初中数学几何经典模型
- 格式:doc
- 大小:947.00 KB
- 文档页数:12
全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是°、°、°、°及有一个角是°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇度旋度,造等边三角形遇度旋度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋度,造中心对称说明:IS 8模型变形BEFcEB说明:说明:nnnnnnnnnnnnnnnnnnnnnnn nnnnn口叩皿皿皿皿皿中点模型 边构诗中{fflt 逢阳点闵iS 中幽城 几何最值模型 VH *h 轴对称模型 对称最值 线mi 差模型 fflftffw 同侧"异侧两蜒段之利罐短视它 同侧、异删芮线投之羞媪小槐型 四边形周怏垠小根地 三角形眉长 必小檢哩三线穀之和 她知爬制过桥模取旋转最值说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
简拼模型三角形j四边形E 面积等分说明:说明:3045602说明:ACOCOAA 模型一:手拉手模型-旋转型全等<2)等濮的AA Mfr=血°拟述°均为等媵直甬M 册A 结险(DA (UCtAO^l>j 超乙他»③。
E 平分£忖了儿(1)―况> Sfr :LDW 牛底皿力能转至右囲检置A 皓论:> 右图中①bOCWMe\QAC AOSD 』 >⑨延氏M 交购于点G 必肖5氏-LBOA⑵特燥惜况>条件m 3MB ,厶伽■剜,将AXD 龍讳至右團位蛊a gife :右gcp fflAfJCD^iOJ^AC?JCiM£33②延长M 交加于点瓦愁有3EC -LUGA f BD 000B (5)-—--——=—-=tan ZlfX D®ACOCOA 3f^SDLAC.灘接也JC >临加*†g ・a+o>s ⑥矢"訐c&J 冊哒相垂直的四嬷)<3)任翦腰三角晤†辭,。
初中数学常考几何模型初中数学中,几何模型是经常出现的题型之一,其考察的是学生对几何形状的理解和运用能力。
下面将介绍几个常考的几何模型。
一、平面几何模型:1.线段和角的比较:考查学生对线段和角度的相互关系的理解。
常见的题型有求线段的比值、求角度的比值等。
例如:已知AB与CD两线段的比值为3:4,若AB的长度为15cm,求CD的长度。
2.相似三角形:考查学生对相似三角形的理解和运用能力。
常见的题型有相似三角形的判断、比例求解、面积比解题等。
例如:在△ABC和△DEF中,∠A=∠D,∠B=∠E,且AB/DE=AC/DF=5/4,求△ABC与△DEF的面积比值。
3.平行线与三角形:考查学生对平行线与三角形关系的理解。
常见的题型有平行线判断、平行线下的对应角等。
例如:在平行四边形ABCD中,AD与BC平行,已知∠C=40°,求∠D的度数。
4.等腰直角三角形:考查学生对等腰直角三角形的性质的理解。
常见的题型有等腰直角三角形的判断、边长关系等。
例如:在等腰直角三角形ABC中,∠B=90°,AB=3cm,求BC的长度。
二、立体几何模型:1.体积计算:考查学生对不同立体几何体的体积计算方法的掌握。
常见的题型有长方体的体积计算、圆柱体的体积计算等。
例如:一个长方体的底面积是10cm²,高是6cm,求其体积。
2.表面积计算:考查学生对不同立体几何体的表面积计算方法的掌握。
常见的题型有长方体的表面积计算、正方体的表面积计算等。
例如:一个正方体的边长为5cm,求其表面积。
3.平行四边形棱台:考查学生对平行四边形棱台的理解和计算。
常见的题型有平行四边形棱台的体积计算、表面积计算等。
例如:一个平行四边形棱台的底面积是12cm²,高是4cm,求其体积。
以上是初中数学中常考的几何模型,通过对这些模型的理解和掌握,能够提升学生的几何形状运用能力,帮助学生更好地解决各类几何题目。
初中数学常考的几何模型和应用题答题公式是学习和备考数学的关键内容。
不过,
请注意,我无法列出具体的66个常考几何模型或50个应用题答题公式,因为这
取决于不同地区、不同版本的教材和考试要求。
但我可以为你提供一些常见的几何模型和应用题答题思路或公式。
几何模型示例:
1.等边三角形模型:等边三角形的三条边相等,三个内角都是60°。
2.等腰三角形模型:等腰三角形有两条边相等,且对应的两个底角也相等。
3.直角三角形模型:直角三角形有一个90°的角,满足勾股定理(a² + b² = c²)。
4.平行四边形模型:平行四边形的对边平行且相等,对角相等。
5.梯形模型:梯形有一组对边平行,常考察其面积计算(上底加下底,乘以高,再除
以2)。
应用题答题公式或思路示例:
1.速度、时间、距离关系:速度= 距离/ 时间,距离= 速度×时间,时间= 距
离/ 速度。
2.工作问题:工作效率= 工作总量/ 工作时间,常用于比较不同人或机器的工作效
率。
3.百分比问题:部分= 总量×百分比,总量= 部分/ 百分比,百分比= 部分/
总量× 100%。
