高三数学第二轮复习教案(3)不等式问题的题型与方法(3课时)
- 格式:doc
- 大小:815.00 KB
- 文档页数:18
2014届高三数学第二轮复习第3讲 不等式一、本章知识结构:实数的性质二、高考要求(1)理解不等式的性质及其证明。
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。
(3)分析法、综合法、比较法证明简单的不等式。
(4)掌握某些简单不等式的解法。
(5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。
三、热点分析1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注.2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点.3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点.4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识.不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。
高考数学第二轮专题复习不等式教案一、本章知识结构:实数的性质二、高考要求(1)理解不等式的性质及其证明。
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。
(3)分析法、综合法、比较法证明简单的不等式。
(4)掌握某些简单不等式的解法。
(5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。
三、热点分析1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注.2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点.3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点.4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识.不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。
2013年高考数学二轮复习专题教案 不等式【考纲考情分析】一、不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型。
②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序。
(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。
③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
(4)基本不等式:)0(2≥≥+b a ab b a , ①了解基本不等式的证明过程。
②会用基本不等式解决简单的最大(小)值问题。
【专题知识网络】不等式的性质一元二次不等式(求解问题)基本不等式线性规划(最值问题)【剖析高考真题】(2012年高考湖南卷)设 a >b >1,0c < ,给出下列三个结论:[www.z#zste&*p~.c@om] ① c a >c b;② c a <c b ; ③ log ()log ()b a a c b c ->-, 其中所有的正确结论的序号是__.[中*国教育@^出A .①B.① ②C.② ③D.① ②③(2011年高考广东卷)不等式2210x x -->的解集是( ).A .1(,1)2- B .(1,)+∞C .(,1)(2,)-∞+∞D .1(,)(1,)2-∞-+∞【答案】D .【解析】21210(1)(21)02x x x x x -->⇒-+>⇒<-或1x >,则不等式的解集为1(,)(1,)2-∞-+∞ .(2012年高考浙江卷)若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是A.245B. 285C.5D.6【答案】C【解析】 x+3y=5xy , 135y x+=, 113131213(34)()()555x y x y y x y x +⋅+=++≥1132555⨯=.(2012年高考陕西卷)小王从甲地到乙地的时速分别为a 和b (a<b ),其全程的平均时速为v ,则 ( )C.2a b + D.v=2a b + 【答案】A.【解析】设甲乙两地相距s ,则小王用时为b s a s +,所以b a ab bs a s s v +=+=22,b a <<0 ,2b a ab +<∴、a b ab b a ab =>+222.abb a 12<+∴,ab v a <<∴.故选A.(2012年高考广东卷)已知变量x ,y 满足约束条件1110 x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为A. 3B. 1C. 5-D. 6-(2012年高考安徽卷)若x ,y 满足约束条件 02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则y x z -=的最小值是A .-3B .0C .32D .3【答案】A【解析】约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C 则[3,0]t x y =-∈-。
XX届高考数学第二轮考点不等式问题的题型与方法专题复习教案本资料为woRD文档,请点击下载地址下载全文下载地址第9-12课时课题:不等式问题的题型与方法一.复习目标:.在熟练掌握一元一次不等式、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式,会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法,使学生较灵活的运用常规方法证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识..二.考试要求:.理解不等式的性质及其证明。
2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
3.掌握分析法、综合法、比较法证明简单的不等式。
4.掌握简单不等式的解法。
5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。
三.教学过程:(Ⅰ)基础知识详析.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差→变形→判断符号.5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.7.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
不等式专题一、知识回顾不等式是刻画现实世界中不等关系的数学模型,是解决许多实际问题的重要工具,在高考中属主体内容.以考查不等式的解法和最值方面的应用为重点,多数情况是在函数、数列、几何、实际应用题等综合型试题中考查,在考试说明中1.解某些不等式要与函数的定义域、值域、单调性联系起来,含参数的不等式可分类讨论.2.利用基本不等式时要注意不等式运用的条件.3.要强化不等式的应用意识,同时要注意到不等式与函数和方程的对比与联系,充分利用函数方程思想、数形结合的思想处理问题.4.利用线性规划解决问题时应力求画图准确. 二、例题精讲例1.设0,0.a b >>3a 与3b的等比中项,则11a b+的最小值为__________.解析: 因为333=⋅b a ,所以1a b +=,1111()()224b a a b a b a b a b +=++=+++…,当且仅当b a a b =即12a b ==时“=”成立,故最小值为4.练习 1.若直线10(0,0)ax by a b ++=>>经过圆228210x y x y ++++=的圆心,则11a b+的最小值为__________________. 例2.已知关于x 的不等式220ax x c ++>的解集为11(,)32-,则220cx x a -+->的解集为________________.解析:由220ax x c ++>的解集为11(,)32-知0a <,11,32-为方程220ax x c ++=的两个根,由韦达定理得11211,3232ca a-+=--⨯=,解得12,2a c =-=,∴220cx x a -+->即222120x x --<,其解集为(2,3)-.练习2.已知不等式20ax bx c ++>的解集为{}|0x x αβ<<<,试用,αβ表示不等式20cx bx a -+>的解集.例3.已知13a b -<+<且24a b <-<,则23a b +的取值范围为_________________.解析:设23()()()()a b x a b y a b x y a x y b +=++-=++-,∴23x y x y +=⎧⎨-=⎩,解得5212x y ⎧=⎪⎪⎨⎪=-⎪⎩ ∴55151(),2()12222a b a b -<+<-<--<-∴95113()()2222a b a b -<+--<, 即9132322a b -<+<.错解:解此题常见错误是:-1<a +b <3, ① 2<a -b <4. ② ①+②得1<2a <7. ③ 由②得-4<b -a <-2.④ ①+④得-5<2b <1,∴-215<3b <23.