(完整版)导数大题精析1——放缩思想在高考函数中的应用.doc
- 格式:doc
- 大小:98.04 KB
- 文档页数:5
新课标全国卷导数整体把握之放缩法的应用
章建荣
【期刊名称】《高中数理化》
【年(卷),期】2018(000)017
【摘要】近年来,新课标全国卷中导数压轴题往往涉及函数不等式问题,函数载
体往往是指数、对数与其他函数综合或指数、对数并存的超越函数形式,难度很大,考生往往望而止步.放缩法是解决函数不等式问题的一把利器,“不等式放缩”频频出现,使得导数考查也变得越来越有韵味.现结合近几年全国卷导数题中典型放缩的实际应用进行探讨.
【总页数】2页(P4-5)
【作者】章建荣
【作者单位】江西省南昌市铁路第一中学
【正文语种】中文
【相关文献】
1.巧用放缩法破解导数题 [J], 朱小扣
2.从一道导数题的解法看放缩法的应用 [J], 汪家玲;
3.巧用放缩法破解导数题 [J], 朱小扣
4.有效利用切线放缩法破解函数与导数压轴题 [J], 潘敬贞
5.放缩法在导数大题中的应用归纳 [J], 王佳一;张元涛
因版权原因,仅展示原文概要,查看原文内容请购买。
(高手必备)高考导数大题中最常用的放缩大法相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论⑴sin ,(0,)x x x π<∈,变形即为sin 1x x<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1.⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>.将这些不等式简单变形如下: exx ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。
例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(⋅≤>++=若对任意的设恒成立,求a 的取值范围。
放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x高考中最常见的放缩法可总结如下,供大家参考。
第一组:对数放缩(放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ⎛⎫<-> ⎪⎝⎭,()11ln 012x x x x ⎛⎫>-<< ⎪⎝⎭, )ln 1x x<>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102x x x x +≤--<<,()()21ln 102x x x x +≥-> (放缩成类反比例函数)1ln 1x x≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+第二组:指数放缩(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤≤-,()10x e x x<-<, (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++, 第三组:指对放缩()()ln 112x e x x x -≥+--=第四组:三角函数放缩()sin tan 0x x x x <<>,21sin 2x x x ≥-,22111cos 1sin 22x x x -≤≤-. 第五组:以直线1y x =-为切线的函数ln y x =,11x y e -=-,2y x x =-,11y x=-,ln y x x =. 拓展阅读:为何高考中总是考这些超越函数呢?和x e xln 因为高考命题专家是大学老师,他们站在高观点下看高中数学,一览无遗。
2024全国高考真题数学汇编导数在研究函数中的应用一、单选题1.(2024上海高考真题)已知函数()f x 的定义域为R ,定义集合 0000,,,M x x x x f x f x R ,在使得 1,1M 的所有 f x 中,下列成立的是()A .存在 f x 是偶函数B .存在 f x 在2x 处取最大值C .存在 f x 是严格增函数D .存在 f x 在=1x 处取到极小值二、多选题2.(2024全国高考真题)设函数2()(1)(4)f x x x ,则()A .3x 是()f x 的极小值点B .当01x 时, 2()f x f xC .当12x 时,4(21)0f xD .当10x 时,(2)()f x f x 3.(2024全国高考真题)设函数32()231f x x ax ,则()A .当1a 时,()f x 有三个零点B .当0a 时,0x 是()f x 的极大值点C .存在a ,b ,使得x b 为曲线()y f x 的对称轴D .存在a ,使得点 1,1f 为曲线()y f x 的对称中心三、填空题4.(2024全国高考真题)曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,则a 的取值范围为.四、解答题5.(2024全国高考真题)已知函数3()e x f x ax a .(1)当1a 时,求曲线()y f x 在点 1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.6.(2024全国高考真题)已知函数 1ln 1f x ax x x .(1)当2a 时,求 f x 的极值;(2)当0x 时, 0f x ,求a 的取值范围.7.(2024全国高考真题)已知函数 1ln 1f x a x x .(1)求 f x 的单调区间;(2)当2a 时,证明:当1x 时, 1e x f x 恒成立.8.(2024上海高考真题)对于一个函数 f x 和一个点 ,M a b ,令 22()()s x x a f x b ,若 00,P x f x 是 s x 取到最小值的点,则称P 是M 在 f x 的“最近点”.(1)对于1()(0)f x x x,求证:对于点 0,0M ,存在点P ,使得点P 是M 在 f x 的“最近点”;(2)对于 e ,1,0x f x M ,请判断是否存在一个点P ,它是M 在 f x 的“最近点”,且直线MP 与()y f x 在点P 处的切线垂直;(3)已知()y f x 在定义域R 上存在导函数()f x ,且函数()g x 在定义域R 上恒正,设点11,M t f t g t , 21,M t f t g t .若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,试判断 f x 的单调性.9.(2024北京高考真题)设函数 ln 10f x x k x k ,直线l 是曲线 y f x 在点 ,0t f t t 处的切线.(1)当1k 时,求 f x 的单调区间.(2)求证:l 不经过点 0,0.(3)当1k 时,设点 ,0A t f t t , 0,C f t , 0,0O ,B 为l 与y 轴的交点,ACO S 与ABO S 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S △△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10 ,1.60ln51.61 ,1.94ln71.95 )10.(2024天津高考真题)设函数 ln f x x x .(1)求 f x 图象上点 1,1f 处的切线方程;(2)若 f x a x 在 0,x 时恒成立,求a 的值;(3)若 12,0,1x x ,证明 121212f x f x x x .11.(2024全国高考真题)已知函数3()ln (1)2x f x ax b x x (1)若0b ,且()0f x ,求a 的最小值;(2)证明:曲线()y f x 是中心对称图形;(3)若()2f x 当且仅当12x ,求b 的取值范围.参考答案1.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数2,1,111,1x f x x x x即可判断.【详解】对于A ,若存在()y f x 是偶函数,取01[1,1]x ,则对于任意(,1),()(1)x f x f ,而(1)(1)f f ,矛盾,故A 错误;对于B ,可构造函数 2,1,,11,1,1,x f x x x x满足集合 1,1M ,当1x 时,则 2f x ,当11x 时, 1,1f x ,当1x 时, 1f x ,则该函数 f x 的最大值是 2f ,则B 正确;对C ,假设存在 f x ,使得 f x 严格递增,则M R ,与已知 1,1M 矛盾,则C 错误;对D ,假设存在 f x ,使得 f x 在=1x 处取极小值,则在1 的左侧附近存在n ,使得 1f n f ,这与已知集合M 的定义矛盾,故D 错误;故选:B.2.ACD【分析】求出函数 f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数 f x 在 1,3上的值域即可判断C ;直接作差可判断D.