4.利息问题:简单利息= 本金×利率×时间,复利则考虑本金和利息的共同增
长。
5.浓度问题:浓度= 溶质质量/ 溶液质量× 100%,常用于解决混合溶液的浓度问
题。
初中数学几何模型大全+经典题型(含答案) 初中数学几何模型大全及经典题型(含答案)全等变换平移:平行线段平移形成平行四边形。
对称:以角平分线、垂线或半角作轴进行对称,形成对称全等。
旋转:相邻等线段绕公共顶点旋转形成旋转全等。
对称半角模型通过翻折将直角三角形对称成正方形、等腰直角三角形或等边三角形。
旋转全等模型半角:相邻等线段所成角含1/2角及相邻线段。
自旋转:通过旋转构造相邻等线段的旋转全等。
共旋转:通过寻找两对相邻等线段构造旋转全等。
中点旋转:将倍长中点相关线段转换成旋转全等问题。
模型变形当遇到复杂图形找不到旋转全等时,先找两个正多边形或等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
几何最值模型对称最值:通过对称进行等量代换,转换成两点间距离及点到直线距离。
旋转最值:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
剪拼模型通过中点的180度旋转及平移改变图形的形状,例如将三角形剪拼成四边形或将矩形剪拼成正方形。
正方形的边长可以通过射影定理来求解。
假设正方形的边长为x,那么正方形的对角线长为x√2.将正方形分成两个等腰直角三角形,可以得到等腰直角三角形的斜边长为x√2/2.因此,根据射影定理,可以得到等腰直角三角形的高为x/2,进而得到正方形的边长为x=x√2/2.通过平移和旋转,可以将一个正方形变成另一个正方形。
这可以通过旋转相似模型来实现。
例如,两个等腰直角三角形可以通过旋转全等来实现形状的改变,而两个有一个角为300度的直角三角形可以通过旋转相似来实现形状的改变。
更一般地,两个任意相似的三角形可以通过旋转成一定角度来实现旋转相似,其中第三边所成夹角符合旋转“8”字的规律。
在相似证明中,需要注意边和角的对应关系。
相等的线段或比值在证明相似时可以通过等量代换来构造相似三角形。
另外,从三垂线到射影定理的演变,再到内外角平分线定理,需要注意它们之间的相同和不同之处。
完整版)初中数学几何模型大全+经典题型(含答案)通过将倍长中点相关线段进行旋转变换,可以构造出旋转全等模型。
这种模型的特点是,将相邻等线段所成角的一半旋转后拼接在一起,形成对称全等。
同时,也可以通过将两个等腰三角形或正多边形的夹角进行变化,来构造出模型变形。
如果遇到复杂图形找不到旋转全等,可以先找到两个正多边形或等腰三角形的公共极点,然后围绕公共极点找到两组相邻等线段,分组组成三角形证全等。
幂定理可以用等线段、等比值、等乘积进行代换,从而将两个数之间的比值转换成乘积。
在相似证明中,常用的辅助线是平行线,根据题目条件来确定比值并做出相应的平行线。
题目一:在半圆中,圆心为O,圆上有点C、E,CD垂直于AB,EF垂直于AB,EG垂直于CO。
证明CD等于GF。
题目二:在正方形ABCD内部,点P满足∠PAD=∠PDA=15度。
证明△PBC是正三角形。
题目三:在图中,ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点。
证明A2B2C2D2是正方形。
题目四:在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F。
证明∠DEN=∠F。
题目五:在△ABC中,H为垂心,O为外心,且OM垂直于BC于M。
1)证明AH等于2OM;2)如果∠BAC等于60度,证明AH等于AO。
1.设P为正三角形ABC内任意一点,连接PA,PB,PC,由三角形不等式可得PA+PB>AB。
PB+PC>BC。
PC+PA>CA。
将三式相加得到2PA+2PB+2PC>AB+BC+CA=3,即PA+PB+PC>3/2.又由于P到三角形三边的距离不超过1,所以PA+PB+PC<3,综上可得1.5≤PA+PB+PC<3,即所求不等式成立。
2.设P为正方形ABCD内任意一点,连接PA,PB,PC,PD。
由于正方形四边相等,所以PA+PC=2,PB+PD=2.又由于P到四边的距离不超过1,所以PA+PB+PC+PD<4.将前两式相加得到PA+PB+PC+PD=2(PA+PB)/2+2(PC+PD)/2≥2√(PA·PB)+2√(PC·P D)。
初中几何46种模型大全初中几何46种模型大全正文:几何是初中数学的重要分支,其中涉及到的模型数量和种类非常丰富。
下面,我们将介绍初中几何中的46种模型,包括它们的定义、性质、应用等。
1. 等腰三角形模型定义:一个等腰三角形的两条边长度相等,且它们的腰角度数相等。
性质:1. 等腰三角形的两条底边长度相等;2. 等腰三角形的两条顶角角度数相等;3. 等腰三角形的顶角和等于180度-底边长度的夹角。
应用:等腰三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。