⑤③+⑤得-213<2a +3b <217. 另:本题也可用线性规划来解.练习3. 函数2()f x ax bx =+满足:1(1)2,2(1)4f f -剟剟,求(2)f -的取值范围为____________________.例4.某种饮料分两次提价,提价方案有三种,方案甲是:第一次提价%p ,第二次提价%q ;方案乙是:第一次提价%q ,第二次提价%p ;方案丙是:每次提价%2p q+.如果0p q >>,那么提价最多的是方案 解析:设原价为1,两次提价后的价格为y 则:(1%)(1%)y p q =++甲=1+%)(1%)y q p +乙(2[1()%]2p qy +=+丙 易证:y y y >=乙丙甲,方案丙提价最多.练习4.(1)甲、乙两人两次在同一个粮店购买粮食(设两次单价不同),甲每次购买粮食100kg, 乙每次用100元购买粮食.若规定,谁两次购粮的平均单价低,谁的购粮方式就合算,则两人购粮方式更合算的是__________________. (2)b 克盐水中,有a 克盐(0>>a b ),若再添加m 克盐(0m >)则盐水就变咸了,试根据这一事实提炼一个不等式 ___________.例5.(1)设,,x y z 为正实数,满足230x y z -+=,则2y xz的最小值是__________.(2)如果正数,a b 满足3ab a b =++,那么ab 的取值范围是____________.解析:(1)230x y z -+=32x zy +⇒=222(3)344y x z xz xz xz+∴==…,即2y xz 的最小值为3. (2)由题设,3011b a b b +=>⇒>-. 又23(1)5(1)44(1)5111b b b ab b b b b b +-+-+=⋅==-++---10b ->,4(1)41b b ∴-+=-…9ab ⇒….或解::33ab a b =++…230⇒-…3 9ab ⇒…练习5.(1) 已知,,,a b x y R +∈(,a b 为常数),10a b +=,1a bx y+=,若 x y+的最小值为18,求,a b 的值.(2)若,,,a b x y ∈R , 且222a b +=, 228x y +=, 则ax by +的最大值是_______.例6.解关于x 的不等式:04)1(22<++-x a ax 解析:0)2)(2(<--x ax 当0a =2x ⇒>当0<a 2()(2)0x x a⇒-->⇒2|2x x x a ⎧⎫<>⎨⎬⎩⎭或当0a >2()(2)0x x a⇒--<22(1)2a a a--= 当aa 2210<⇒<<∴⎭⎬⎫⎩⎨⎧<<a x x 22| 当1a x φ=⇒∈ 当⇒>⇒>aa 221⎭⎬⎫⎩⎨⎧<<22|x a x练习6. 解关于x 的一元二次不等式2(3)30x a x a -++>.例7.已知函数2(),[1,)x ax af x x x-+=∈+∞, (1)当4a =时,求函数()f x 的最小值;(2)若对任意[1,)x ∈+∞,()0f x >恒成立,求实数a 的取值范围.解析:(1)当4a =时,2444()4440x x f x x x x-+==+--=…. (2)由题意,[1,)x ∈+∞时,()0f x >恒成立,即20x ax ax -+>恒成立, [1,)x ∈+∞,即240x ax -+>恒成立,若1x =4a ⇒<,若1x >,则21x a x <-恒成立,故2min ()1x a x <-, 而2112411x x x x =-++--…,当且仅当2x =时取等号,故2min ()41x x =-, 所以,4a <练习7. 三个同学对问题“关于x 的不等式232255x x x ax ++-…在[1,12] 上恒成立,求实数a 的取值范围”提出各自的解题思路. 甲说:“只须不等式左边的最小值不小于右边的最大值”. 乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”. 丙说:“把不等式两边看成关于x 的函数,作出函数图像”.参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围 是 .例8.数列{}n x 由下列条件确定:*1110,(),()2n n nax a x x n N x +=>=+∈,当2n …时,求证:(1)n x (2)1n n x x +…解析:(1)由1110,()2n n nax a x x x +=>=+,知*0,()n x n N >∈,当2n …时,111()2n n n a x x x --=+=(2)112,()2nn n nan x x x x +=+当时厖,211()022n n n n n n n a x ax x x x x x +-∴-=+-=…,所以,当2n …时,1n n x x +…练习8.已知数列{}n a 为等比数列,256,162a a ==,设n S 是数列{}n a 的前n 项和,证明:2211n n n S S S ++⋅….例9.已知函数321()(2)13f x ax bx b x =-+-+在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<,若设2z a b =+,求实数z 的取值范围 解析:/2()22f x ax bx b =-+-,又1x x =处取得极大值,在2x x =处取得极小值 故在12(,)x x 有/()0f x <,在12(,)(,)x x -∞+∞上有/()0f x >0,a ⇒>方程/()0f x =即2220ax bx b -+-=的两根12,x x 分布在(0,1),(1,2)内///(0)20(1)320(2)4520f b f a b f a b ⎧=->⎪⇒=-+<⎨⎪=-+>⎩23204520b a b a b <⎧⎪⇒-+<⎨⎪-+>⎩又2z a b =+,由线性规划知识易知,当过两点46(,),(2,2)77时z 取得最大和最小值,z ⇒的范围为16(,6)7.练习9. 已知关于x 的不等式222(37)(32)0x a x a a +-++-<的解集中的一个元素是0,求实数a 的取值范围,并用a 表示该不等式的解集.例10.已知二次函数()f x 满足(0)1f =,(1)()2f x f x x +-=(1) 求二次函数()f x 的表达式;(2) 若不等式()2f x x m >+在[1,1]-上恒成立,求实数m 的取值范围。
2013高考数学二轮复习精品资料专题05 不等式教学案(学生版)【2013考纲解读】从近几年高考题目来看,不等式的性质和解不等式问题多以一个选择题的形式出现,且多与集合、简易逻辑、函数知识相结合,难度较低。
了解不等式(组)的实际背景;会从实际情境中抽象出一元二次不等式模型,通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系,会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图;会从实际情境中抽象出二元一次不等式组,了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)值问题。
学会运用数形结合、分类讨论等数学思想方法分析和解决有关不等式问题,形成良好的思维品质,培养判断推理和逻辑思维能力。
【知识网络构建】4.二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等;(2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定其取得最优解的点;③求出目标函数的最大值或者最小值.【高频考点突破】考点一不等式的解法一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx+c同号,则其解集在两根之外;如果a与ax2+bx+c异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.即x<x1或x>x2⇔(x-x1)(x-x2)>0(x1<x2);x1<x<x2⇔(x-x1)(x -x2)<0(x1<x2).例1.已知函数f(x)=e x-1,g(x)=-x2+4x-3.若有f(a)=g(b),则b的取值范围为 ( )A.[2-2,2+2] B.(2-2,2+2)C.[1,3] D.(1,3)【变式探究】解关于x 的不等式ax 2-(a +1)x +1<0(a >0).【方法技巧】(1)解简单的分式、指数、对数不等式的基本思想是等价转化为整式不等式(一般为一元二次不等式)求解.(2)解决含参数不等式的难点在于对参数的恰当分类,关键是找到对参数进行讨论的原因.确定好分类标准,有理有据、层次清楚地求解.考点二 线性规划实质上是数形结合思想的一种具体体现,即将最值问题直观、简便地寻找出来.它还是一种较为简捷的求最值的方法,具体步骤如下:(1)根据题意设出变量,建立目标函数; (2)列出约束条件;(3)借助图形确定函数最值的取值位置,并求出最值; (4)从实际问题的角度审查最值,进而作答. 例2.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z = ()A .4 650元B .4 700元C .4 900元D .5 000元【方法技巧】解决线性规划问题首先要作出可行域,再注意目标函数所表示的几何意义,数形结合找出目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.考点三 基本不等式基本不等式:a +b2≥ab .(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.例3.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品 ( )A .60件B .80件C .100件D .120件【变式探究】设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b2<bC .a <ab <b <a +b 2 D.ab <a <a +b2<b【难点探究】难点一 一元二次不等式的解法例1.已知p :x 0∈R,mx 20+1≤0,q :x ∈R ,x 2+mx +1>0.若p ∧q 为真命题,则实数m 的取值范围是( )A .(-∞,-2)B .[-2,0)C .(-2,0)D .[0,2]【点评】 在线性约束条件下,线性约束条件所表示的区域一般是一个多边形区域或者一个以直线为边界的无限区域,如果目标函数是线性的,则可以根据目标函数的几何意义确定目标函数取得最大值和最小值的位置,如本题中的目标函数z =-x +y 变换后即y =x +z ,则目标函数z 的几何意义即直线y =x +z 在y 轴上的截距,截距最大(小)时的位置就是目标函数取得最大(小)值的位置,在一些含有参数的线性规划问题中这个思想显得更为重要。