【详解】对A ,因为函数 f x 的定义域为R ,而 22141313f x x x x x x ,易知当 1,3x 时, 0f x ,当 ,1x 或 3,x 时, 0f x 函数 f x 在 ,1 上单调递增,在 1,3上单调递减,在 3, 上单调递增,故3x 是函数 f x 的极小值点,正确;对B ,当01x 时, 210x x x x ,所以210x x ,而由上可知,函数 f x 在 0,1上单调递增,所以 2f x f x ,错误;对C ,当12x 时,1213x ,而由上可知,函数 f x 在 1,3上单调递减,所以 1213f f x f ,即 4210f x ,正确;对D ,当10x 时, 222(2)()12141220f x f x x x x x x x ,所以(2)()f x f x ,正确;故选:ACD.3.AD【分析】A 选项,先分析出函数的极值点为0,x x a ,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a 上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,则()(2)f x f b x 为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a ,由于1a ,故 ,0,x a 时()0f x ,故()f x 在 ,0,,a 上单调递增,(0,)x a 时,()0f x ,()f x 单调递减,则()f x 在0x 处取到极大值,在x a 处取到极小值,由(0)10 f ,3()10f a a ,则(0)()0f f a ,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a ,3(2)410f a a ,则(1)(0)0,()(2)0f f f a f a ,则()f x 在(1,0),(,2)a a 上各有一个零点,于是1a 时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a ,a<0时,(,0),()0x a f x ,()f x 单调递减,,()0x 时()0f x ,()f x 单调递增,此时()f x 在0x 处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x ,即32322312(2)3(2)1x ax b x a b x ,根据二项式定理,等式右边3(2)b x 展开式含有3x 的项为303332C (2)()2b x x ,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b 为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a ,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a ,于是266(126)(1224)1812a a x a x a即126012240181266a a a a,解得2a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax ,2()66f x x ax ,()126f x x a ,由()02a f x x ,于是该三次函数的对称中心为,22a a f ,由题意(1,(1))f 也是对称中心,故122a a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x ;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ;(3)任何三次函数32()f x ax bx cx d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x 的解,即,33b b f aa是三次函数的对称中心4. 2,1 【分析】将函数转化为方程,令 2331x x x a ,分离参数a ,构造新函数 3251,g x x x x 结合导数求得 g x 单调区间,画出大致图形数形结合即可求解.【详解】令 2331x x x a ,即3251a x x x ,令 32510,g x x x x x 则 2325351g x x x x x ,令 00g x x 得1x ,当 0,1x 时, 0g x , g x 单调递减,当 1,x 时, 0g x , g x 单调递增, 01,12g g ,因为曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,所以等价于y a 与 g x 有两个交点,所以 2,1a .故答案为:2,1 5.(1) e 110x y (2)1, 【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a 和0a 两种情况,利用导数判断单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可;解法二:求导,可知()e x f x a 有零点,可得0a ,进而利用导数求 f x 的单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可.【详解】(1)当1a 时,则()e 1x f x x ,()e 1x f x ,可得(1)e 2f ,(1)e 1f ,即切点坐标为 1,e 2 ,切线斜率e 1k ,所以切线方程为 e 2e 11y x ,即 e 110x y .(2)解法一:因为()f x 的定义域为R ,且()e x f x a ,若0a ,则()0f x 对任意x R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,则 120g a a a,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, ;解法二:因为()f x 的定义域为R ,且()e x f x a ,若()f x 有极小值,则()e x f x a 有零点,令()e 0x f x a ,可得e x a ,可知e x y 与y a 有交点,则a ,若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,符合题意,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,因为则2,ln 1y a y a 在 0, 内单调递增,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, .6.(1)极小值为0,无极大值.(2)12a 【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a 、102a 、0a 分类讨论后可得参数的取值范围.【详解】(1)当2a 时,()(12)ln(1)f x x x x ,故121()2ln(1)12ln(1)111x f x x x x x,因为12ln(1),11y x y x在 1, 上为增函数,故()f x 在 1, 上为增函数,而(0)0f ,故当10x 时,()0f x ,当0x 时,()0f x ,故 f x 在0x 处取极小值且极小值为 00f ,无极大值.(2) 11ln 11ln 1,011a x ax f x a x a x x x x,设 1ln 1,01a x s x a x x x,则222111211111a a x a a ax a s x x x x x ,当12a 时, 0s x ,故 s x 在 0, 上为增函数,故 00s x s ,即 0f x ,所以 f x 在 0, 上为增函数,故 00f x f .当102a 时,当0x 0s x ,故 s x 在210,a a 上为减函数,故在210,a a上 0s x s ,即在210,a a上 0f x 即 f x 为减函数,故在210,a a上 00f x f ,不合题意,舍.当0a ,此时 0s x 在 0, 上恒成立,同理可得在 0, 上 00f x f 恒成立,不合题意,舍;综上,12a .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.7.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x 时,1e 21ln 0x x x 即可.【详解】(1)()f x 定义域为(0,) ,11()ax f x a x x当0a 时,1()0ax f x x,故()f x 在(0,) 上单调递减;当0a 时,1,x a时,()0f x ,()f x 单调递增,当10,x a时,()0f x ,()f x 单调递减.综上所述,当0a 时,()f x 的单调递减区间为(0,) ;0a 时,()f x 的单调递增区间为1,a ,单调递减区间为10,a.(2)2a ,且1x 时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ,令1()e 21ln (1)x g x x x x ,下证()0g x 即可.11()e 2x g x x ,再令()()h x g x ,则121()e x h x x,显然()h x 在(1,) 上递增,则0()(1)e 10h x h ,即()()g x h x 在(1,) 上递增,故0()(1)e 210g x g ,即()g x 在(1,) 上单调递增,故0()(1)e 21ln10g x g ,问题得证8.(1)证明见解析(2)存在,0,1P (3)严格单调递减【分析】(1)代入(0,0)M ,利用基本不等式即可;(2)由题得 22(1)e x s x x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到 10200s x s x ,对两等式化简得 01()f xg t ,再利用“最近点”的定义得到不等式组,即可证明0x t ,最后得到函数单调性.