂,表明纤维的浸蚀氧化时间、温度与黏结性能之间有一最佳平衡值.与浸蚀氧化相比,浸蚀接枝多官能团化合物后的纤维表面润湿性能将进一步增强.余木火等人[14]采用重铬酸钾 硫酸体系对高强聚乙烯纤维浸蚀氧化后,在不同温度下进一步接枝二乙烯三胺、季戊四醇等不同单体,发现接枝单体后的聚乙烯纤维/环氧树脂界面黏合强度大大增加,特别是引入二乙烯三胺,其层间剪切强度可提高8倍,与目前文献报道的等离子体处理结果相当;另外,短时的高温处理有利于接枝单体在纤维表面的反应.1 2 等离子体表面处理技术等离子体表面处理是在真空状态下,利用射频能量激活气体,将气体离解成电子、离子、自由基和一些亚稳态的激发种,这些自由基、电子等轰击纤维材料表面,使材料表面的分子共价键断裂,生成新自由基.被激活的材料表面能够快速与激发气体结合,同时提供化学反应基团,从而提高纤维材料表面的润湿性.等离子体表面处理分为形成聚合物反应和不形成聚合物反应2种.形成聚合物反应的等离子处理是指纤维材料在有机气体等离子中除形成表面刻蚀外,还会在纤维表面因有机气体聚合而接枝活性官能团,这层接枝物可提高纤维与树脂的黏结效果.就不形成聚合物反应的等离子体处理而言,又分为反应性气体(O 2、N 2、NH 3、CO 2、H 2O 等)和非反应性气体(Ar 、H e 、H 2)2类,它们对纤维材料的表面作用机理不同.纤维材料在反应性气体等离子作用下,其表面高分子链可与具有化学活性的反应性气体直接结合,从而改变材料表面的化学成分;而非反应性气体的原子不直接进入到纤维材料表面的大分子链中,只借助高能粒子轰击材料表面使其产生大量自由基,这些自由基在纤维表面形成交联结构.等离子体对UHMWPE 纤维进行表面处理一般只在纤维表面有限的深度内进行表面刻61第4期 张玉芳等:用于增强复合材料的聚乙烯纤维表面改性技术62北京服装学院学报(自然科学版) 2006年蚀,因而纤维的力学性能受损较小.处理后的UHM WPE纤维界面剪切强度值一般呈增加趋势,增加的程度由等离子种类、作用压力、能量和纤维的暴露时间共同决定.影响处理结果的其他因素有形成纤维的PE分子质量、纺丝方法、拉伸应力、牵伸比和等离子处理时所用设备等.Brennan A B[15]对Spectra单一纤维在O2、NH3、Ar、空气等不同等离子气体环境中进行处理,单纤维拉出实验测定表明:所有等离子处理都明显增加了纤维与基体树脂之间的黏合,但是不同作用压力和不同气体处理后的纤维,与树脂界面剪切强度大不相同,具有高牵伸倍率的纤维在经过等离子处理后,试样的破坏发生在纤维内部,而不是发生在纤维与树脂之间. M ori,Masaru等[16]将UHMWPE纤维用Ar等离子处理后,置于空气中使纤维表面引入过氧化物,然后在通氮除氧的单体溶液中接枝聚合,使纤维表面引入聚丙烯酰胺,从而使纤维与树脂的浸润性和黏合性得到提高.而中科院金士九等人[17]采用空气等离子体对UHMWPE纤维表面改性,并在纤维表面接枝丙烯酸(AA)或丙烯酸与丙烯酸乙酯共混物(AA+EA),结果表明接枝纤维与树脂间的黏结强度较原丝大大提高,表面接枝AA比接枝AA/EA效果好.1 3 辐射 诱导接枝法辐射 诱导接枝处理是对高聚物惰性表面进行改性的又一种方法,由于辐照能源不同,可分为紫外光(UV)辐照接枝、 射线辐射接枝和电子束辐射接枝等.紫外光辐照接枝是利用紫外光源引发单体在聚乙烯纤维表面进行的接枝聚合.遵循自由基聚合机理,由于聚乙烯纤维表面叔碳原子较少,不易脱氢产生自由基,因此必须采用光敏剂或表面预氧化PE的紫外光辐照分解引发接枝聚合.PE纤维的紫外光辐照接枝聚合反应首先取决于聚乙烯纤维基质、接枝单体和光敏剂的性质,其次反应条件(如反应时间、温度、溶剂等)也有很大影响.Amornsakchai T研究发现[18]:紫外光引发接枝只发生在PE纤维未取向的无定型区;在同样条件下,PE纤维结晶度的增加显著降低了接枝量.骆玉祥等[19]以二苯甲酮为光敏剂,研究了丙烯酰胺、丙烯酸、丙烯酸羟乙酯、甲基丙烯酸缩水甘油酯等单体在UH MWPE 纤维织物表面紫外光接枝聚合的反应活性,结果表明:在以无水乙醇为溶剂的情况下,丙烯酰胺单体的接枝效果最好,其复合材料的层间剪切强度可从未处理的9 5~10MPa提高到18 85M Pa.在利用Co60 射线辐射源对UH MWPE纤维进行处理时,表面接枝率与接枝单体浓度、辐射剂量和温度等因素有关:在高剂量 射线下,UH MWPE纤维会发生交联或断裂反应,导致纤维结构变化、强度下降;而温度升高时,纤维接枝率增加;当接枝液(丙烯酸溶液)中加入阳离子Li+、Na+、K+、Mg2+时,由于接枝聚合物与金属离子结合形成金属盐,可显著提高PE纤维的热稳定性.Abdel[20]为改善UHMWPE纤维作为增强材料时与基体的黏附性能,用 射线对UH MWPE纤维表面辐射接枝聚丙烯腈,然后用改性纤维对氯丁胶进行增强,观察到材料的机械强度明显增加,且橡胶与接枝纤维的表面呈连续相.电子束辐射接枝是对UH MWPE纤维表面进行改性的又一种接枝方法[21-22].张林[23]等采用电子束对UHMWPE纤维表面辐射接枝丙烯酸.实验发现:在N2保护下接枝过程中无需引发剂;随着辐射剂量、反应温度、反应时间增加,反应接枝率增加,纤维的抗张强度及热稳定性也随之增加.就U V辐照接枝、 射线辐射接枝和电子束辐射接枝的效果而言,3种方法对纤维的穿透深度不同:UV辐照只到达表面几纳米,而 射线和电子束辐射却要穿透整体材料,但是它们都会产生阳离子、阳离子自由基和其他活性中间体.除以上介绍的几种方法外,也有采用电晕放电处理、光氧化改性处理、光致交联处理等方法对UHM WPE纤维表面进行处理的,由于这些方法的局限性,在此不再做详细介绍.2 几种改性方法优劣性的比较尽管用于UHMWPE纤维表面改性的方法很多,但是由于受设备、环境条件等因素影响,各种方法都有其可取和不足之处.如吴越等人[24]分别采用空气等离子法、化学氧化法、紫外接枝处理法对UHM WPE纤维表面进行改性,发现3种方法都可以有效提高UH MWPE纤维织物与环氧树脂之间的黏合强度,且使层间剪切强度达到18 1MPa以上.