2. 直角三角形模型定义:一个直角三角形的两条直角边长度相等,且它们的斜角角度数相等。
性质:1. 直角三角形的两条直角边长度相等;2. 直角三角形的斜角角度数相等;3. 直角三角形的斜边长度等于两条直角边长度的乘积。
应用:直角三角形模型可以用来解决直角三角形相关问题,如勾股定理等。
3. 等边三角形模型定义:一个等边三角形的三条边长度相等。
性质:1. 等边三角形的三条边长度相等;2. 等边三角形的任意两边长度都大于第三边;3. 等边三角形的任意角度数都小于180度。
应用:等边三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。
4. 正方形模型定义:一个正方形的四条边长度相等。
性质:1. 正方形的四条边长度相等;2. 正方形的任意一个角都是90度;3. 正方形的任意两个角都是直角。
应用:正方形模型可以用来解决正方形相关问题,如面积、周长等。
5. 长方形模型定义:一个长方形的两条边长度相等,且它们的长度之和等于宽度。
性质:1. 长方形的两条边长度相等;2. 长方形的长、宽相等;3. 长方形的任意一个角都是直角。
应用:长方形模型可以用来解决长方形相关问题,如面积、周长等。
6. 菱形模型定义:一个菱形的四条边长度相等且互相平分,对角线互相垂直且相等。
性质:1. 菱形的四条边长度相等且互相平分;2. 菱形的对角线互相垂直且相等;3. 菱形的任意一个角都是45度。
初中数学几何模型大全初中数学几何模型大全全等变换:平移:平移是指将平行等线段(平行四边形)沿着相同的方向平移相同的距离。
这种变换可以用来构造平行四边形。
对称:对称变换可以通过角平分线、垂直线或半角来进行。
这种变换可以用来构造对称全等的图形。
旋转:旋转变换是指将相邻等线段绕公共顶点进行旋转。
这种变换可以用来构造旋转全等的图形。
对称全等模型:这种模型是以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型:这种模型是通过翻折构造对称全等的图形。
可以通过上图中的45°、30°、22.5°、15°及有一个角是30°直角三角形的对称来实现。
翻折后可以得到正方形或者等腰直角三角形、等边三角形、对称全等的图形。
旋转全等模型:半角:这种模型是指相邻等线段所成角含1/2角及相邻线段。
通过旋转将另外两个和为二分之一的角拼接在一起,形成对称全等的图形。
自旋转:这种模型是指有一对相邻等线段,需要构造旋转全等。
可以通过遇到60度旋60度,造等边三角形;遇到90度旋90度,造等腰直角;遇到等腰旋顶点,造旋转全等;遇中点旋180度,造中心对称的方法来实现。
共旋转:这种模型是指有两对相邻等线段,直接寻找旋转全等中点。
通过旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
可以通过“8”字模型来证明。
模型变形:这种变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,可以先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:这种模型是指通过两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
有哪些初中几何的常见模型
1,倍长中线模型
2,截长补短模型
3,一线三垂直模型
4,将军饮马模型
常见的还有手拉手模型、半角模型、奔驰模型、十字架模型、胡不归模型等等
想学好几何模型,不仅要知道为什么,还要知道为什么。
只有明确了原理,很多模型才能举一反三,一些新问题才能指明解决问题的方向。
比如一般的马饮模型的原理就是轴对称和三角形的两边之和大于第三边。
掌握原理后,你就可以轻松掌握一般马饮水的几个变形问题了。
此外,胡不归模型也是一般饮马的变形。
把握两种模式的区别和联系,可以快速学习胡不归模式。
郭老师,初中数学老师,从教15年。
开放式公益教学课程:郭数学公益课系列。
教初中数学各年级各章节考点和解题方法。
欢迎关注郭数学,免费学习。
初中数学八大几何模型归纳
初中数学中的八大几何模型包括:
1. 三角形相关模型:三角形的各种性质、三角形的面积计算、三角形的周长计算等;
2. 四边形相关模型:四边形的各种性质、四边形的面积计算、四边形的周长计算等;
3. 圆相关模型:圆的各种性质、圆的面积计算、圆的周长计算、圆的弧长计算等;
4. 相似三角形相关模型:相似三角形的定义、相似三角形的判定、相似三角形的面积计算等;
5. 直角三角形相关模型:直角三角形的定义、直角三角形的判定、直角三角形的面积计算等;
6. 二次函数相关模型:二次函数的定义、二次函数的图像、二次函数的值域、二次函数的对称轴等;
7. 轴对称相关模型:轴对称的定义、轴对称的图像、轴对称的性质、轴对称的图形设计等;
8. 平移相关模型:平移的定义、平移的性质、平移的图像等。
这些几何模型是初中数学中非常重要的知识点,学生在学习过程中需要熟练掌握。