【详解】(1)当(0,0)M 时, 222211(0)02s x x x x x ,当且仅当221x x 即1x 时取等号,故对于点 0,0M ,存在点 1,1P ,使得该点是 0,0M 在 f x 的“最近点”.(2)由题设可得 2222(1)e 0(1)e x x s x x x ,则 2212e x s x x ,因为 221,2e x y x y 均为R 上单调递增函数,则 2212e xs x x 在R 上为严格增函数,而 00s ,故当0x 时, 0s x ,当0x 时, 0s x ,故 min 02s x s ,此时 0,1P ,而 e ,01x f x k f ,故 f x 在点P 处的切线方程为1y x .而01110MP k ,故1MP k k ,故直线MP 与 y f x 在点P 处的切线垂直.(3)设 221(1)()s x x t f x f t g t ,222(1)()s x x t f x f t g t ,而 12(1)2()s x x t f x f t g t f x , 22(1)2()s x x t f x f t g t f x ,若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,设 00,P x y ,则0x 既是 1s x 的最小值点,也是 2s x 的最小值点,因为两函数的定义域均为R ,则0x 也是两函数的极小值点,则存在0x ,使得 10200s x s x ,即 10000212()()0s x x t f x f x f t g t ① 20000212()()0s x x t f x f x f t g t ②由①②相等得 044()0g t f x ,即 01()0f x g t ,即 01()f x g t,又因为函数()g x 在定义域R 上恒正,则 010()f xg t 恒成立,接下来证明0x t ,因为0x 既是 1s x 的最小值点,也是 2s x 的最小值点,则 1020(),()s x s t s x s t ,即 2220011x t f x f t g t g t ,③ 2220011x t f x f t g t g t ,④③ ④得 222200222()2()22()x t f x f t g t g t 即 22000x t f x f t ,因为 2200,00x t f x f t 则 0000x t f x f t,解得0x t ,则 10()f tg t 恒成立,因为t 的任意性,则 f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到 01()f x g t,再利用最值点定义得到0x t 即可.9.(1)单调递减区间为(1,0) ,单调递增区间为(0,) .(2)证明见解析(3)2【分析】(1)直接代入1k ,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t,将(0,0)代入再设新函数()ln(1)1t F t t t ,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S 得到13ln(1)21501t t t t ,再设新函数15()13ln(1)2(0)1t h t t t t t研究其零点即可.【详解】(1)1()ln(1),()1(1)11x f x x x f x x x x,当 1,0x 时, 0f x ;当 0,x ,()0f x ¢>;()f x 在(1,0) 上单调递减,在(0,) 上单调递增.则()f x 的单调递减区间为(1,0) ,单调递增区间为(0,) .(2)()11k f x x ,切线l 的斜率为11k t,则切线方程为()1()(0)1k y f t x t t t,将(0,0)代入则()1,()111k k f t t f t t t t,即ln(1)1k t k t t tt ,则ln(1)1t t t ,ln(1)01t t t ,令()ln(1)1t F t t t,假设l 过(0,0),则()F t 在(0,)t 存在零点.2211()01(1)(1)t t t F t t t t ,()F t 在(0,) 上单调递增,()(0)0F t F ,()F t 在(0,) 无零点, 与假设矛盾,故直线l 不过(0,0).(3)1k 时,12()ln(1),()1011x f x x x f x x x.1()2ACO S tf t ,设l 与y 轴交点B 为(0,)q ,0t 时,若0q ,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q .所以0q ,则切线l 的方程为 111ln 1x t y t t t,令0x ,则ln(1)1t y q y t t.215ACO ABO S S ,则2()15ln(1)1t tf t t t t,13ln(1)21501t t t t ,记15()13ln(1)2(0)1th t t t t t, 满足条件的A 有几个即()h t 有几个零点.2222221313221151315294(21)(4)()21(1)(1)(1)(1)t t t t t t t h t t t t t t ,当10,2t时, 0h t ,此时 h t 单调递减;当1,42t时, 0h t ,此时 h t 单调递增;当 4,t 时, 0h t ,此时 h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h,15247272(24)13ln 254826ln 548261.614820.5402555h,所以由零点存在性定理及()h t 的单调性,()h t 在1,42上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.10.(1)1y x (2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a ,再证明2a 时条件满足;(3)先确定 f x 的单调性,再对12,x x 分类讨论.【详解】(1)由于 ln f x x x ,故 ln 1f x x .所以 10f , 11f ,所以所求的切线经过 1,0,且斜率为1,故其方程为1y x .(2)设 1ln h t t t ,则 111t h t t t,从而当01t 时 0h t ,当1t 时 0h t .所以 h t 在 0,1上递减,在 1, 上递增,这就说明 1h t h ,即1ln t t ,且等号成立当且仅当1t .设 12ln g t a t t ,则ln 1f x a x x x a x x a x g .当 0,x0, ,所以命题等价于对任意 0,t ,都有 0g t .一方面,若对任意 0,t ,都有 0g t ,则对 0,t 有112012ln 12ln 1212g t a t t a t a t at a t t t,取2t ,得01a ,故10a .再取t,得2022a a a,所以2a .另一方面,若2a ,则对任意 0,t 都有 212ln 20g t t t h t ,满足条件.综合以上两个方面,知a 的值是2.(3)先证明一个结论:对0a b ,有 ln 1ln 1f b f a a b b a.证明:前面已经证明不等式1ln t t ,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b,所以ln ln ln 1ln 1b b a a a b b a,即 ln 1ln 1f b f a a b b a.由 ln 1f x x ,可知当10e x 时 0f x ,当1ex 时()0f x ¢>.所以 f x 在10,e上递减,在1,e上递增.不妨设12x x ,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x 时,有122122121ln 1f x f x f x f x x x x x x ,结论成立;情况二:当1210e x x 时,有 12121122ln ln f x f x f x f x x x x x .对任意的10,e c,设ln ln x x x c cln 1x x 由于 x单调递增,且有1111111ln 1ln11102e2e ec c,且当2124ln 1x c c,2cx2ln 1c 可知2ln 1ln 1ln 102c x x c.所以 x 在 0,c 上存在零点0x ,再结合 x 单调递增,即知00x x 时 0x ,0x x c 时 0x .故 x 在 00,x 上递减,在 0,x c 上递增.①当0x x c 时,有 0x c ;②当00x x112221e e f f c,故我们可以取1,1q c .从而当201cx q1ln ln ln ln 0x x x c c c c c c q c.再根据 x 在 00,x 上递减,即知对00x x 都有 0x ;综合①②可知对任意0x c ,都有 0x ,即ln ln 0x x x c c .根据10,e c和0x c 的任意性,取2c x ,1x x,就得到1122ln ln 0x x x x .所以12121122ln ln f x f x f x f x x x x x 情况三:当12101e x x时,根据情况一和情况二的讨论,可得11e f x f21e f f x而根据 f x 的单调性,知 1211e f x f x f x f或 1221e f x f x f f x .故一定有12f x f x 成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合 f x 的单调性进行分类讨论.11.