但是,3种方法处理后的纤维表面状态不同,且操作的难易程度不同:化学氧化法易侵蚀纤维本体,且废液在不处理的情况下易造成环境污染;空气等离子法虽不污染环境,处理后的纤维表面含氧量也最高,但需在真空状态下进行,且很难保证纤维处理的均一性;而紫外接枝法则需考虑环境中的氧问题.有关这几种方法的优劣性比较见表1.表1 聚乙烯纤维表面改性方法的优劣性比较改性方法改性机理影响因素作用范围与效果实施可行性化学浸蚀法氧化法刻蚀、表面形成含氧基团氧化剂性质、浓度、反应温度、时间损害纤维本体,导致纤维强度下降废液需处理接枝法刻蚀、表面接枝含官能团的聚合物氧化剂、接枝单体性质、浓度、反应温度、时间效果优于氧化法废液需处理等离子体处理非反应气体刻蚀等离子体种类、作用压力、时间、等离子体功率、纤维性质作用于纤维表面5~50nm厚,刻蚀导致纤维直径减小真空状态下进行,重复性差反应气体刻蚀、表面形成含氧基团等离子体种类、作用压力、时间、等离子体功率、纤维性质同上工业化较困难有机气体刻蚀、表面接枝聚合物等离子体种类、作用压力、时间、等离子体功率、纤维性质效果优于等离子刻蚀操作困难等离子接枝表面接枝含官能团的聚合物等离子体种类、作用压力、时间、等离子体功率、纤维性质、接枝单体性质效果优于等离子刻蚀单体污染等离子设备,工业化较困难辐射接枝U V接枝光敏剂引发或表面预氧化接枝含官能团的聚合物纤维性质、接枝单体性质、光敏剂性质、溶剂、温度、氧作用于纤维表面几百埃,需考虑空气中氧的存在工业化可取 射线接枝断链自由基接枝聚合辐射剂量、反应温度、反应时间、单体性质穿透材料主体内部,影响纤维结构射线危害电子束接枝断链自由基接枝聚合辐射剂量、反应温度、反应时间、单体性质穿透材料主体内部,无氧环境操作困难63第4期 张玉芳等:用于增强复合材料的聚乙烯纤维表面改性技术3 聚乙烯纤维表面改性性能表征方法用于增强复合材料的PE纤维性能表征涉及2方面问题:1)纤维自身改性后的结构与性能;2)纤维与基体树脂复合后的结构与性能.从目前高聚物表面与界面性能测试技术看,大致可分为光谱类、热力学类与机械力学3类.就改性纤维的表面性能而言,可利用处理前后纤维的质量变化确定接枝率,亚甲基蓝吸附法间接计算单位质量官能团含量变化,用沉降法测定不同官能团转化后的纤维沉降率来确定纤维的润湿性,扫描电镜(SEM)观察纤维表面微观形貌变化,傅里叶红外转换光谱(FT IR)测定官能团变化,X射线光电子能谱(XPS)分析表面元素变化.对于改性PE纤维的复合材料性能来说,除利用SEM观察复合材料界面形貌外,界面剪切强度则是最主要的衡量参数.为便于选用,改性纤维性能的各种表征方法如表2所示.表2 改性纤维的性能表征方法表征项目测试仪器方法测试参数及参考标准用途外观形貌扫描电镜(SEM)纤维及其复合材料表界面微观形貌变化物理性能及结构纤维表观接枝率电子天平接枝前后纤维试样质量确定纤维表面接枝情况纤维表面官能团含量亚甲基蓝等温吸附法表面处理前后亚甲基蓝吸附溶液浓度观察氧化接枝前后纤维表面官能团变化纤维沉降率沉降法处理前后纤维在水溶液中的沉降率观察氧化接枝前后纤维表面润湿性纤维表面官能团红外分析仪特征吸收峰改性前后纤维表面官能团变化纤维表面元素分析X射线光电子能谱特定元素能谱改性前后纤维表面元素变化力学性能层间剪切强度万能材料实验机纤维织物复合材料破坏载荷G B3357-1982纤维织物处理前后其复合材料的剪切强度界面剪切强度微黏法(M icrobound)纤维单丝复合材料拔出载荷纤维单丝处理前后其复合材料的剪切强度单丝强度纤维电子强力仪纤维单丝强力纤维单丝表面处理前后强力变化热性能 差式扫描量热仪(DSC)DSC图谱纤维改性前后熔点、结晶度变化关于UHMWPE纤维表面改性后的性能表征测试技术,各研究小组已进行了大量工作.刘振宏等[25]采用重铬酸钾的浓硫酸溶液氧化高强聚乙烯纤维,通过亚甲基蓝吸附法和沉降法确定表面官能团的含量变化和纤维润湿性变化,发现纤维表面引入多元胺后,界面剪切强度增64北京服装学院学报(自然科学版) 2006年加最大.郎彦庆[26]对超高分子质量聚乙烯纤维进行硅烷交联改性,无论是SEM 微观观察,还是ATR 红外漫反射光谱分析,都可看出纤维表面黏结性能明显改善.4 结束语近年来,随着超高分子质量聚乙烯纤维在复合材料领域中的不断应用,有关提高PE 纤维亲水性与黏合力的表面改性技术的研究也逐渐趋于成熟;但是真正实现工业化的技术几乎没有,其主要症结在于高能量射线或强氧化剂的研制技术不成熟,而它们又是纤维分子链断裂或表面获得极性基团的源泉.为了加大UH MWPE 纤维在复合材料领域的应用力度,近期内关于UH MWPE 纤维表面的改性研究将主要集中在改性技术的工业化上.参考文献[1]SM ITH P,PIET J L.Ultra h i gh strength polyethylene fi laments by solution spinning/draw ing[J].M aterial S cience,1980,15:505.[2]GONGDE LIU,HU ILIN LI.Extrusion of ultrahigh molecular w eight polyethylene under ultrasonic field[J].Applied Polymer Science,2003,89:2628.[3]罗益锋.世界超高分子质量聚乙烯纤维发展概况与对策建议[J].高科技纤维与应用,1999,24(5):13-19.[4]罗益锋.世界高科技纤维正形成三足鼎立之势[J].高科技纤维与应用,2003,28(1):1-5.[5]黄玉动.聚合物表面与界面技术[M ].北京:化学工业出版社,2003.[6]ACKLEY M ,GAO P.Surface treatment of ultra hi gh molecular w ei ght polyethylene to enhance adhesion and conductivityproperti es[J].Polymer,1992,33:19.[7]CARLSSON D J,Colin G.Oxidation behavior of high strength chai n polyethylene fibers[J].Textile Research Journal,1988,58:520.