第四讲不等式年份卷别考查角度及命题位置命题分析2018Ⅰ卷线性规划求最值·T131.选择、填空题中的考查以简单的线性规划与不等式性质为主,重点求目标函数的最值,有时也与其他知识交汇考查.2.基本不等式求最值及应用在课标卷考试中是低频点,很少考查.3.不等式的解法多与集合、函数、解析几何、导数交汇考查.Ⅱ卷线性规划求最值·T142017Ⅰ卷线性规划求最值·T14Ⅱ卷线性规划求最值·T5Ⅲ卷线性规划求最值·T132016Ⅰ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T8线性规划的实际应用·T16Ⅱ卷一元二次不等式的解法、集合的并集运算·T2Ⅲ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T6线性规划求最值·T13不等式性质及解法授课提示:对应学生用书第9页[悟通——方法结论]1.一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx+c 同号,那么其解集在两根之外;如果a与ax2+bx+c异号,那么其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.[全练——快速解答]1.(2018·某某一模)a >b >0,c <0,以下不等关系中正确的是( ) A .ac >bcB .a c>b cC .log a (a -c )>log b (b -c )D.aa -c >bb -c解析:法一:(性质推理法)A 项,因为a >b ,c <0,由不等式的性质可知ac <bc ,故A 不正确;B 项,因为c <0,所以-c >0,又a >b >0,由不等式的性质可得a -c >b -c>0,即1a c >1bc >0,再由反比例函数的性质可得a c <b c,故B 不正确; C 项,假设a =12,b =14,c =-12,那么log a (a -c )=1=0,log b (b -c )=34>1=0,即log a (a -c )<log b (b -c ),故C 不正确;D 项,a a -c -bb -c =a (b -c )-b (a -c )(a -c )(b -c )=c (b -a )(a -c )(b -c ),因为a >b >0,c <0,所以a -c >b -c >0,b -a <0,所以c (b -a )(a -c )(b -c )>0,即a a -c -b b -c>0,所以aa -c >bb -c,故D 正确.综上,选D.法二:(特值验证法)由题意,不妨取a =4,b =2,c =-2. 那么A 项,ac =-8,bc =-4,所以ac <bc ,排除A ; B 项,a c =4-2=116,b c =2-2=14,所以a c <b c,排除B ;C 项,log a (a -c )=log 4(4+2)=log 4 6,log b (b -c )=log 2(2+2)=2,显然log 4 6<2,即log a (a -c )<log b (b -c ),排除C.综上,选D. 答案:D2.(2018·某某四校联考)不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,那么m -n =( )A.12 B .-52C.52D .-1解析:由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m 2(m <0),解得m =-1,n =32,所以m -n =-52. 答案:B 3.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)解析:①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,所以x ≥4;②当x -2<0,即x <2时,不等式可化为(x -2)2≤4,所以0≤x <2.综上,不等式的解集是[0,2)∪[4,+∞).答案:B4.x ∈(-∞,1],不等式1+2x +(a -a 2)·4x>0恒成立,那么实数a 的取值X 围为( ) A.⎝⎛⎭⎪⎫-2,14B.⎝⎛⎦⎥⎤-∞,14C.⎝ ⎛⎭⎪⎫-12,32D.(]-∞,6解析:根据题意,由于1+2x+(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x=t(0<t≤2),那么可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+tt2,故只要求解h (t)=-1+tt 2(0<t≤2)的最大值即可,h (t)=-1t 2-1t =-⎝ ⎛⎭⎪⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a 的取值X 围为⎝ ⎛⎭⎪⎫-12,32.答案:C5.设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,那么使得f (x )≤1成立的x 的取值X 围是________.解析:由⎩⎪⎨⎪⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎪⎨⎪⎧x <0,-x 3≤1得-1≤x <0,故使得f (x )≤1成立的x 的取值X 围是[-1,9].答案:[-1,9]1.明确解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. 2.掌握不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a . (2)f (x )>g (x )对一切x ∈I 恒成立⇔f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法,一定要搞清谁是自变量,谁是参数.一般地,知道谁的X 围,谁就是变量,求谁的X 围,谁就是参数.利用分离参数法时,常用到函数单调性、基本不等式等.基本不等式授课提示:对应学生用书第10页[悟通——方法结论]求最值时要注意三点:“一正〞“二定〞“三相等〞.所谓“一正〞指正数,“二定〞是指应用定理求最值时,和或积为定值,“三相等〞是指等号成立.[全练——快速解答]1.(2018·某某模拟)x >0,y >0,且4x +y =xy ,那么x +y 的最小值为( ) A .8B .9 C .12 D .16解析:由4x +y =xy 得4y +1x=1,那么x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=〞,应选B.答案:B2.(2017·高考某某卷)假设a ,b ∈R ,ab >0,那么a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.答案:43.(2017·高考某某卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,那么x 的值是________.解析:由题意,一年购买600x 次,那么总运费与总存储费用之和为600x×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. 答案:30掌握基本不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:假设无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag (x )+Bg (x )(A >0,B >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.简单的线性规划问题授课提示:对应学生用书第10页[悟通——方法结论] 平面区域的确定方法解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.[全练——快速解答]1.(2017·高考全国卷Ⅲ)设x ,y 满足约束条件 ⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,那么z =x -y 的取值X 围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值X 围是[-3,2].答案:B2.平面上的单位向量e 1与e 2 的起点均为坐标原点O ,它们的夹角为π3.