此外,这些模型也是中考数学考试中经常出现的知识点,学生需要在平时的学习中多加练习,熟练掌握各种计算方法和技巧。
初中数学四十八个几何模型1. 直线与角直线是任意两点之间的最短路径。
角是由两条射线共享一个端点而形成的图形。
直线与角是几何学的基本概念。
线段是直线上两个点之间的部分。
线段具有长度,可以进行比较。
射线是由一个端点和延伸的直线组成的。
射线有起点,但没有终点,可以无限延伸。
4. 平面与平行线平面是一个没有边界的二维图形。
平行线是在同一个平面上,永远不会相交的直线。
三角形是由三条线段连接而成的图形。
三角形的内角和为180度。
6. 等腰三角形等腰三角形是具有两条边长度相等的三角形。
等腰三角形的底角也相等。
7. 直角三角形直角三角形是具有一个内角为90度的三角形。
直角三角形的斜边是其他两条边的平方和的开方。
8. 锐角三角形锐角三角形是所有内角都小于90度的三角形。
9. 钝角三角形钝角三角形是具有一个内角大于90度的三角形。
10. 正方形正方形是四条边相等且四个角都是直角的四边形。
11. 长方形长方形是具有两对相等且每一对内角都是直角的四边形。
12. 平行四边形平行四边形是具有两对平行边的四边形。
梯形是具有一对平行边的四边形。
梯形的非平行边也可以不等长。
菱形是具有四个边相等且对角线相等的四边形。
圆是具有相同半径的所有点的集合。
圆上任意两点与圆心构成的线段称为弦。
16. 圆心角圆心角是以圆心为顶点的角。
弧是圆上两个点之间的部分。
弦是圆上任意两点之间的线段。
切线是与圆只有一个交点的直线。
弧长是圆上一部分的长度。
扇形是以圆心为顶点的角所对应的圆上的区域。
22. 对称与相似对称是指一个图形通过某条线、点或平面进行折叠后与自身完全重合。
相似是指两个图形的形状相同但大小不同。
23. 二维几何体二维几何体包括平面图形。
24. 立体几何体立体几何体是具有实体和体积的图形。
25. 正方体正方体是六个面都是正方形的立体几何体。
26. 长方体长方体是六个面都是矩形的立体几何体。
27. 正圆柱体正圆柱体是圆和矩形结合形成的立体几何体。
初中数学九大几何模型一、手拉手模型-———旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED(2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED(3)顶角相等的两任意等腰三角形OAB C DE图 1OABCD E图 2OABCDE图 1OABCDE图 2OCDEOD E【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB; ③OE 平分∠AED二、模型二:手拉手模型——-—旋转型相似 (1)一般情况【条件】:CD ∥AB, 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD; ②延长AC 交BD 于点E,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ;OAB COABCDEOB CDEOCD③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE —OD=2OC;③2△OCD △OCE OC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=AOBCDE 图 1A OBCDEM N图 2A OBCDEF图 3A O BCDEMN 图 4证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OABCDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO ACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学的几何模型是学生学习数学时的重要内容之一,通过学习几何模型和解题,可以帮助学生对几何知识有更深层次的理解,提高数学解题能力。
本文将介绍初中数学中常见的48个几何模型及其相关题型,希望可以帮助学生系统地掌握几何知识。
一、直线和角1. 直线概念直线是由一点不停地延伸而成的。
在平面几何中,直线没有宽度和厚度,只有长度。
2. 角的概念两条相交直线之间的夹角叫做角。
角可以分为锐角、直角、钝角和平角。
3. 直线和角相关题型- 计算夹角的大小- 判断角的种类二、多边形1. 三角形三角形是最简单的多边形,其内角和为180度。
根据边的长度和角的大小,可以分为等腰三角形、等边三角形、直角三角形等不同种类。
2. 四边形四边形是具有四条边的几何图形,常见的四边形有矩形、正方形、平行四边形和菱形等。
3. 多边形相关题型- 计算多边形的内角和- 判断多边形的种类三、圆1. 圆的概念圆是由一个点到另一个点距离恒定的点的集合。
其中,点到圆心的距离为半径,圆上任意两点之间的距离称为弦。