(1)2 (2)证明见解析(3)23b【分析】(1)求出 min 2f x a 后根据()0f x 可求a 的最小值;(2)设 ,P m n 为 y f x 图象上任意一点,可证 ,P m n 关于 1,a 的对称点为 2,2Q m a n 也在函数的图像上,从而可证对称性;(3)根据题设可判断 12f 即2a ,再根据()2f x 在 1,2上恒成立可求得23b .【详解】(1)0b 时, ln 2xf x ax x,其中 0,2x ,则112,0,222f x a a x x x x x,因为 22212x x x x,当且仅当1x 时等号成立,故 min 2f x a ,而 0f x 成立,故20a 即2a ,所以a 的最小值为2 .,(2) 3ln12x f x ax b x x的定义域为 0,2,设 ,P m n 为 y f x 图象上任意一点,,P m n 关于 1,a 的对称点为 2,2Q m a n ,因为 ,P m n 在 y f x 图象上,故 3ln 12m n am b m m,而 3322ln221ln 122m m f m a m b m am b m a m m,2n a ,所以 2,2Q m a n 也在 y f x 图象上,由P 的任意性可得 y f x 图象为中心对称图形,且对称中心为 1,a .(3)因为 2f x 当且仅当12x ,故1x 为 2f x 的一个解,所以 12f 即2a ,先考虑12x 时, 2f x 恒成立.此时 2f x 即为 3ln21102x x b x x在 1,2上恒成立,设 10,1t x ,则31ln201t t bt t在 0,1上恒成立,设 31ln2,0,11t g t t bt t t,则2222232322311t bt b g t bt t t,当0b ,232332320bt b b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当203b 时,2323230bt b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当23b ,则当01t 时, 0g t故在 上 g t 为减函数,故 00g t g ,不合题意,舍;综上, 2f x 在 1,2上恒成立时23b .而当23b 时,而23b 时,由上述过程可得 g t 在 0,1递增,故 0g t 的解为 0,1,即 2f x 的解为 1,2.综上,23b .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.。
导数大题放缩法题目(最新版)目录1.导数大题放缩法题目的概述2.放缩法的基本原理3.放缩法在导数大题中的应用实例4.放缩法的使用技巧和注意事项5.结论正文一、导数大题放缩法题目的概述导数大题放缩法题目是高等数学中的一种题型,主要考察学生对导数知识的掌握程度以及运用放缩法解决实际问题的能力。
导数是函数在某一点变化率的极限,是研究函数变化规律的重要工具。
在解决导数大题时,放缩法是一种常用的解题方法,可以帮助学生快速找到解题思路。
二、放缩法的基本原理放缩法,顾名思义,就是将复杂的问题简化,从而使问题变得容易解决。
在导数大题中,放缩法的基本原理是通过对函数的某些部分进行放大或缩小,使函数在某一点的导数发生变化,从而简化原问题。
放缩法的使用需要遵循两个原则:一是放缩后的函数要容易求导;二是放缩过程中不能改变函数的连续性。
三、放缩法在导数大题中的应用实例下面我们通过一个具体的实例来说明放缩法在导数大题中的应用。
例题:求函数 f(x) = x^3 - 3x^2 + 2x - 1 在 x = 1 处的导数。
解:我们可以通过放缩法来解决这个问题。
首先,我们对函数 f(x) 进行放缩,令 g(x) = f(x) - (x^3 - 3x^2 + 2x),则 g(x) = -1。
对 g(x) 求导,得到 g"(x) = f"(x) - 3x^2 - 6x + 2。
将 x = 1 代入,得到 g"(1) = f"(1) - 3 - 6 + 2 = f"(1) - 7。
因为 g"(1) = -1,所以 f"(1) = -1 + 7 = 6。
所以,函数 f(x) 在 x = 1 处的导数为 6。
四、放缩法的使用技巧和注意事项1.选择合适的放缩函数:放缩函数的选择要根据具体问题来定,要求放缩后的函数容易求导,同时不放缩函数的连续性。
2.适度放缩:放缩的程度要适中,不能过度放大或缩小,以免影响问题的解决。
导数大题放缩法题目导数的放缩法是一种常用的求导方法,它可以帮助我们简化复杂的函数求导过程。
下面我将给出一个导数放缩法的题目,并从多个角度进行全面完整的回答。
题目,求函数$f(x) = \frac{2x^3 3x^2 12x + 5}{x^2 4}$的导数。
解答:为了求解这个题目,我们可以使用导数的放缩法。
下面将从多个方面进行回答。
1. 使用导数定义求解:我们可以使用导数的定义来求解这个题目。
根据导数的定义,函数$f(x)$的导数可以表示为:$f'(x) = \lim_{h\to0}\frac{f(x+h) f(x)}{h}$。
将函数$f(x)$带入上述公式,我们可以得到:$f'(x) = \lim_{h\to0}\frac{\frac{2(x+h)^3 3(x+h)^212(x+h) + 5}{(x+h)^2 4} \frac{2x^3 3x^2 12x + 5}{x^24}}{h}$。
通过化简和合并同类项,我们可以得到:$f'(x) = \lim_{h\to0}\frac{6x^2 + 6xh 3h^2 12}{(x^24)(x+h)^2 4(x^2 4)}$。
继续化简,我们可以得到:$f'(x) = \lim_{h\to0}\frac{6x^2 + 6xh 3h^2 12}{x^4 +2x^3h 7x^2 + 2xh^3 4xh^2 12x + h^4 4}$。
然后,我们可以将$h$约去,并计算极限:$f'(x) = \frac{6x^2 12}{x^4 4}$。
因此,函数$f(x)$的导数为$f'(x) = \frac{6x^2 12}{x^4 4}$。
2. 使用导数的基本公式求解:除了使用导数的定义,我们还可以使用导数的基本公式来求解这个题目。
根据导数的基本公式,我们可以得到一些常见函数的导数规则,如常数函数、幂函数、指数函数、对数函数等。
导数大题放缩法题目当涉及到导数的放缩法题目时,通常是要求通过放缩法来确定一个函数的导数的范围或者找到一个函数的最大值或最小值。
下面我将从不同的角度给出一些相关的问题和解答。
1. 问题,如何利用放缩法确定一个函数的导数的范围?回答,要确定一个函数的导数的范围,可以采用放缩法来进行推导。
首先,找到函数的极值点和导数不存在的点,然后根据这些点的性质来确定导数的范围。
具体步骤包括,求导,找到导函数的零点,求导函数的符号变化区间,以及考虑导数不存在的点。
通过这些步骤,可以得到导数的范围。
2. 问题,如何利用放缩法找到一个函数的最大值或最小值?回答,要找到一个函数的最大值或最小值,可以利用放缩法来进行求解。
首先,找到函数的极值点和导数不存在的点,然后根据这些点的性质来确定函数的最大值或最小值。
具体步骤包括,求导,找到导函数的零点,求导函数的符号变化区间,以及考虑导数不存在的点。
通过这些步骤,可以确定函数的最大值或最小值。
3. 问题,放缩法在求解导数范围和最值时有什么注意事项?回答:在使用放缩法求解导数范围和最值时,需要注意以下几点:对于导函数的零点,要找到所有的零点,并判断其性质(极大值点或极小值点)。
对于导函数的符号变化区间,要确定函数在这些区间内的斜率的正负情况,从而判断函数的增减性。
对于导数不存在的点,要单独考虑这些点对函数的影响,可能是函数的极值点或者不可导点。
在进行放缩时,要注意不要漏掉任何可能的情况,尤其是边界点和特殊点。
通过以上的问题和解答,我们可以初步了解到在求解导数的放缩法题目时,需要注意对函数的极值点、导数不存在的点以及导函数的符号变化区间进行分析,并综合考虑这些因素来确定导数的范围或者找到函数的最大值或最小值。
这样的综合分析能够帮助我们更全面地理解和解决这类问题。