平面区域D 由所有满足OP →=λe 1+μe 2的点P 组成,其中⎩⎪⎨⎪⎧λ+μ≤1,0≤λ,0≤μ,那么平面区域D 的面积为( )A.12B. 3C.32D.34解析:建立如下图的平面直角坐标系,不妨令单位向量e 1=(1,0),e 2=⎝ ⎛⎭⎪⎫12,32,设向量OP →=(x ,y ),因为OP →=λe 1+μe 2,所以⎩⎪⎨⎪⎧x =λ+μ2,y =3μ2,即⎩⎪⎨⎪⎧λ=x -3y3,μ=23y 3,因为⎩⎪⎨⎪⎧λ+μ≤1,λ≥0,μ≥0,所以⎩⎨⎧3x +y ≤3,3x -y ≥0,y ≥0表示的平面区域D 如图中阴影部分所示,所以平面区域D 的面积为34,应选D. 答案:D3.(2018·某某模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.生产一把椅子需要木工4个工作时,漆工2个工作时;生产一X 桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一X 桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.解析:设该厂每个月生产x 把椅子,y X 桌子,利润为z 元,那么得约束条件 ⎩⎪⎨⎪⎧4x +8y ≤8 000,2x +y ≤1 300,z =1 500x +2 000y .x ,y ∈N ,画出不等式组⎩⎪⎨⎪⎧x +2y ≤2 000,2x +y ≤1 300,x ≥0,y ≥0表示的可行域如图中阴影部分所示,画出直线3x +4y =0,平移该直线,可知当该直线经过点P 时,z 取得最大值.由⎩⎪⎨⎪⎧x +2y =2 000,2x +y =1 300,得⎩⎪⎨⎪⎧x =200,y =900,即P (200,900),所以z max =1 500×200+2 000×900=2 100 000.故每个月所获得的最大利润为2 100 000元.答案:2 100 000解决线性规划问题的3步骤[练通——即学即用]1.(2018·湘东五校联考)实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,那么(x +5)2+y 2的最小值为( )A .5B .3 C. 5D. 3解析:作出不等式组⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A 时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y ⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点与D(-5,0)的距离的平方,数形结合可知,(-5,0)到直线x +2y =0的距离最小,可得(x +5)2+y 2的最小值为⎝⎛⎭⎪⎫|-5+2×0|12+222=5.应选A. 答案:A2.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x +y 的最大值是a ,那么a =________.解析:如下图,变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z取得最大值,由⎩⎪⎨⎪⎧2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:33.(2018·高考全国卷Ⅰ)假设x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,那么z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max=3×2+2×0=6.答案:6授课提示:对应学生用书第118页一、选择题1.互不相等的正数a ,b ,c 满足a 2+c 2=2bc ,那么以下等式中可能成立的是( ) A .a >b >c B .b >a >c C .b >c >aD .c >a >b解析:假设a >b >0,那么a 2+c 2>b 2+c 2≥2bc ,不符合条件,排除A ,D ; 又由a 2-c 2=2c (b -c )得a -c 与b -c 同号,排除C ;当b >a >c 时,a 2+c 2=2bc 有可能成立,例如:取a =3,b =5,c =1.应选B. 答案:B2.b >a >0,a +b =1,那么以下不等式中正确的是() A .log 3a >0B .3a -b<13C .log 2a +log 2b <-2D .3⎝ ⎛⎭⎪⎫b a +a b ≥6解析:对于A ,由log 3a >0可得log 3a >log 31,所以a >1,这与b >a >0,a +b =1矛盾,所以A 不正确;对于B ,由3a -b<13可得3a -b <3-1,所以a -b <-1,可得a +1<b ,这与b >a >0,a +b =1矛盾,所以B 不正确;对于C ,由log 2a +log 2b <-2可得log 2(ab )<-2=log 214,所以ab <14,又b >a >0,a +b =1>2ab ,所以ab <14,两者一致,所以C 正确;对于D ,因为b >a >0,a +b =1,所以3⎝ ⎛⎭⎪⎫b a +a b >3×2b a ×ab=6, 所以D 不正确,应选C. 答案:C3.在R 上定义运算:x y =x (1-y ).假设不等式(x -a )(x -b )>0的解集是(2,3),那么a +b =( )A .1B .2C .4D .8解析:由题知(x -a )(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.答案:C 4.a ∈R ,不等式x -3x +a≥1的解集为P ,且-2∉P ,那么a 的取值X 围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:∵-2∉P ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案:D5.x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,那么z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116D.132解析:不等式组表示的平面区域如图中阴影部分所示,而z =8-x·⎝ ⎛⎭⎪⎫12y=2-3x -y,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y最小,最小值为132.应选D.答案:D6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,那么不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:由题意得,f (1)=3,所以f (x )>f (1),即f (xx <0时,x +6>3,解得-3<x <0;当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).答案:A7.实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =3x -2y 的最小值为0,那么实数m 等于( )A .4B .3C .6D .5解析:作出不等式组所表示的可行域如图中阴影部分所示,由图可知,当目标函数z =3x -2y 所对应的直线经过点A 时,z 取得最小值0.由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,求得A ⎝ ⎛⎭⎪⎫1+m 3,2m -13.故z 的最小值为3×1+m 3-2×2m -13=-m 3+53,由题意可知-m 3+53=0,解得m =5.答案:D8.假设对任意正实数x ,不等式1x 2+1≤ax恒成立,那么实数a 的最小值为( ) A .1 B. 2 C.12 D.22解析:因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x≤12(当且仅当x =1时取等号),所以a ≥12.答案:C9.(2018·某某一模)实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,那么z =x 2+y 2的取值X围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max =|OA |2=13,应选C.答案:C10.(2018·某某二模)假设关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),那么x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233 C.433D.263解析:∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号.∴x 1+x 2+a x 1x 2的最小值是433. 答案:C11.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,那么租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,那么约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:C12.(2018·某某模拟)点P (x ,y )∈{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2},x ≥-2M (2,-1),那么OM →·OP→(O 为坐标原点)的最小值为( )A .