2. 圆的性质圆的直径是圆的两个相对的端点,圆的周长和面积分别为2πr和πr²。
3. 圆相关题型- 计算圆的周长和面积- 判断圆的种类四、平面图形的平移、旋转和对称1. 平移平移是指将一个物体按照一定的规则移动到另一位置,移动前后的图形位置关系不变。
学生需要了解不同平移的规律和图形的位置关系。
2. 旋转旋转是指以某一点为中心,按一定角度将图形进行旋转。
学生需要掌握图形旋转的规律和性质。
3. 对称对称是指一个图形绕某条直线或点对称,对称轴可以分为水平对称轴、垂直对称轴和斜对称轴。
五、三视图和展开图1. 三视图三视图是指物体分别从正视图、侧视图和俯视图所得的图形。
学生需要根据给定的三视图还原出物体的整体图形。
2. 展开图展开图是将立体图形按一定规则展开成平面图形。
学生需要了解展开图的规律和方法。
六、空间图形1. 空间图形的概念空间图形是三维几何中的图形,包括圆柱、圆锥、球体、棱体等。
初中数学几何12个解题模型初中数学几何是一门非常重要的学科,对于提高学生的数学思维能力和解决实际问题的能力具有重要的意义。
在初中数学几何中,我们可以用一些解题模型来帮助我们更好地解决问题。
下面,我们将介绍12个初中数学几何的解题模型。
一、直角三角形的性质。
直角三角形是数学几何中经常使用的一个基本图形,掌握直角三角形的性质对于解决许多几何问题非常有帮助。
二、相似三角形的性质。
相似三角形也是数学几何中应用广泛的一个基本图形,掌握相似三角形的性质可以帮助我们解决许多相似三角形问题。
三、勾股定理。
勾股定理是直角三角形中一个非常重要的定理,它可以用来求解许多三角形的边长和面积。
四、正弦定理。
正弦定理是三角形中另一个非常重要的定理,用来解决三角形中的边和角的关系。
五、余弦定理。
余弦定理也是三角形中一个重要的定理,适合于求解三角形中的边和角的关系。
六、面积公式的运用。
了解各种基本几何图形的面积公式可以方便我们计算这些图形的面积。
七、平移、旋转和翻转。
平移、旋转和翻转是几何中常见的变换方式,可以用来解决各种几何问题。
八、梯形的性质。
梯形是常见的几何图形之一,掌握梯形的性质对于解决许多梯形问题非常有帮助。
九、四边形的性质。
四边形也是常见的几何图形之一,了解各种四边形的性质可以帮助我们更好地解决四边形问题。
十、圆的性质。
圆是几何中重要的一个基本图形,了解圆的性质可以帮助我们更好地解决圆的各种问题。
十一、相交线和平行线的性质。
相交线和平行线是几何中重要的一个概念,掌握这些线的性质可以帮助我们更好地解决几何问题。
十二、三角形的三线定理。
三角形的三线定理是三角形中常用的定理之一,可以用来解决三角形的各种问题。
这些解题模型是初中数学几何中非常重要的一部分,我们在学习数学几何时,需要不断地练习,不断地巩固这些知识点,才能更好地应对各种几何问题。
初中数学几何模型归纳1. 直线模型:直线是最基本的几何图形,可以用直线方程y = kx + b 来表示。
其中,k 是斜率,b 是截距。
2. 点模型:点是几何图形中的基本元素,可以用坐标(x, y) 来表示。
3. 线段模型:线段是由两个端点确定的有限长度的直线部分。
线段可以用起点和终点的坐标来表示。
4. 射线模型:射线是由一个端点和一个方向确定的无限延伸的直线部分。
射线可以用起点和方向向量来表示。
5. 角模型:角是由两条射线的公共端点和这两条射线之间的夹角组成的。
角可以用顶点、始边和终边来表示。
6. 三角形模型:三角形是由三条边和三个内角组成的多边形。
三角形可以用三边的长度和三个内角的大小来表示。
7. 四边形模型:四边形是由四条边和四个内角组成的多边形。
四边形可以用四边的长度和四个内角的大小来表示。
8. 圆模型:圆是由一个圆心和一个半径确定的平面上的所有点到圆心的距离都等于半径的图形。
圆可以用圆心和半径来表示。
9. 椭圆模型:椭圆是由两个焦点和一个长轴、短轴确定的平面上的所有点到两个焦点的距离之和等于常数的图形。
椭圆可以用两个焦点和长轴、短轴的长度来表示。
10. 双曲线模型:双曲线是由两个焦点和一个实轴、虚轴确定的平面上的所有点到两个焦点的距离之差等于常数的图形。
双曲线可以用两个焦点和实轴、虚轴的长度来表示。
11. 正多边形模型:正多边形是由相等的边和相等的内角组成的多边形。
正多边形可以用边数和内角度数来表示。
12. 梯形模型:梯形是由一对平行边和一对非平行边组成的四边形。
梯形可以用两对边的长度和夹角来表示。
13. 矩形模型:矩形是由四个直角和两对相等的边组成的四边形。
矩形可以用两对边的长度和夹角来表示。
14. 正方形模型:正方形是特殊的矩形,它的四个边都相等且四个角都是直角。
正方形可以用边长来表示。
15. 三角形面积模型:三角形的面积可以通过底边长度和高来计算,公式为S = (底边长度×高) / 2。
初中数学几何模型大全及解析几何是数学中的重要分支,它研究的是形状、大小、结构和空间关系等内容。
初中数学中的几何部分主要包括平面几何和立体几何两个方面。
为了更好地理解和应用几何知识,我们可以通过各种模型来帮助我们进行学习和解析。