[8]DODIU K H,S IL VERSTEIN M ,BREUER O J.Surface modification of UHM W PE fiber [J ].Applied Polymer Science,1994,52:12.[9]郑震.超高分子质量聚乙烯纤维表面处理的研究进展[J].合成纤维,2002,5(31):9-12.[10]贾广霞,安树林,肖长发,等.超高强聚乙烯纤维的表面改性研究[J].天津纺织工学院学报,1999,18(2):57-60.[11]王保刚,滕翠青,余木火,等.高强度、高模量聚乙烯纤维的表面改性[J].纤维复合材料,1997(4):17-24.[12]吴越.液态氧化法处理超高分子质量聚乙烯纤维[J].功能高分子学报,1999,12(4):427-430.[13]S IL VERSTEIN M ,BREU ER O J.Surface modification UHM W PE fibers[J].Applied Polymer Science,1994,52:12.[14]余木火,赵世平,滕翠青,等.高强聚乙烯纤维增强复合材料界面的研究[J].纤维复合材料,2000(1):15-18.[15]BRENNAN A B.Surface modification of polyethylene fiber for reinforced composite[J].TRIP,1995,3(1):12-21.[16]M ORI M ,UYAM A Y.Surface modification of pol yethylene fiber by graft polymeri zation[J].Polymer Sci ence,1994,32(9):1683-1690.[17]金士九,倪亦斌,张佐光.高强聚乙烯纤维的冷等离子体改进[J].应用化学,1996,13(2):85-87.[18]AM ORNSAKCHAI T,KU BOTA H.Effects of functional groups and surface roughess on interfacial shear strength inUHM W PE fi ber/polyethylene system[J].Applied Polymer Science,1998,70:465.[19]骆玉祥,吴越,胡福增,等.超高分子质量聚乙烯纤维紫外接枝处理[J].复合材料学报,2001,18(4):29-33.[20]ABDEL E M .Radiation induced UHM WPE chopped fibers as rei n forcing filler in polychloriprene[J ].Polymer AdvancedT echnology,1997,8(10):587-591.[21]KLEIN P G,WOODS D W.The effect of electron irradiati on on the structure and mechan i cal properties of highly draw npolyethylene fiber[J].Applied Polym er S cience,1987,25:1359.[22]杨宇平,黄献忠.电子束辐照对超高分子质量聚乙烯纤维结构与性能的影响[J].天津工业大学学报,2004,23(4):64-65第4期 张玉芳等:用于增强复合材料的聚乙烯纤维表面改性技术66北京服装学院学报(自然科学版) 2006年70.[23]张林,刘兆峰.高强高膜聚乙烯纤维电子预辐照接枝反应的研究[J].中国纺织大学学报,1995,21(3):88-93.[24]吴越,胡福增.空气等离子法处理超高分子质量聚乙烯纤维[J].功能高分子学报,2001,14(2):190-194.[25]刘振宏,袁昂.高强度聚乙烯纤维的表面改性[J].河南石油,2000(6):44-45.[26]郎彦庆,王耀先,程树军.超高分子质量聚乙烯纤维的硅烷交联改性[J].合成纤维,2004(4):1-4.Surface Modification Technology of PolyethyleneFiber for Reinforced Composite MaterialZH ANG Yu f ang1,PAN G Ya li2(1 Department of Science Technology,Beijing Institute of Clothing Technology,Bei jing100029,China;2 Department of M aterials S cience an d Technology,Beijing100029,China)Abstract:As a new kind of organic fiber,UHMWPE fiber has come to be used in the field of composite materials.This paper rev iew ed the adv ancement of modification technique UH MWPE fiber s surface soakage.The mechanism,influencing factors and feasibility of industrialization about different w ays were carefully compared.The characterization methods for performance of modified fiber were introduced.Key words:polyethylene fiber,surface modification,the inter laminar shear strength,plasma, radiation,g raft polymerization。