-2B .-4C .-6D .-8解析:由题意知OM →=(2,-1),OP →=(x ,y ),设z =OM →·OP →=2x -y ,显然集合{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2}x ≥-2对应不等式组⎩⎪⎨⎪⎧y ≥x x +2y ≤2x ≥-2所表示的平面区域.作出该不等式组表示的平面区域如图中阴影部分所示,由图可知,当目标函数z =2x -y 对应的直线经过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x =-2x +2y -2=0得A (-2,2),所以目标函数的最小值z min =2×(-2)-2=-6,即OM →·OP →的最小值为-6,应选C.答案:C二、填空题13.(2018·某某模拟)假设a >0,b >0,那么(a +b )·⎝ ⎛⎭⎪⎫2a +1b 的最小值是________.解析:(a +b )⎝ ⎛⎭⎪⎫2a +1b =2+2b a +a b +1=3+2b a +a b,因为a >0,b >0,所以(a +b )⎝ ⎛⎭⎪⎫2a +1b ≥3+22b a ×a b =3+22,当且仅当2b a =ab,即a =2b 时等号成立.所以所求最小值为3+2 2.答案:3+2 214.(2018·高考全国卷Ⅱ)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,那么z =x +y的最大值为________.解析:由不等式组画出可行域,如图(阴影部分),x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴z max =5+4=9. 答案:915.(2018·某某模拟)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,那么z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,那么有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125. 答案:-12516.a >b >1,且2log a b +3log b a =7,那么a +1b 2-1的最小值为________. 解析:令log a b =t ,由a >b >1得0<t<1,2log a b +3log b a =2t +3t =7,得t =12,即log a b=12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a =2时取等号. 故a +1b 2-1的最小值为3. 答案:3。
2021年高三数学二轮复习专题一第三讲不等式、线性规划、计数原理与二项式定理教案理研热点(聚焦突破)类型一不等式的性质与解法1.不等式的同向可加性2.不等式的同向可乘性3.不等式的解法一元二次不等式ax2+bx+c>0(或<0).若Δ>0,其解集可简记为:同号两根之外,异号两根之间.[例1](1)(xx年高考湖南卷)设a>b>1,c<0,给出下列三个结论:①>;②a c<b c;③logb (a-c)>loga(b-c).其中所有的正确结论的序号是()A.①B.①②C.②③D.①②③(2)(xx年高考江苏卷)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为________.[解析](1)根据不等式的性质构造函数求解.∵a>b>1,∴< .又c<0,∴> ,故①正确.构造函数y=x c.∵c<0,∴y=x c在(0,+∞)上是减函数.又a>b>1,∴a c<b c,故②正确.∵a>b>1,-c>0,∴a-c>b-c>1.∵a >b >1,∴log b (a -c )>log a (a -c )>log a (b -c ), 即log b (a -c )>log a (b -c ),故③正确. (2)通过值域求a ,b 的关系是关键.由题意知f (x )=x 2+ax +b =(x +a 2)2+b -a 24.∵f (x )的值域为[0,+∞),∴b -a 24=0,即b =a 24. ∴f (x )=(x +a 2)2.又∵f (x )<c ,∴(x +a2)2<c , 即-a 2-c <x <-a2+c .∴262ac m a c m ⎧--=⎪⎪⎨⎪-+=+⎪⎩ 解得 , ∴ [答案] (1)D (2)9跟踪训练(xx 年高考福建卷)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.解析:利用“三个二次”之间的关系. ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0, ∴0<a <8. 答案:(0,8)类型二线性规划求目标函数最值的一般步骤(1)作出可行域;(2)借助图形确定函数最值的取值位置,并求最值.[例2](xx年高考课标全国卷)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是()A.(1-,2) B.(0,2)C.(-1,2) D.(0,1+)[解析]利用线性规划知识,求解目标函数的取值范围.如图,根据题意得C(1+,2).作直线-x+y=0,并向左上或右下平移,过点B(1,3)和C(1+,2)时,z=-x+y取范围的边界值,即-(1+)+2<z<-1+3,∴1-<z<2.∴z=-x+y的取值范围是(1-,2).[答案] A跟踪训练(xx 年泰安高三模考)设变量x ,y 满足约束条件004312x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z =的取值范围是( )A .[0,4]B .[,5]C .[,6]D .[2,10]解析:表示过点(x ,y )与点(-1,-1)的直线的斜率. 根据题意,作出可行域,如图所示,由图知的最小值是,最大值是,故选B. 答案:B类型三 均值不等式的应用 1. (R ) 2. (R ) 3. (R ) 4.22222a b a b abab a b++≥≥+(R ) [例3] (xx 年高考浙江卷)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A. B. C .5 D .6[解析] 将已知条件进行转化,利用基本不等式求解.∵x >0,y >0,由x +3y =5xy 得15(1y +3x )=1. ∴3x +4y =15(3x +4y )(1y +3x )=15(3x y +4+9+12yx ) =135+15(3x y +12y x )≥135+15×23x y ·12yx =5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5. [答案] C跟踪训练已知x>0,y>0,若>m2+2m恒成立,则实数m的取值范围是() A.m≥4或m≤-2 B.m≥2或m≤-4C.-2<m<4 D.-4<m<2解析:因为x>0,y>0,所以≥2=8.要使原不等式恒成立,只需m2+2m<8,解得-4<m<2.答案:D类型四排列与组合1.加法计数原理与乘法计数原理针对的分别是“分类”与“分步”问题.2.排列数A m n=n!(n-m)!.组合数C m n=n!m!(n-m)!.3.组合数性质(1)C m n=C n-mn;(2)C m n+C m-1n=C m n+1.[例4](xx年高考北京卷)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18C.12 D.6[解析]根据所选偶数为0和2分类讨论求解.当选0时,先从1,3,5中选2个数字有C种方法,然后从选中的2个数字中选1个排在末位有C种方法,剩余1个数字排在首位,共有CC=6(种)方法;当选2时,先从1,3,5中选2个数字有C种方法,然后从选中的2个数字中选1个排在末位有C种方法,其余2个数字全排列,共有CCA=12(种)方法.依分类加法计数原理知共有6+12=18(个)奇数.[答案] B跟踪训练(xx年高考山东卷)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为() A.232 B.252C.472 D.484解析:利用分类加法计数原理和组合的概念求解.分两类:第一类,含有1张红色卡片,共有不同的取法CC=264(种);第二类,不含有红色卡片,共有不同的取法C-3C=220-12=208(种).由分类加法计数原理知不同的取法有264+208=472(种).答案:C类型五二项式定理1.二项展开式的通项:T k+1=C k n a n-k b k(k=0,1,…,n).2.二项式系数为C0n,C1n,…,C r n,…,C n n(r=0,1,…n).3.用赋值法研究展开式中各项系数之和.[例5](xx年高考安徽卷)(x2+2)( -1)5的展开式的常数项是()A.-3 B.-2 C.2 D.3[解析]利用二项展开式的通项求解二项式(1x2-1)5展开式的通项为:T r+1=C r5(1x2)5-r·(-1)r=C r5·x2r-10·(-1)r.当2r-10=-2,即r=4时,有x2·C45x-2·(-1)4=C45×(-1)4=5;当2r-10=0,即r=5时,有2·C55x0·(-1)5=-2.∴展开式中的常数项为5-2=3,故选D.[答案] D跟踪训练(xx年郑州模拟)在二项式(x2-)n的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A.32 B.