本文将介绍一些常见的初中数学几何模型及其解析,帮助学生更加直观地理解几何概念。
一、平面几何模型1. 平面图形模型平面图形模型可以通过纸片、卡纸或者其他材料制作而成。
例如,矩形模型可以通过两个相等的矩形纸片叠放而成,学生可以直观地观察到矩形的性质,如长宽相等、对角线相等、相邻边互相垂直等。
类似地,三角形、正方形、梯形等不同的图形也可以通过相应的材料来制作模型,帮助学生更好地理解其性质和特点。
2. 折纸模型折纸模型是平面几何中常用的模型之一。
学生可以通过纸张的折叠来制作出不同的图形。
例如,通过将一个正方形纸张对折,可以制作出一个正方形、一个矩形或者一个等边三角形。
通过折纸模型的制作和观察,学生可以更好地理解各种图形的性质,并且锻炼了空间想象能力和手工操作能力。
3. 各类角度模型角度是几何中的重要概念。
为了更好地理解和判断各类角度,可以使用角度模型进行学习和实践。
例如,通过两条相交的直线和一把量角器或者两个相等的直角三角形,可以制作出不同的角度模型,比如直角、锐角和钝角。
通过观察和实践,学生可以深入了解角度的概念和性质,并且能够通过角度模型进行角度测量和判断。
二、立体几何模型1. 空间几何模型立体几何模型可以帮助学生更好地理解和判断空间关系。
例如,通过连接适量的珠子和棍子,可以制作出不同的空间模型,如正方体、长方体、圆柱体等。
这样的模型能够帮助学生深入理解不同立体图形的性质,如面数、棱数和顶点数,并且能够帮助学生进行体积和表面积的计算。
2. 立体切割模型立体切割模型可以将复杂的立体图形简化为多个平面图形的组合。
例如,通过将一个长方体切割成多个长方形和正方形,可以帮助学生更好地理解长方体的各种性质和关系。
以下是初中数学几何的一些解题模型,总共列出了48个:平面几何:
直线的性质
角的性质
三角形的性质
四边形的性质
平行线与角的关系
垂直线与角的关系
三角形的分类
三角形中的线段比例问题
三角形的相似性质
相似三角形中的线段比例问题
圆的性质
圆的切线与弦的关系
直角三角形的性质
等腰三角形的性质
正方形的性质
空间几何
空间几何体的性质(长方体、正方体、圆柱体、球体等)空间几何体的表面积和体积计算
平行面与角的关系
垂直面与角的关系
对称性质和投影性质
空间图形的相似性质
空间中的立体角
空间中的直线与平面的位置关系切线与切平面的关系
空间中的平行与垂直关系
空间中的正交、斜交关系
平行四边形的性质
空间中的平行四边形
坐标几何:
直线的方程与性质
两点间的距离公式
点到直线的距离公式
点关于坐标轴对称的性质
点关于另一个点对称的性质
点关于一条直线对称的性质
直线的斜率与倾斜角
平行线与垂直线的斜率关系
直线的截距方程
线段的中点公式
.二次函数的图像与性质
圆的方程与性质
双曲线的方程与性质
抛物线的方程与性质
椭圆的方程与性质
对数函数的图像与性质
指数函数的图像与性质
函数的复合与逆函数的性质
函数的最值与极值
平面几何与坐标几何的联系
这些模型覆盖了初中数学几何的基本知识点,可以帮助学生更好地理解和应用几何知识进行解题。
当然,具体应用哪些模型还需要根据具体题目的要求和条件来判断。
初中数学几何模型大汇总几何模型是数学中的重要内容之一,对于初中数学学习来说,掌握并熟练运用各种几何模型是非常重要的。
下面是几何模型的大汇总,供初中学生学习参考。
一、平面图形的模型:1.直角三角形模型:直角三角形由两个直角边和一个斜边构成,可以利用直角三角形模型解决与直角三角形有关的问题。
2.等腰三角形模型:等腰三角形的底边两侧边相等,可以利用等腰三角形模型解决与等腰三角形有关的问题。
3.等边三角形模型:等边三角形的三边相等,可以利用等边三角形模型解决与等边三角形有关的问题。
4.平行四边形模型:平行四边形的对边平行且相等,可以利用平行四边形模型解决与平行四边形有关的问题。
5.矩形模型:矩形的四个角都是直角,可以利用矩形模型解决与矩形有关的问题。
6.正方形模型:正方形的四个边相等且都是直角,可以利用正方形模型解决与正方形有关的问题。
7.菱形模型:菱形的两对对边相等,可以利用菱形模型解决与菱形有关的问题。
8.圆形模型:圆形由中心点和半径构成,可以利用圆形模型解决与圆有关的问题。
二、立体图形的模型:1.正方体模型:正方体的六个面都是正方形,可以利用正方体模型解决与正方体有关的问题。
2.长方体模型:长方体的六个面有两个相等的长方形,可以利用长方体模型解决与长方体有关的问题。
3.球体模型:球体是由无数个半径相等的圆构成,可以利用球体模型解决与球体有关的问题。
4.圆柱模型:圆柱的底面是圆,可以利用圆柱模型解决与圆柱有关的问题。
5.圆锥模型:圆锥的底面是圆,可以利用圆锥模型解决与圆锥有关的问题。
6.圆台模型:圆台的底面是圆,可以利用圆台模型解决与圆台有关的问题。
7.正棱柱模型:正棱柱的底面是正多边形,可以利用正棱柱模型解决与正棱柱有关的问题。
8.正棱锥模型:正棱锥的底面是正多边形,可以利用正棱锥模型解决与正棱锥有关的问题。
9.正多面体模型:正多面体的面都是相等的正多边形,可以利用正多面体模型解决与正多面体有关的问题。