超高分子量聚乙烯纤维生产工艺The production process of ultra-high molecular weight polyethylene (UHMWPE) fibers is a complex and intricate procedure that involves several key steps to ensure the quality and performance of the final product. UHMWPE fibers are known for their exceptional strength, durability, and resistance to abrasion, making them ideal for a wide range of applications, including ballistic protection, ropes and nets, and medical devices. The manufacturing process of UHMWPE fibers requires careful attention to detail and precision to achieve the desired properties and performance characteristics.One of the first steps in the production of UHMWPE fibers is the polymerization of ethylene monomer to form long chains of polyethylene molecules with extremely high molecular weights. This process typically involves the use of a catalyst and high-pressure conditions to promote the growth of the polymer chains. The resulting UHMWPE resin is then extruded into a gel-like form, which is subsequentlystretched and oriented to align the polymer chains in the desired direction. This stretching process is crucial for enhancing the strength and toughness of the fibers, as it helps to eliminate any entanglements or defects in the molecular structure.After the initial stretching and orientation, the UHMWPE fibers undergo a process known as gel spinning,which involves spinning the gel-like material into fine, continuous filaments. This step is critical for producing fibers with high tensile strength and modulus, as it helpsto further align the polymer chains and remove anyremaining imperfections in the molecular structure. Thespun fibers are then subjected to heat treatment to improve their crystallinity and enhance their mechanical properties. This heat treatment process, also known as annealing, helps to increase the degree of crystallinity in the fibers,which in turn improves their tensile strength, stiffness, and resistance to creep and fatigue.In addition to the primary manufacturing steps, the production of UHMWPE fibers also requires careful controland monitoring of various process parameters, such as temperature, pressure, and stretching conditions. These parameters play a crucial role in determining the final properties and performance characteristics of the fibers, and any deviations or inconsistencies in the process can result in inferior product quality. Therefore, it is essential for manufacturers to implement strict quality control measures and process optimization techniques to ensure the uniformity and consistency of the UHMWPE fibers.Furthermore, the production of UHMWPE fibers also involves the use of