函数与导数—导数中的放缩问题专题综述放缩法是解决函数不等式问题的利器,导数压轴题中的函数往往是指数、对数与其他函数综合,或者指对数并存的超越函数,有时直接构造出的函数难以直接求出最值,需要借助放缩解决.利用导数判断函数单调性、解决函数零点问题、不等式证明等问题中都会用到放缩法,使问题难度降低.常用的放缩方式有:①常用不等式放缩:指数放缩、对数放缩、三角放缩;②利用已知题目信息放缩;③根据已知参数范围或常识,减少变量,适当放缩;③利用单调性放缩;④利用基本不等式放缩: 若0a b >>,则211ln ln 2a b a bb ab a b a b-+<<<<-+;⑤由数值大小关系直接放缩,做题时灵活运用.本专题就前3种,重点探究.专题探究探究1:利用不等式放缩函数中有指数、对数、三角函数时,直接求导,导数不等式无法解出,根据函数结构,选择不等式进行放缩,使函数简单化. 常用不等式有:(1)三角函数放缩:①0,,sin tan 2x x x x π⎛⎫∀∈<< ⎪⎝⎭;②21sin 2x x x ≥-;③22111cos 1sin 22x x x -≤≤-(2)指数放缩:①1x e x ≥+;②x e ex ≥(1,y x y ex =+=为函数x y e =图象的两条切线);③()101xe x x ≤≤-;④()10x e x x≤-< (3)对数放缩:①11ln 1x x x -≤≤-;②ln x x e ≤;③1ln x ex ≥-;(1,xy x y e =-=为函数ln y x =图象的两条切线)(4)指对放缩:()()ln 112xe x x x ->+--=(2021安徽省合肥市联考) 已知函数()(ln ),.xe f x a x x a R x=--∈(1)当0a >时,讨论函数()f x 的单调性;(2)当1a =-时,函数1()()()x g x f x x e mx x =+++满足:对任意(0,)x ∈+∞,都有()1g x 恒成立,求实数m 的取值范围.【审题视点】第(2)问显化函数()g x ,恒成立问题回顾常用的方法(专题1.3.7):分离参数、含参讨论单调性等方法,由解析式的具体结构确定方法与细节.【思维引导】分离参数以后,函数中有指、对结构,若直接通过求导判断单调性求最值,方法较困难,利用不等关系1x e x ≥+,得ln ln 1x x e x x +≥++,使难度大大降低.【规范解析】解:(1)()f x 的定义域是(0,)+∞,22()(1)()x x x a xe e ax e x f x a x x x -+-'=--=,当0a >,0x >时,令()0f x '>,则1x <∴()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;(2)当1a =-时,1()()()ln (1)x x g x f x x e mx xe x m x x=+++=-++,()()0,,1x g x ∀∈+∞≥即ln 1ln 1ln 11x x x x xe x e m x x++-+--=-,1.恒成立问题求参:分离参数构造函数求最值;2.构造的函数中有ln x 、ln x x e +,通过求导判断单调性求最值较困难,通过常用不等关系1xe x ≥+,进行放缩,是函数简单化.设()1x F x e x =--,则()1x F x e '=-,令()0F x '>,则0x >∴()f x 在()0,+∞上单调递增,在(),0-∞上单调递减∴()(0)0F x F =,即1(x e x +当且仅当0x =时“=”成立),故ln ln 1(x x e x x +++当且仅当ln 0x x +=时“=”成立), ()ln G x x x =+在(0,)+∞上是增函数,且11()10G e e=-<,(1)10G =>,故存在01(,1)x e∈使得ln 0x x +=成立,故ln 1ln 1ln (ln 1)112x x x e x x x x x++-+-++--=-(当且仅当0x x =时“=”成立),∴2m -,即m 的取值范围是[2,).-+∞【探究总结】常见的不等关系要灵活运用,解题时函数结构复杂,可考虑运用上述不等式进行放缩,使问题简答化.但不等式1,,ln 1,ln xxx e x e ex x x x e≥+≥≤-≤,从图象的角度看,是以直代曲,放缩的程度大,容易出现误差,在使用时要注意.另外若是求参数取值范围问题,要考虑不等式中的等号能否取到.(2021山东省泰安市一模) 已知函数()()ln 2xf x e x k -=-,(k 为常数, 2.718e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点()()1,1f 处的切线与y 轴垂直.(1)求()f x 的单调区间;(2)设()()1ln 1xx x g x e-+=,对任意0x >,证明:()()21x x x g x e e -+<+. 探究2:利用已证结论放缩1.对使用过得不等关系,构造函数证明成立;2.利用不等关系进行替换.恒成立求取值范围的问题,放缩以后,要确保不等式中等号能否取到解答题的上一问中证明的不等式,或者推导过程中证明出的结论,为后续的证明提供放缩的依据.需证明的不等式为关于n 的多项式的和或不等式结构复杂,利用已证结论,进行放缩,使不等式化繁为简,便于构造函数求最值.(2021湖南省郴州市模拟) 已知函数()e (1)ln(1) 1.x f x x x =-++-(1)当0x >时,证明:()0f x >;(2)已知数列{}n a 的通项公式为1e 1nn n na n -=+,证明:12ln (1).n a a a n ++⋅⋅⋅+>+ 【审题视点】第(2)问,出现数列的前n 项和,且不能用常规的求和方法求和,借助第一问的结论对n a 的通项公式进行放缩,便于求和.【思维引导】对第一问的不等式进行变形,观察n a 的结构,进行放缩,能够用已知方法求和.【规范解析】解:(1)由题意得 ()()ln(1)10x f x e x x '=-+->, 设()ln(1)1x g x e x =-+-,则1(1)1()11x xe x g x e x x +-'=-=++, 当0x >时, 1x e >,11x +>,则(1)1x e x +>则(1)1()01x e x g x x +-'=>+, ()g x ∴在()0,+∞上单调递增,故()()00g x g >=,即()0f x '> ()f x ∴在()0,+∞上单调递增,∴当0x >时,()(0)0f x f >=,即()0f x >(2)由(1)知:当0x >时,()(1)ln(1)10x f x e x x =-++->,即1ln(1)1x e x x ->++ 令1x n=,则11ln()1nne n n n n -+>+,12231ln ln ln12n n a a a n++++>+++ 231ln()ln(1)12n n n+=⨯⨯⨯=+ ∴12ln (1)n a a a n ++⋅⋅⋅+>+【探究总结】函数中证明与n 有关的求和问题,或不等式证明问题,要仔细观察不等式结构特点,往往会利用前一问的结论,或者解题过程中的结论.利用已证结论,进行放缩,化繁为简,证明不等式的成立.(2021广东省东莞市联考) 已知函数()ln (1),(0)f x x a x a =-->( 2.718e ≈即自然对数的底数).(1)若函数()f x 在()1,+∞上是单调减函数,求实数a 的取值范围; (2)在(1)的条件下,当n N +∈时,证明:2311111111.2222n e ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭探究3:利用已知参数范围或常识放缩函数解析中含有参数,且已知参数范围,证明不等式成立,可以从参数的范围入手,使参数取确定的值或利用单调性、其它不等关系,对不等式进行放缩,减少变量,使函数结构简单,易于判断单调性.(2021河北省石家庄联考) 已知函数()(2).x f x e k x =-+(1)讨论函数()f x 的单调性;(2)证明:当0k e <<时,()(1ln )0.f x k x x ++->【审题视点】已知参数范围,证明不等式成立,且函数指对结构都有,若含参讨论难度大,可能要借助放缩,化繁为简.【思维引导】1.对已证不等式进行变形,变形为与n a 通项公式相似的结构;2.对自变量进行替换,得出新的不等式.利用不等式性质进行求和,实现放缩,证明结论.第(2)问不等式的证明,函数中有x e ,ln x ,构造函数求导,含参讨论解导数不等式较困难,可巧妙利用参数的范围,参数取确定的值,进行放缩,求不含参函数的最值较为简单.【规范解析】解:(1)由题意得 ()e .x f x k '=- ①当0k 时,()e 0x f x k '=->,∴函数()f x 在(,)-∞+∞上单调递增;②当0k >时,令()e 0x f x k '=-> 得ln x k >,则()g x '在(0,)+∞上单调递增,且(1)0g '= 当(0,1)x ∈时,()0g x '< 当(1,)x ∈+∞时,()0g x '>)0,10⎫->⎪⎭∴当0k e <<时,()(1ln )0.f x k x x ++->【探究总结】不等式的证明问题中含有参数,若直接构造函数含参讨论,难以解决的情况下,为避开讨论,可以在参数给定的范围内,结合不等式的结构进行第一步的放缩,达到消参的目的,转化为证明不含参的不等式.若不等式的结构依然复杂,在利用常用不等关系、已证结论等方法进一步放缩.(2021湖北省荆州市高三模拟) 已知函数()ln(2).x m f x e x -=-(1)设1x =是函数()f x 的极值点,求m 的值并讨论()f x 的单调性; (2)当2m 时,证明:()ln 2.f x >-专题升华导数解答题中函数多以xe 、ln x 型的函数与其他函数结合的形式出现,考查零点问题、不等式证明问题、恒成立问题等方向时,如果利用常规方法处理时,因函数结构复杂求导判断单调性难度较大,通过放缩将难以处理的函数转化为较为简单的函数进行处理.放缩法较为灵活,要根据不等式的结构、形式等特征,使条件与结论建立联系,选择适当的方法是关键. 1.积累常见的不等结论:如探究1中提及的不等式,解题时需构造函数,证明其正确性,再进行放缩.利用不等式进行放缩,体现了数学中的化归与转化思想,也体现了处理数学问题时以直代曲、以曲代曲的方法.2.巧用已证不等式,顺水推舟:利用已证不等式(或结论) “服务”于后续问题的求解,这类题目最明显的“暗示”,即为证明一个类似于数列求和的不等式,需利用已证不等式进行逐项替换放缩.若题目的第一问证明不等式,在后续解题时,留意是否会利用已证结论.3.已知参数范围:含参不等式的证明时,若因为参数的存在使函数讨论非常复杂,可考虑结合参数范围及其它结论进行放缩.4.其他放缩方法:除了上述三种难度较大的放缩方法以外,单调性、已知结论、基本不等式等.如利用基本不等式进行放缩,化曲为直,()202x x +=≥;和积互化等.不仅仅应用于简化不等式,在解题过程中,也可能用放缩证明代数式的值.长干行·其一[唐]李白妾发初覆额,折花门前剧。