-32C.0 D.1解析:依题意得所有二项式系数的和为2n=32,解得n=5.因此,该二项展开式中的各项系数的和等于(12-)5=0,选C.答案:C析典题(预测高考)高考真题【真题】(xx年高考江苏卷)已知正数a,b,c满足:5c-3a≤b≤4c-a,c ln b≥a+c ln c,则的取值范围是________.【解析】由题意知435ln ln a c a b ca b cc b a c c b ce ⎧+⎪+⎨⎪-⇒⎩≤≥≥≥作出可行域(如图所示).由⎩⎪⎨⎪⎧a +b =4c ,3a +b =5c , 得a =c 2,b =72c . 此时(ba )max =7.由⎩⎨⎧a +b =4c ,b =c e ac ,得a =4c e +1,b =4c e e +1. 此时(b a )min =4c e e +14c e +1=e.所以ba ∈[e ,7].【答案】 [e ,7]【名师点睛】 本题主要考查了不等式的性质、线性规划的应用等知识,命题角度创新,难度较大,解决此题的关键是将问题转化为线性规划问题,通过数形结合思想来解决.考情展望高考对线性规划的考查比较灵活,多以选择、填空形式出现,主要考查利用线性规划求目标函数最值及应用.常涉及距离型、斜率型、截距型.有时与函数、圆、平面向量等知识相综合. 名师押题【押题】 如果点P 在不等式组1023504310x x y x y -⎧⎪+-⎨⎪+-⎩≤≤≥所确定的平面区域内,点Q 在曲线(x +2)2+(y +2)2=1上,那么|PQ |的最小值为( )A .1B .2C .3D .6【解析】画出可行域,如图所示,点Q在圆(x+2)2+(y+2)2=1上,易知|PQ|的最小值为圆心(-2,-2)到直线4x+3y-1=0=-1=2,故选B.的距离减去圆的半径1,即|PQ|min【答案】 B。
一.复习目标:考资源网w w s 5 o m1在熟练掌握一元一次不等式 (组)、一元二次不等式的解法基础上,掌握其它的一些 简单不等式的解法.通过不等式解法的复习, 提高学生分析问题、 解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式 不等式(组),会用分类、换元、数形结合的方法解不等式;3•通过复习不等式的性质及常用的证明方法 (比较法、分析法、综合法、数学归纳法 等),使学生较灵活的运用常规方法 (即通性通法)证明不等式的有关问题;4•通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不 等式的能力;5•能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题. 6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解 析几何等各部分知识中的应用,深化数学知识间的融汇贯通, 从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、 思想解决问题的过程中, 提高学生数学素质及创新意识.. 二•考试要求:1. 理解不等式的性质及其证明。
2. 掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并 会简单的应用。
3•掌握分析法、综合法、比较法证明简单的不等式。
4. 掌握简单不等式的解法。
5. 理解不等式 |a|-|b| < |a+b| < |a|+|b|。
三.教学过程:(I )基础知识详析1. 解不等式的核心问题是不等式的同解变形, 不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关, 要善于把它们有机地联系起来,互相转化.在解不等式中, 换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式, 通过构造函数、数形结合,则可将不等式的解化归为直观、 形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2. 整式不等式(主要是一次、二次不等式)的解法是解不等式的基础, 利用不等式的性 质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式 (组)是解不等式的基本思想, 分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的 解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3 .在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元, 不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、 对含有参数的不等式,运用图解法, 可以使分类标准更加明晰.通过复习,核心问题是不等式的同解变形, 能否正确的得到不等式的解集, 不等式同解变形的理论起了可将较复杂的形象的图象关系, 感悟到不等式的重要的作用.4. 比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)T变形T判断符号(值)•5•证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法. 通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.6•证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法•要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.7•不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用•因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明. 不等式的应用范围十分广泛,它始终贯串在整个中学数学之中•诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
选校网高考频道专业大全历年分数线上万张大学图片大学视频院校库2009届高考数学二轮复习教案——不等式(3课时)一、高考考试主要内容1、不等式.2、不等式的基本性质3、不等式的解法(特别一元二次不等式(特别是含参数)的解法).4、不等式的证明5、含绝对值的不等式.二、09高考大纲考试要求(1)理解不等式的性质及其证明.(2)掌握两个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式.(4)掌握简单不等式的解法.(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│.三、高考复习目标(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题.四、09高考热点预测预计2009年的高考主要有以下几点:(1)不等式的性质是进行不等式的变换、证明不等式的依据,所以它仍是高考的一个重点内容,常以选择题、填空题形式出现:(2)解不等式主要与求函数的定义域、值域问题及单调性相结合;(3)不等式的证明基本上与数列结合,另外还用注意利用导数证明不等式。
五、精典例题剖析例1(08安徽)设函数323()(1)1,32a f x x x a x a =-+++其中为实数。
(Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。
2019届高考数学考点不等式专项复习教案【小编寄语】查字典数学网小编给大家整理了2019届高考数学考点不等式专项复习教案,希望能给大家带来帮助!6.5 不等式的解法(二)●知识梳理1.|x|>a x>a或x<-a(a>0);|x|0).2.形如|x-a|+|x-b|&ge;c的不等式的求解通常采用“零点分段讨论法”.3.含参不等式的求解,通常对参数分类讨论.4.绝对值不等式的性质:a|-|b&le;|a±b|&le;|a|+|b|.思考讨论1.在|x|>a x>a或x<-a(a>0)、|x|0)中的a>0改为a&isin;R 还成立吗?2.绝对值不等式的性质中等号成立的条件是什么?●点击双基1.设a、b是满足ab<0的实数,那么A.|a+b|>|a-b|B.|a+b|<|a-b|C.|a-b|<a|-|bD.|a-b|<|a|+|b|解析:用赋值法.令a=1,b=-1,代入检验.答案:B2.不等式|2x2-1|&le;1的解集为A.{x|-1&le;x&le;1}B.{x|-2&le;x&le;2}C.{x|0&le;x&le;2}D.{x|-2&le;x&le;0}解析:由|2x2-1|&le;1得-1&le;2x2-1&le;1.∴0&le;x2&le;1,即-1&le;x&le;1.答案:A3.不等式|x+log3x|<|x|+|log3x|的解集为A.(0,1)B.(1,+&infin;)C.(0,+&infin;)D.(-&infin;,+&infin;)解析:∵x>0,x与log3x异号,∴log3x<0.∴0答案:A4.已知不等式a&le;对x取一切负数恒成立,则a的取值范围是____________.解析:要使a&le;对x取一切负数恒成立,令t=|x|>0,则a&le;.而&ge;=2 ,∴a&le;2 .答案:a&le;25.已知不等式|2x-t|+t-1<0的解集为(- ,),则t=____________.