初中数学54个几何模型初中数学中的几何模型是指在几何学中用来描述和表示几何概念的模型。
下面将介绍54个常见的几何模型。
1. 点:几何中最基本的概念,没有大小和形状。
2. 直线:由无数个点连成的路径,无限延伸,没有宽度。
3. 射线:由一个起点出发,无限延伸的路径。
4. 线段:两个点之间的路径,有特定的长度。
5. 面:由无数个点连成的平面,有长度和宽度,没有厚度。
6. 圆:由同一平面上距离圆心相等的点组成的闭合曲线。
7. 椭圆:平面上到两个焦点的距离之和恒定的点的轨迹。
8. 椭圆弧:椭圆上的一段曲线。
9. 双曲线:平面上到两个焦点的距离之差恒定的点的轨迹。
10. 双曲线弧:双曲线上的一段曲线。
11. 抛物线:平面上到一个焦点的距离等于到直线的距离的点的轨迹。
12. 抛物线弧:抛物线上的一段曲线。
13. 球:由空间中到一个固定点的距离恒定的点组成的集合。
14. 圆锥:由平面和母线(与平面交于一点的直线)构成的几何体。
15. 圆柱:由平面和平行于平面的两个母线构成的几何体。
16. 圆台:由平面和平行于平面的两个母线及它们之间的曲面构成的几何体。
17. 球台:由平面和球的一部分构成的几何体。
18. 球梯:由平面和球的一部分及它们之间的曲面构成的几何体。
19. 直角三角形:有一个内角为90度的三角形。
20. 等腰三角形:有两边相等的三角形。
21. 等边三角形:三边长度均相等的三角形。
22. 直角梯形:有一个内角为90度的梯形。
23. 等腰梯形:有两边平行且相等的梯形。
24. 矩形:四个内角均为90度的四边形。
25. 正方形:四边长度均相等且内角均为90度的四边形。
26. 平行四边形:有两组对边平行的四边形。
27. 菱形:有四个边相等的四边形。
28. 六边形:有六个边的多边形。
29. 正六边形:六边形的六个内角均为120度。
30. 五边形:有五个边的多边形。
31. 正五边形:五边形的五个内角均为108度。
32. 正多边形:所有边和内角均相等的多边形。
初中数学几何模型大全及解析一中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行延长相交【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连【例】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE.(1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长;(2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的数量和位置关系,写出你的猜想;并给予证明;(3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.二角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形【例】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为 .三手拉手模型【例】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为 .四邻边相等的对角互补模型五半角模型六一线三角模型七弦图模型八最短路径模型【两点之间线段最短】1、将军饮马2、费马点【垂线段最短】【两边之差小于第三边】综合练习已知:如图1,正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.⑴求证:EG=CG且EG⊥CG;⑵将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.问⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.⑶将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?。
初中数学几何模型
【模型1】倍长
1、 倍长中线;
2、倍长类中线;
3、中点遇平行延长相交
E
D
A
B
C
F
D
A
B
C E
---------------------------------------------------------------------------------------------------------------------- 【模型2】遇多个中点,构造中位线
1、 直接连接中点;
2、连对角线取中点再相连
【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长;
(2)如图2,当点F 在AB 的延长线上时,线段GC 、GE 有怎样的数量和位置关系,写出你的猜想;并给予证明;
(3)如图3,当点F 在CB 的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.