导数在研究函数中的应用【自主归纳,自我查验】一、自主归纳1.利用导函数判断函数单调性问题函数f (x )在某个区间(a ,b )内的单调性与其导数的正负有如下关系 (1)若____ ___,则f (x )在这个区间上是增加的. (2)若____ ___,则f (x )在这个区间上是减少的. (3)若_____ __,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调区间. 3.函数的极大值在包含0x 的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都_____0x 点的函数值,称点0x 为函数y =f (x )的极大值点,其函数值f (0x )为函数的极大值. 4.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都_____0x 点的函数值,称点0x x 0为函数y =f (x )的极小值点,其函数值f (0x )为函数的极小值.极大值与极小值统称为_______,极大值点与极小值点统称为极值点. 5.函数的最值与导数1.函数y =f (x )在[a ,b ]上的最大值点0x 指的是:函数在这个区间上所有点的函数值都_________f (0x ).2.函数y =f (x )在[a ,b ]上的最小值点0x 指的是:函数在这个区间上所有点的函数值都_________f (0x ).二、自我查验1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R2.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________.3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( ) A .1个 B .2个 C .3个D .4个4.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .55.函数ln xy x=的最大值为( ) A .1e - B .e C .2e D .103【典型例题】考点一 利用导数研究函数的单调性【例1】(2015·高考全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.【变式训练1】已知()3222f x x ax a x =+-+.(1)若1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若0a >,求函数()f x 的单调区间.考点二 利用导函数研究函数极值问题【例2】已知函数()ln 3,f x x ax a =-+∈R . (1)当1a =时,求函数的极值; (2)求函数的单调区间.【变式训练2】(2011·安徽)设f (x )=e x 1+ax 2,其中a 为正实数.当a =43时,求f (x )的极值点;考点三 利用导函数求函数最值问题【例3】已知a 为实数,.(1)求导数; (2)若,求在[]2,2-上的最大值和最小值.【应用体验】1.函数ln y x x =-的单调递减区间为( ) A .](1,1- B .)(0,+∞ C .[)1,+∞ D .](0,1()))(4(2a x x x f --=()xf '()01=-'f ()x f2.函数()e x f x x -=的单调递减区间是( )A .(1,)+∞B .(,1)-∞-C .(,1)-∞D .(1,)-+∞ 3.函数()()3e x f x x =-的单调递增区间是( ) A .()0,3 B .()1,4C .()2,+∞D .(),2-∞4.设函数()2ln f x x x=+,则( ) A .12x =为()f x 的极大值点 B .12x =为()f x 的极小值点C .2x =为()f x 的极大值点D .2x =为()f x 的极小值点5.函数32()23f x x x a =-+的极大值为6,那么a 的值是( ) A .0 B .1 C .5 D .6【复习与巩固】A 组 夯实基础一、选择题1.已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列叙述正确的是( )A .()()()f b f c f d >>B .()()()f b f a f e >>C .()()()f c f b f a >>D .()()()f c f e f d >>2.函数()2ln f x x a x =+在1x =处取得极值,则a 等于( )A .2B .2-C .4D .4-3.函数()e xf x x =-(e 为自然对数的底数)在区间[]1,1-上的最大值是( )A.1B.1C.e +1D.e -1二、填空题4.若函数()321f x x x mx =+++是R 上的单调增函数,则实数m 的取值范围是________________.5.若函数()23exx axf x +=在0x =处取得极值,则a 的值为_________. 6.函数()e x f x x =-在]1,1[-上的最小值是_____________. 三、解答题 7.已知函数()21ln ,2f x x x =-求函数()f x 的单调区间8.已知函数(),1ln xf x ax x x=+>. (1)若()f x 在()1,+∞上单调递减,求实数a 的取值范围; (2)若2a =,求函数()f x 的极小值.B 组 能力提升一、选择题1.已知函数()213ln 22f x x x =-+在其定义域内的一个子区间()1,1a a -+内不是单调函数,则实数a 的取值范围是( ) A .13,22⎛⎫-⎪⎝⎭ B .51,4⎡⎫⎪⎢⎣⎭ C .31,2⎛⎫ ⎪⎝⎭ D .31,2⎡⎫⎪⎢⎣⎭2.若函数32y x ax a =-+在()0,1内无极值,则实数a 的取值范围是( ) A .30,2⎡⎤⎢⎥⎣⎦B .(),0-∞C .(]3,0,2⎡⎫-∞+∞⎪⎢⎣⎭U D .3,2⎡⎫+∞⎪⎢⎣⎭3.若函数()3232f x x x a =-+在[]1,1-上有最大值3,则该函数在[]1,1-上的最小值是( ) A . B .0 C .D .1二、填空题4.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.5.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.6.若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 三、解答题7.已知函数f (x )=x -2ln x -ax+1,g (x )=e x (2ln x -x ).(1)若函数f (x )在定义域上是增函数,求a 的取值范围;(2)求g (x )的最大值.12-128.设函数f(x)=(x-1)e x-kx2(其中k∈R).(1)当k=1时,求函数f(x)的单调区间和极值;(2)当k∈[0,+∞)时,证明函数f(x)在R上有且只有一个零点.《导数在研究函数中的应用》标准答案一.自主归纳1.(1)f ′(x )>0 (2)f ′(x )<0 (3)f ′(x )=0 3. 小于 4. 大于 极值 5.不超过 不小于 二.自我查验1.解析:函数定义域为(0,+∞),f ′(x )=1+ex>0,故单调增区间是(0,+∞).答案:A2.解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立,∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎢⎡⎭⎪⎫13,+∞3.解析:导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个,故选A.答案:A4.解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2×(-3)a +3=0,解得a =5.答案:D5..A 当(0,e)x ∈时函数单调递增,当(e,)x ∈+∞时函数单调递减, A. 三.典型例题【例题1】(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).【变式训练1】(1)当1a =时,()322f x x x x =+-+,∴()2321f x x x '=+-, ∴切线斜率为()14k f '==,又()13f =,∴切点坐标为()1,3,∴所求切线方程为()341y x -=-,即410x y --=.(2)()()()22323f x x ax a x a x a '=+-=+-,由()0f x '=,得x a =-或3ax =.0,.3a a a >∴>-Q 由()0f x '>,得x a <-或3a x >,由()0f x '<,得.3aa x -<<∴函数()f x 的单调递减区间为,3a a ⎛⎫- ⎪⎝⎭,单调递增区间为(),a -∞-和,3a ⎛⎫+∞ ⎪⎝⎭.【例题2】(1)当1a =时,()ln 3f x x x =-+,()()1110xf x x x x-'=-=>, 令()0f x '>,解得01x <<,所以函数()f x 在(0,1)上单调递增; 令()0f x '<,解得1x >,所以函数()f x 在()1,+∞上单调递减; 所以当1x =时取极大值,极大值为()12f =,无极小值. (2)函数()f x 的定义域为()0,+∞,()1f x a x'=-. 