解析:|2x-t|<1-t,t-1<2x-t<1-t,2t-1<2x<1,t-∴t=0.答案:0●典例剖析【例1】解不等式|2x+1|+|x-2|>4.剖析:解带绝对值的不等式,需先去绝对值,多个绝对值的不等式必须利用零点分段法去绝对值求解.令2x+1=0,x-2=0,得两个零点x1=- ,x2=2.解:当x&le;- 时,原不等式可化为-2x-1+2-x>4,∴x<-1.当-2x+1+2-x>4,∴x>1.又-∴1当x>2时,原不等式可化为2x+1+x-2>4,∴x> .又x>2,∴x>2.综上,得原不等式的解集为{x|x<-1或1深化拓展若此题再多一个含绝对值式子.如:|2x+1|+|x-2|+|x-1|>4,你又如何去解?分析:令2x+1=0,x-2=0,x-1=0,得x1=- ,x2=1,x3=2.解:当x&le;- 时,原不等式化为-2x-1+2-x+1-x>4,∴x<- .当-2x+1+2-x+1-x>4,4>4(矛盾).当12x+1+2-x+x-1>4,∴x>1.又1∴1当x>2时,原不等式可化为2x+1+x-2+x-1>4,∴x> .又x>2,∴x>2.综上所述,原不等式的解集为{x|x<- 或x>1}.【例2】解不等式|x2-9|&le;x+3.剖析:需先去绝对值,可按定义去绝对值,也可利用|x|&le;a -a&le;x&le;a去绝对值.解法一:原不等式(1) 或(2)不等式(1) x=-3或3&le;x&le;4;不等式(2) 2&le;x<3.∴原不等式的解集是{x|2&le;x&le;4或x=-3}. 解法二:原不等式等价于或x&ge;2 x=-3或2&le;x&le;4.∴原不等式的解集是{x|2&le;x&le;4或x=-3}. 【例3】(理)已知函数f(x)=x|x-a|(a&isin;R).(1)判断f(x)的奇偶性;(2)解关于x的不等式:f(x)&ge;2a2.解:(1)当a=0时,f(-x)=-x|-x|=-x|x|=-f(x),∴f(x)是奇函数.当a≠0时,f(a)=0且f(-a)=-2a|a|.故f(-a)≠f(a)且f(-a)≠-f(a).∴f(x)是非奇非偶函数.(2)由题设知x|x-a|&ge;2a2,∴原不等式等价于①或②由①得x&isin;.由②得当a=0时,x&ge;0.当a>0时,∴x&ge;2a.当a<0时,即x&ge;-a.综上a&ge;0时,f(x)&ge;2a2的解集为{x|x&ge;2a};a<0时,f(x)&ge;2a2的解集为{x|x&ge;-a}.(文)设函数f(x)=ax+2,不等式| f(x)|<6的解集为(-1,2),试求不等式&le;1的解集.解:|ax+2|<6,∴(ax+2)2<36,即a2x2+4ax-32<0.由题设可得解得a=-4.∴f(x)=-4x+2.由&le;1,即&le;1可得&ge;0.解得x> 或x&le;.∴原不等式的解集为{x|x> 或x&le;}.●闯关训练夯实基础1.已知集合A={x|a-1&le;x&le;a+2},B={x|3A.{a|3C.{a|3解析:由题意知得3&le;a&le;4.答案:B2.不等式|x2+2x|<3的解集为____________.解析:-3∴-3答案:-33.不等式|x+2|&ge;|x|的解集是____________.解法一:|x+2|&ge;|x| (x+2)2&ge;x2 4x+4&ge;0 x&ge;-1.解法二:在同一直角坐标系下作出f(x)=|x+2|与g(x)=|x|的图象,根据图象可得x&ge;-1.解法三:根据绝对值的几何意义,不等式|x+2|&ge;|x|表示数轴上x到-2的距离不小于到0的距离,∴x&ge;-1.答案:{x|x&ge;-1}评述:本题的三种解法均为解绝对值不等式的基本方法,必须掌握.4.当0解:由0x-2.这个不等式的解集是下面不等式组①及②的解集的并集. ①或②解不等式组①得解集为{x| &le;x<2},解不等式组②得解集为{x|2&le;x<5},所以原不等式的解集为{x| &le;x<5}.5.关于x的方程3x2-6(m-1)x+m2+1=0的两实根为x1、x2,若|x1|+|x2|=2,求m的值.解:x1、x2为方程两实根,∴Δ=36(m-1)2-12(m2+1)&ge;0.∴m&ge;或m&le;.又∵x1·x2= >0,∴x1、x2同号.∴|x1|+|x2|=|x1+x2|=2|m-1|.于是有2|m-1|=2,∴m=0或2.∴m=0.培养能力6.解不等式&le;.解:(1)当x2-2<0且x≠0,即当-(2)当x2-2>0时,原不等式与不等式组等价.x2-2&ge;|x|,即|x|2-|x|-2&ge;0.∴|x|&ge;2.∴不等式组的解为|x|&ge;2,即x&le;-2或x&ge;2.∴原不等式的解集为(-&infin;,-2]&cup;(- ,0)&cup;(0,)&cup;[2,+&infin;).7.已知函数f(x)= 的定义域恰为不等式log2(x+3)+logx&le;3的解集,且f(x)在定义域内单调递减,求实数a的取值范围.解:由log2(x+3)+log x&le;3得x&ge;,即f(x)的定义域为[ ,+&infin;).∵f(x)在定义域[ ,+&infin;)内单调递减,∴当x2>x1&ge;时,f(x1)-f(x2)>0恒成立,即有(ax1- +2)-(ax2- +2)>0 a(x1-x2)-( - )>0(x1-x2)(a+ )>0恒成立.∵x10a+ <0.∵x1x2> - >- ,要使a<- 恒成立,则a的取值范围是a&le;- .8.有点难度哟!已知f(x)=x2-x+c定义在区间[0,1]上,x1、x2&isin;[0,1],且x1≠x2,求证:(1)f(0)=f(1);(2)| f(x2)-f(x1)|<|x1-x2|;(3)| f(x1)-f(x2)|< ;(4)| f(x1)-f(x2)|&le;.证明:(1)f(0)=c,f(1)=c,∴f(0)=f(1).(2)| f(x2)-f(x1)|=|x2-x1x2+x1-1|.∵0&le;x1&le;1,∴0&le;x2&le;1,0∴-1∴| f(x2)-f(x1)|<|x2-x1|.(3)不妨设x2>x1,由(2)知| f(x2)-f(x1)|而由f(0)=f(1),从而| f(x2)-f(x1)|=| f(x2)-f(1)+f(0)-f(x1)|&le;| f(x2)-f(1)|+| f(0)- f(x1)|<|1-x2|+|x1|<1-x2+x1. ②①+②得2| f(x2)-f(x1)|<1,即| f(x2)-f(x1)|< .(4)|f(x2)-f(x1)|&le;fmax-fmin=f(0)-f( )= .探究创新9.(1)已知|a|<1,|b|<1,求证:| |>1;(2)求实数λ的取值范围,使不等式| |>1对满足|a|<1,|b|<1的一切实数a、b恒成立;(3)已知|a|<1,若| |<1,求b的取值范围.(1)证明:|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1).∵|a|<1,|b|<1,∴a2-1<0,b2-1<0.∴|1-ab|2-|a-b|2>0.∴|1-ab|>|a-b|,= >1.(2)解:∵| |>1 |1-abλ|2-|aλ-b|2=(a2λ2-1)(b2-1)>0.∵b2<1,∴a2λ2-1<0对于任意满足|a|<1的a恒成立.当a=0时,a2λ2-1<0成立;当a≠0时,要使λ2< 对于任意满足|a|<1的a恒成立,而>1,∴|λ|&le;1.故-1&le;λ&le;1.(3)| |<1 ( )2<1 (a+b)2<(1+ab)2 a2+b2-1-a2b2<0(a2-1)(b2-1)<0.∵|a|<1,∴a2<1.∴1-b2>0,即-1●思悟小结1.解含有绝对值的不等式的指导思想是去掉绝对值.常用的方法是:(1)由定义分段讨论;(2)利用绝对值不等式的性质;(3)平方.2.解含参数的不等式,如果转化不等式的形式或求不等式的解集时与参数的取值范围有关,就必须分类讨论.注意:(1)要考虑参数的总取值范围.(2)用同一标准对参数进行划分,做到不重不漏.●教师下载中心教学点睛1.绝对值是历年高考的重点,而绝对值不等式更是常考常新.在教学中要从绝对值的定义和几何意义来分析,绝对值的特点是带有绝对值符号,如何去掉绝对值符号,一定要教给学生方法,切不可以题论题.2.无理不等式在新课程书本并未出现,但可以利用不等式的性质把其等价转化为代数不等式.3.指数、对数不等式能利用单调性求解.拓展题例【例1】设x1、x2、y1、y2是实数,且满足x12+x22&le;1,证明不等式(x1y1+x2y2-1)2&ge;(x12+x22-1)(y12+y22-1).分析:要证原不等式成立,也就是证(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)&ge;0.证明:(1)当x12+x22=1时,原不等式成立.(2)当x12+x22<1时,联想根的判别式,可构造函数f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1),其根的判别式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).由题意x12+x22<1,函数f(x)的图象开口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2&g e;0,因此抛物线与x轴必有公共点.∴Δ&ge;0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)&ge;0,课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