图3
图2图1G
F
D
C
G
F
D
C
G
F
D
C
A
B
E
E
B
A
E
B
A
【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,
中点模型
BAF
DAE∠
=
∠.
(1)求证:CE=CF;
(2)若︒
=
∠120
ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE.
【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF于H.求证:∠BGE=∠CHE.
H
G
E
F
A
B
D
C
【模型1】构造轴对称
【模型2】角平分线遇平行构造等腰三角形
---------------------------------------------------------------------------------------------------------------------- 【例4】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF 的长为.
角平分线模型
E A B C
O D
E A B C
O
D B O A C
H
G
F
E
A
D
B
C
【条件】OA OB OC OD AOB COD ==∠=∠,,
【结论】OAC OBD ≅;AEB OAB COD ∠=∠=∠(即都是旋转角);OE AED ∠平分;
---------------------------------------------------------------------------------------------------------------------- 【例5】如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE =2CE ,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为 .
【例6】如图,ABC 中,90BAC ︒∠=,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连结BE ,AG ⊥BE 于F ,交BC 于点G ,求DFG ∠
导角核心图形:八字形
手拉手模型
A
B
E
B
A
F
E
B
D
A
C
G
F
D C
B
A
E
【例7】如图,在边长为62的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 于点H ,交AD 于点F ,连接CE 、BH 。
若BH =8,则FG =
18题图
H
G
F
E D
C
B
A
【模型1】
【条件】如图,四边形ABCD 中,AB =AD ,180BAD BCD ABC ADC ︒∠+∠=∠+∠= 【结论】AC 平分BCD ∠
E
B
D
A
C
【模型2】
【条件】如图,四边形ABCD 中,AB =AD ,90BAD BCD ︒∠=∠= 【结论】452ACB ACD BC CD AC ︒
∠=∠=+=① ②
邻边相等对角互补模型
F E
G C D A B G F E
C D B A F
E
D B
A
---------------------------------------------------------------------------------------------------------------------- 【例8】如图,矩形ABCD 中,AB =6,AD =5,G 为CD 中点,DE =DG ,FG ⊥BE 于F ,则DF 为.
【例9】如图,正方形ABCD 的边长为3,延长CB 至点M ,使BM =1,连接AM ,过点B 作BN AM ⊥,垂足为N ,O 是对角线AC 、BD 的交点,连接ON ,则ON 的长为.
【例10】如图,正方形ABCD 的面积为64,BCE 是等边三角形,F 是CE 的中点,AE 、BF 交于点G ,则DG 的长为.
【模型1】
【条件】如图,四边形ABCD 中,AB =AD ,180BAD BCD ABC ADC ︒∠+∠=∠+∠=,
1
2
EAF BAD E BC F CD ∠=∠,点在直线上,点在直线上
【结论】BE DF EF 、、满足截长补短关系
O
N
D C
A
B
M
半角模型
H
G F
C
B
D
A
E
来源:学科网]
【例12】如图,在菱形ABCD 中,AB =BD ,点E 、F 分别在AB 、AD 上,且AE =DF .连接BF 与DE 交于点G ,连接CG 与BD 交于点H ,若CG =1,则BCDG S =四边形. 源:学
【条件】EDF B C DE DF ∠=∠=∠=,且 【结论】BDE CFD ≅
E
F
B
C
A
D
---------------------------------------------------------------------------------------------------------------------- 【例13】如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3,GC =4,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边长为.
E
D A C
B
F
G
一线三等角模型
【两点之间线段最短】 1、将军饮马
P
Q
A'
C
D
A'
B'
C
B
P'
P'
P
B'
A
B
P
A
B
P Q
A
B
2、费马点
【垂线段最短】
C A
b
P
P
A
B
【两边之差小于第三边】
最短路径模型
《三垂直模型》
E O
D C B A 图3图2图1A
E B
F C D A E B F C
G D A E B F C G D
课后练习题
【练习1】如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,
90AEB ∠=︒,AC 、BD 交于O 。
已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.
【练习2】 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,∠MBN =12
∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想;
问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN =12
∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.
【练习3】已知:如图1,正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .
⑴求证:EG =CG 且EG ⊥CG ;
⑵将图1中△BEF 绕B 点逆时针旋转45º,如图2所示,取DF 中点G ,连接EG ,CG .问⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
⑶将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?。