advanced equipment and machinery, such as extruders, spin-drawing machines, and heat treatment ovens, which require regular maintenance and calibration to ensure their proper functioning. Any malfunctions or deviations in the equipment can have a significant impact on the quality and performance of the fibers, making it essential for manufacturers to invest in state-of-the-art technology and equipment to support their production processes.Overall, the production of UHMWPE fibers is a highlysophisticated and intricate process that requires careful attention to detail, precision, and control of various parameters to achieve the desired properties and performance characteristics. By implementing advanced manufacturing techniques, strict quality control measures, and state-of-the-art equipment, manufacturers can ensure the production of high-quality UHMWPE fibers that meet the stringent requirements of various industrial and commercial applications.。
不同结构三维UHMWPE纤维复合材料的性能研究作者:***来源:《现代纺织技术》2021年第04期摘要:随着超高分子量聚乙烯(UHMWPE)纤维在轻质复合材料方面的应用越来越广泛,UHMWPE纤维作为增强基体制造符合材料的研究日益深入,但经过三维编织结构加工成的复合材料的应用性能研究尚在初期。
本文以UHMWPE纤维做为轻质增强基体,采用三维编织的方法,经过真空模塑成型(VARTM)工艺制备复合材料。
在相同的真空注塑成型工艺条件下,对比不同编织结构对复合材料的树脂体积分数、面密度、弯曲性能和抗拉伸性能的影响。
通过对比深交联、浅交弯联、浅交直联编织结构VARTM制备的复合材料力学性能,结果表明:深交联结构复合材料的力学性能优于浅交弯联和浅交直联结构三维复合材料。
关键词:UHMWPE纤维;三维编织;复合材料;应用性能;深交联中图分类号: TQ342.61文献标志码:A文章编号:1009-265X(2021)04-0012-06Abstract: UHMEPE fiber is more and more widely applied in lightweight composites. The research of UHMWPE fiber as reinforcing matrix to manufacture composites is deepening, but the application performance of composites fabricated by3D weaving structure is still in the early stage. In this paper, the composites were prepared with three-dimensional weaving method by using UHMWPE fiber as the lightweight reinforcing matrix, and vacuum assistant resin transfer molding (VARTM). In the same VARTM process conditions, the effects of different weaving structures on resin volume fraction, surface density, bending properties and tensile properties were compared. The mechanical properties of the composites prepared by deep cross-linked, shallow cross-linked bending-connected, and shallow cross-linked straight-connected braided VETM were compared. The results showed that the mechanical property of deep cross-linked composite was better than thatof shallow cross-linked bending-connected and shallow cross-linked straight-connected three-dimensional composites.Key words: UHMWPE fiber; three-dimensional weave; composite; application performance; deep cross-linked随着全球纤维材料技术的进步,各行业在特种纤维开发与应用方面的研究越来越成熟,纤维材料已在多个领域取代金属材料,成为首选的复合材料增强基体[1]。