当0a ≤时,1()0f x a x'=->在()0,+∞上恒成立,所以函数()f x 在()0,+∞上单调递增;当0a >时,令()0f x '>,解得10x a <<,所以函数()f x 在10,a ⎛⎫⎪⎝⎭上单调递增;令()0f x '<,解得1x a >,所以函数()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减. 综上所述,当0a ≤时,函数()f x 的单调增区间为()0,+∞;当0a >时,函数()f x 的单调增区间为10,a ⎛⎫ ⎪⎝⎭,单调减区间为1,a ⎛⎫+∞ ⎪⎝⎭.【变式训练2】解 对f (x )求导得f ′(x )=e x ·1+ax 2-2ax 1+ax 22. 当a =43时,若f ′(x )=0, 则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知x (-∞,12) 12 (12,32) 32 (32,+∞) f ′(x ) +0 - 0 + f (x )极大值极小值所以x 1=2是极小值点,x 2=2是极大值点.【例题3】1).(2)由得,故, 则43x =或,由,,41641205504.39329627f ⎛⎫⎛⎫⎛⎫=-⨯-=-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故,.【变式训练3】1)当0a ≥时,函数()e 20x f x a '=+>,()f x 在R 上单调递增,当0a <时,()e 2x f x a '=+,令e 20x a +=,得ln(2)x a =-,所以当(,ln(2))x a ∈-∞-()423)4()(2'22--=-+-=ax x x a x x x f ()01=-'f 21=a 2421)21)(4()(232+--=--=x x x x x x f ()34,143'2=-=⇒--=x x x x x f 或0)2()2(==-f f 29)1(=-f 29)(max =x f 2750)(min -=x f时,()0f x '<,函数()f x 单调递减;当(ln(2),)x a ∈-+∞时,()0f x '>,函数()f x 单调递增.(2)由(1)可知,当0a ≥时,函数()e 20x f x ax =+>,不符合题意. 当0a <时,()f x 在(,ln(2))a -∞-上单调递减,在(ln(2),)a -+∞上单调递增.①当ln(2)1a -≤()f x 最小值为(1)2e f a =+.解2e 0a +=,得.②当ln(2)1a ->()f x 最小值为(ln(2))22ln(2)f a a a a -=-+-,解22ln(2)0a a a -+-=,得2ea =-,不符合题意.应用体验: 1.D【解析】函数的定义域为)(0,+∞,令1110x y x x-'=-=≤,解得](0,1x ∈,又0x >,所以](0,1x ∈,故选D. 考点:求函数的单调区间. 2.A【解析】导数为()()()e e 1e x x x f x x x ---'=+⋅-=-,令()0f x '<,得1x >,所以减区间为()1,+∞.考点:利用导数求函数的单调区间. 3.C【解析】()()()e 3e e 2x x x f x x x '=+-=-,令()()e 20x f x x '=->,解得2x >,所以函数()f x 的单调增区间为()2,+∞.故选C . 4.【解析】()22212x f x x x x-'=-+=,由()0f x '=得2x =,又函数定义域为()0,+∞,当02x <<时,()0f x '<,()f x 递减,当2x >时,()0f x '>,()f x 递增,因此2x =是函数()f x 的极小值点.故选D . 考点:函数的极值点. 5.D【解析】()()322()23,6661f x x x a f x x x x x '=-+∴=-=-Q ,令()0,f x '= 可得0,1x =,容易判断极大值为()06f a ==. 考点:函数的导数与极值. 复习与巩固 A 组 1.C【解析】由()f x '图象可知函数()f x 在(),c -∞上单调递增,在(),c e 上单调递减,在(),e +∞上单调递增,又(),,,a b c c ∈-∞,且a b c <<,故()()()f c f b f a >>. 考点:利用导数求函数单调性并比较大小. 2.B【解析】()2a f x x x '=+,由题意可得()121201af a '=⨯+=+=,2a ∴=-.故选B.考点:极值点问题. 3.D【解析】()e 1x f x '=-,令()0,f x '=得0x =.又()()()010e 01,1e 11,111,e f f f =-==->-=+>且11e 11e 2e e ⎛⎫--+=-- ⎪⎝⎭=2e 2e 10e--=>,所以()()max 1e 1,f x f ==-故选D.考点:利用导数求函数在闭区间上的最值.4.1,3⎡⎫+∞⎪⎢⎣⎭【解析】由题意得()0f x '≥在R 上恒成立,则()2320f x x x m '=++≥,即232m x x ≥--恒成立.令()232g x x x =--,则()max m g x ≥⎡⎤⎣⎦,因为()g x232x x =--为R 上的二次函数,所以()2max11333g x g ⎛⎫⎛⎫=-=-⨯-⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭11233⎛⎫-⨯-= ⎪⎝⎭,则m 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭.5.0【解析】()()()()()2226e 3e 36e e x xxx x a x ax x a x a f x +-+-+-+'==, 由题意得()00f a '==. 考点:导数与极值. 6.1【解析】因为()e 1x f x '=-,()00,()00f x x f x x ''>⇒><⇒<,所以()f x 在[1,0]-单调递减,在[0,1]单调递增,从而函数()e x f x x =-在]1,1[-上的最小值是0(0)e 01f =-=.考点:函数的最值与导数.7.【解析】()21ln 2f x x x =-的定义域为()0,+∞,()211x f x x x x-'=-=,令()0f x '=,则1x =或1-(舍去).∴当01x <<时,()0f x '<,()f x 递减,当1x >时,()0f x '>,()f x 递增, ∴()f x 的递减区间是()0,1,递增区间是()1,+∞.考点:利用导数求函数的单调区间. 8.(1)14a ≤-(2)【解析】(1)函数(),1ln x f x ax x x =+>,则()2ln 1ln x f x a x-'=+,由题意可得()0f x '≤在()1,x ∈+∞上恒成立,∴2211111ln ln ln 24a x x x ⎛⎫≤-=-- ⎪⎝⎭, ∵()1,x ∈+∞,()ln 0,,x ∴∈+∞021ln 1=-∴x 时,函数2111ln 24t x ⎛⎫=--⎪⎝⎭取最小值41-,41-≤∴a ,(2)当2a =时,()2ln x f x x x =+,()22ln 12ln ln x x f x x -+'=, 令()0f x '=,得22ln ln 10x x +-=,解得21ln =x 或ln 1x =-(舍去),即x =当1x <<()0f x '<,当x >()0f x '>, ∴()f x的极小值为f =.B 组 1.D【解析】因为函数()213ln 22f x x x =-+在区间()1,1a a -+上不单调,所以()2141222x f x x x x-'=-=在区间()1,1a a -+上有零点,由()0f x '=,得12x =,则10,111,2a a a -≥⎧⎪⎨-<<+⎪⎩得312a ≤<,故选D . 考点:函数的单调性与导数的关系.2.C【解析】232y x a '=-,①当0a ≤时,0y '≥,所以32y x ax a =-+在()0,1上单调递增,在()0,1内无极值,所以0a ≤符合题意;②当0a >时,令0y '=,即2320x a -=,解得12,33x x =-=,当,x ⎛⎫∈-∞+∞ ⎪ ⎪⎝⎭⎝⎭U 时,0y '>,当x ⎛∈ ⎝⎭时,0y '<,所以32y x ax a =-+的单调递增区间为,,⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭,单调递减区间为⎛ ⎝⎭,当x =数取得极大值,当x =原函数取得极小值,要满足原函数在()0,1内无极值,1≥,解得32a ≥.综合①②得,a 的取值范围为(]3,0,2⎡⎫-∞+∞⎪⎢⎣⎭U ,故选C.考点:导函数,分类讨论思想. 3.C【解析】()()23331f x x x x x '=-=-,当()0f x '>时,1>x 或0<x ,当()0f x '<时,10<<x ,所以()f x 在区间[]1,0-上函数递增,在区间[]1,0上函数递减,所以当0=x 时,函数取得最大值()30==a f ,则()32332f x x x =-+,所以()211=-f ,()251=f ,所以最小值是()211=-f . 考点:利用导数求函数在闭区间上的最值.4.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝⎛⎭⎪⎫-x +1x max =83,∴2a ≥83,即a ≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞5.解析:本题考查利用导数研究函数的极值及不等式的解法.由f ′(x )=3x 2-4ax +a 2=0得x 1=a3,x 2=a .又∵x 1<2<x 2,∴⎩⎨⎧a >2,a3<2,∴2<a <6.答案:(2,6)6.解析:∵f (x )=x 2-e x -ax ,∴f ′(x )=2x -e x -a , ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a ≤2ln 2-2. 答案:(-∞,2ln 2-2)7.解:(1)由题意得x >0,f ′(x )=1-2x +ax2.由函数f (x )在定义域上是增函数,得f ′(x )≥0,即a ≥2x -x 2=-(x -1)2+1(x >0).因为-(x -1)2+1≤1(当x =1时,取等号),所以a 的取值范围是[1,+∞).(2)g ′(x )=e x ⎝ ⎛⎭⎪⎫2x -1+2ln x -x ,由(1)得a =2时,f (x )=x -2ln x -2x +1,且f (x )在定义域上是增函数,又f (1)=0,所以,当x ∈(0,1)时,f (x )<0,当x ∈(1,+∞)时,f (x )>0. 所以,当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0. 故当x =1时,g (x )取得最大值-e.8.解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2),令f ′(x )=0,得x 1=0,x 2=ln 2. 当x 变化时,f ′(x ),f (x )的变化如下表:0],[ln 2,+∞).f (x )的极大值为f (0)=-1,极小值为f (ln 2)= -(ln 2)2+2ln 2-2.(2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 当x <1时,f (x )<0,所以f (x )在(-∞,1)上无零点. 故只需证明函数f (x )在[1,+∞)上有且只有一个零点.①若k ∈⎣⎢⎡⎦⎥⎤0,e 2,则当x ≥1时,f ′(x )≥0,f (x )在[1,+∞)上单调递增.∵f (1)=-k ≤0,f (2)=e 2-4k ≥e 2-2e>0, ∴f (x )在[1,+∞)上有且只有一个零点.②若k ∈⎝ ⎛⎭⎪⎫e 2,+∞,则f (x )在[1,ln 2k ]上单调递减,在[ln 2k ,+∞)上单调递增.f (1)=-k <0,f (k +1)=k e k +1-k (k +1)2=k [e k +1-(k +1)2], 令g (t )=e t -t 2,t =k +1>2,则g ′(t )=e t -2t ,g ″(t )=e t -2,∵t>2,∴g″(t)>0,g′(t)在(2,+∞)上单调递增.∴g′(t)>g′(2)=e2-4>0,∴g(t)在(2,+∞)上单调递增.∴g(t)>g(2)=e2-4>0.∴f(k+1)>0.∴f(x)在[1,+∞)上有且只有一个零点.综上,当k∈[0,+∞)时,f(x)在R上有且只有一个零点.。
导数中的不等式放缩高考数学优质专题(附经典解析)导数中不等式放缩基础知识:(1)在不等式放缩中,常见的函数不等式有①e 1x x ≥+;②1l n x x -≥. 特别地,要注意在具体题目中灵活变形应用这些不等式. 如利用上面①、②易得1ln 2x x +≥+,e ln 2x x >+,e sin 1x x ≥+等不等式.(2)与隐零点相关的放缩问题常用方法:利用隐零点问题中常用的代换技巧表达出()f x 的最大值(最小值)0()f x ,再由0x 的取值范围求出0()f x 的最大值(最小值),即得到0()()f x f x M ≤≤(0()()f x f x M ≥≥),进而证得题目中所证不等式. 一、典型例题1.已知函数()23ex f x x =+,()91g x x =-. 比较()f x 与()g x 的大小,并加以证明.2.已知函数()2e x f x x =-.(1)求曲线()f x 在1x =处的切线方程;(2)求证:当0x >时,()e 2e 1ln 1x x x x +--?.二、课堂练习1. 已知()e ln x f x x =-.(1)求()y f x =的导函数()y f x ¢=的零点个数;(2)求证:()2f x >.2. 已知函数()()23e 4cos 1x f x x ax x x =+++,()()e 1x g x m x =-+.(1)当1m 3时,求函数()g x 的极值;(2)若72a ?,证明:当()0,1x ?时,()1f x x >+.三、课后作业1. 已知函数()()21ln f x x x x =-+,求证:当02x .2. 设函数()e sin x f x a x b =++. 若()f x 在0x =处的切线为10x y --=,求,a b 的值. 并证明当(0,)x ??时,()ln f x x >.3.已知函数()()()e ln x f x x a x a x =-+++,a R ?.若函数()f x 在定义域上为单调增函数.(1)求a 最大整数值;(2)证明:23341e ln2ln ln ln 23e 1n n n 骣骣骣+琪琪琪++++<琪琪琪-桫桫桫.。
放思想在高考数学中的用
高中段,在数列那一章的学中,我曾接触放思想。
其在高考函数中,尤
其是数大中,放思想起着足重的作用。
例如,我明x^2-2x+1≥ 0,个目大家来根本算不上。
但是如果我
明 x^2-3x+e^x ≥ 0。
个式子我看起来非常陌生,我e^x 并不熟悉,我不喜e^x 或者lnx,因此,我可以把他化x 的形式。
道目,我可以先明e^x≥ x+1,里构造助函数f(x)=e^x-x-1 即可明,
明后,我可以得到x^2-3x+e^x ≥ x^2-2x+1≥0 当 x=1 两等号成立。
在此,我出以下 4 个常考的助函数供大家参考。
①e^x≥ x+1 当 x=0 等号成立
② lnx≤ x-1 当 x=1 等号成立
③sinx≤ x 当 x=0 等号成立
④ cosx≤ x+1 当 x=0 等号成立
接下来我不妨来一道高考,
22(本小分13 分 )
2012 年山高考。
已知函数f(x) = ln x k
( k 常数,e=2.71828 ⋯⋯是自然数的底数),曲 y= f(x)在点( 1,e x
f(1))的切与x 平行。
(Ⅰ)求k 的;
(Ⅱ)求f(x)的区;
(Ⅲ) g(x)=(x2+x) f '( x) ,其中 f '( x)f(x)的函数,明:任意 x> 0,g ( x) 1 e 2。
上面本题的标准答案,前两问在此不做解释。
在第三问中,我们可以看出关键步骤就是把g(x)分成1+x/e^x 和1-x-xlnx 两部分,但是我们如何想到这一步呢?为什么他要把函数分
成这两部分呢?看完上面的文章,我想各位读者已经有了初步的思考,下面,让我们再重新看一遍第三问。
g(x)= (1-x-xlnx)(x+1)/e^x
看到这个函数,我们的第一反应应该是:这个函数不好做, e^x 和 lnx 太烦了,我们把它放缩一下。
把 lnx 换成 x-1,把 e^x 换成 x+1。
原式 g(x)<1-x-xlnx ①①式≤ 1-x^2 ②
看到②式,很多人就会认为,呀!这么简单就做出来了?细心的朋友
可能会发现,其实①式的推导存在着一定的问题。
已知 lnx≤x-1③
那么 -lnx 应当≥ 1-x 所以①式≥ 1-x^2④
如果我把 x 放缩成 lnx-1 行不行?利用 -(x)≤-(lnx+1)
把①式化为 1-x(lnx+1)≤1-(lnx+1)^2
但我们来仔细推敲一下,我们已知的是-x≤-(lnx+1)③
那么我们能不能通过③式得到-x(lnx+1)≤-(lnx+1)(lnx+1)呢?
显然这是不行的,因为lnx+1 的符号未知。
当lnx+1≥0 时是成立
的而当 lnx+1≤0 时
-x(lnx+1)≥-(lnx+1)(lnx+1)
接下来我们回归这道题目。
第一步把 e^x 放缩为 x+1 之后
g(x)<1-x-xlnx
构造辅助函数h(x)=1-x-lnx 即可,并不需要上述那些复杂的讨论,那
些讨论,是为了方便大家了解在放缩应用的过程中容易出现的问题。
其实,我所列出的辅助函数,只不过是高考中最常见的 4 种函数的放缩方式,能解决大部分的问题,例如2014 年新课标 1 卷,最后一问让我们证明 f(x)=e^xlnx+2e x-1 /x >1 ①
标准答案所给的思路是将①式移项,得到
xlnx>xe-x -2/e ②
证明②式左端函数最小值>右端函数最大值。
这显然不是我们正常的思路,按照我们先前的思路,把e^x 换成 x+1 可以得到
f(x)=2/e+xlnx+lnx+2/ex ③
把函数分成三个部分, 2/e,xlnx,lnx+2/ex 分别求导,可以轻松得到
f(x)>1/e+ln2 ④
我们知道 2.7<e<2.8
所以 1/e>1/3 ⑤
接下来我们只需要证明 ln2>2/3 ,即 2^3=8>e^2 ⑥
又因为 e^2<2.8^2=7.76<8 ⑦
所以原式得证。
此外,除了上述 4 种函数,还有很多其他类型的辅助函数等着大家去
发现,在这里我只举一个简单的例子
e^x≤x^2+1 是成立的
但e^x≤x^n+1 呢
请大家自行思索。
解决这类 f(x)<某定值 a 的问题的关键就是构造合适的辅助函数进行放缩,我们平常做的那些参考资料所给出的答案,往往只是一种过度格式化的答案,答案给出的解题过程并非我们思考的正常顺序。
例如,我们看到它构造一个辅助函数 e^x≤x+1,但他为什么要构造这个函数呢?构造其他的辅助函数可以吗?这是我们应当思考的问题,这也是高中数学乃至高中教学过程中应当注意的问题。