XX届高考数学第二轮考点不等式问题的题型与方法专题复习教案本资料为woRD文档,请点击下载地址下载全文下载地址第9-12课时课题:不等式问题的题型与方法一.复习目标:.在熟练掌握一元一次不等式、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式,会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法,使学生较灵活的运用常规方法证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识..二.考试要求:.理解不等式的性质及其证明。
2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
3.掌握分析法、综合法、比较法证明简单的不等式。
4.掌握简单不等式的解法。
5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。
三.教学过程:(Ⅰ)基础知识详析.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差→变形→判断符号.5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.7.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
第三教时不等式教材:算术平均数与几何平均数目的:要求学生掌握算术平均数与几何平均数的意义,并掌握“平均不等式”及其推导过程。
过程:一、 定理:如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时取“=”)证明:222)(2b a ab b a -=-+ ⇒⎭⎬⎫>-≠=-=0)(0)(22b a b a b a b a 时,当时,当ab b a 222≥+ 1.指出定理适用X 围:R b a ∈,2.强调取“=”的条件b a =二、定理:如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 证明:∵ab b a 2)()(22≥+∴ab b a 2≥+ 即:ab b a ≥+2 当且仅当b a =时 ab b a =+2注意:1.这个定理适用的X 围:+∈R a2.语言表述:两个正数的算术平均数不小于它们的几何平均数。
三、推广:定理:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”)证明:∵abc ab b a c b a abc c b a 333)(32233333---++=-++ )(3])())[((22c b a ab c c b a b a c b a ++-++-+++=]32)[(222ab c bc ac b ab a c b a -+--++++=))((222ca bc ab c b a c b a ---++++=])()())[((21222a c c b b a c b a -+-+-++= ∵+∈R c b a ,,∴上式≥0 从而abc c b a 3333≥++指出:这里+∈R c b a ,,∵0<++c b a 就不能保证推论:如果+∈R c b a ,,,那么33abc c b a ≥++ (当且仅当c b a ==时取“=”) 证明:3333333333)()()(c b a c b a ⋅⋅≥++⇒33abc c b a ≥++ ⇒33abc c b a ≥++ 四、关于“平均数”的概念1.如果++∈>∈N n n R a a a n 且1,,,,21 则:na a a n +++ 21叫做这n 个正数的算术平均数 n n a a a 21叫做这n 个正数的几何平均数2.点题:算术平均数与几何平均数3.基本不等式:na a a n +++ 21≥n n a a a 21 n i R a N n i ≤≤∈∈+1,,*这个结论最终可用数学归纳法,二项式定理证明(这里从略)语言表述:n 个正数的算术平均数不小于它们的几何平均数。
高三数学第二轮复习教案第3讲不等式问题的题型与方法(3课时)一、考试内容不等式,不等式的基本性质,不等式的证明,不等式的解法,含绝对值不等式二、考试要求1.理解不等式的性质及其证明。
2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
3.掌握分析法、综合法、比较法证明简单的不等式。
4.掌握简单不等式的解法。
5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。
三、复习目标1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.四、双基透视1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.7.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
8.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:10审题,20建立不等式模型,30解数学问题,40作答。
五、注意事项1.解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解,。
2.解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。
3.不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。
如运用放缩法证明不等式时要注意调整放缩的度。
4.根据题目结构特点,执果索因,往往是有效的思维方法。
六、范例分析b)∈M,且对M中的其它元素(c,d),总有c≥a,则a=____.分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M 中的其它元素(c ,d),总有c ≥a ”?M 中的元素又有什么特点? 解:依题可知,本题等价于求函数x=f(y)=(y+3)·|y-1|+(y+3)(2)当1≤y ≤3时,所以当y=1时,xmin=4.说明:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示其数学实质.即求集合M 中的元素满足关系式例2.解关于x 的不等式: ()0922>≤-a aa x x 分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。
本题的关键不是对参数a 进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。
解:当()⎩⎨⎧≤--≥⎩⎨⎧≤-≥≥029929222a ax x ax a a x x a x a x 即时,不等式可转化为 a b x a 173+≤≤∴⎩⎨⎧≥+-<⎩⎨⎧≤-<<02992)(222a ax x ax a x a ax a x a x 即时不等式可化为当]⎥⎦⎤⎢⎣⎡+⋃-∞<≤≤∴a a aax a a x 6173,323,(323故不等式的解集为或。
例3. 己知三个不等式:①x x -<-542 ②12322≥+-+x x x ③0122<-+mx x(1)若同时满足①、②的x 值也满足③,求m 的取值范围;(2)若满足的③x 值至少满足①和②中的一个,求m 的取值范围。
分析:本例主要综合复习整式、分式不等式和含绝对值不等的解法,以及数形结合思想,解本题的关键弄清同时满足①、②的x 值的满足③的充要条件是:③对应的方程的两根分别在()0,∞-和[),3+∞内。
不等式和与之对应的方程及函数图象有着密不可分的内在联系,在解决问题的过程中,要适时地联系它们之间的内在关系。
解:记①的解集为A ,②的解集为B ,③的解集为C 。
解①得A=(-1,3);解②得B=][[)3,2()1,0B A ,4,2()1,0⋃=⋂∴⋃(1) 因同时满足①、②的x 值也满足③,A ⋂B ⊆C设12)(2++=mx x x f ,由)(x f 的图象可知:方程的小根小于0,大根大于或等于3时,即可满足3170173010)3(0)0(-≤∴⎩⎨⎧≤+<-⎩⎨⎧≤<⊆∴⋂m m f f B A 即(2) 因满足③的x 值至少满足①和②中的一个,]4,1(,-=⋃⋃⊆∴B A B A C 而因此]0124,1(2=-+∴-⊆mx x C 方程小根大于或等于-1,大根小于或等于4,因而⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<-≤≤-≥+=≥-=-4411431,0314)4(01)1(m m m f m f 解之得 说明:同时满足①②的x 值满足③的充要条件是:③对应的方程2x 2+mx-1=0的两根分别在(-∞,0)和[3,+∞)内,因此有f(0)<0且f(3)≤0,否则不能对A ∩B 中的所有x 值满足条件.不等式和与之对应的方程及图象是有着密不可分的内在联系的,在解决问题的过程中,要适时地联系它们之间的内在关系.例4.已知对于自然数a ,存在一个以a 为首项系数的整系数二次三项式,它有两个小于1的正根,求证:a ≥5.分析:回忆二次函数的几种特殊形式.设f(x)=ax 2+bx+c(a ≠0).①顶点式.f(x)=a(x-x 0)2+f(x 0)(a ≠0).这里(x 0,f(x 0))是二次函数的顶点,x 0=-))、(x2,f(x2))、(x3,f(x3))是二次函数图象上的不同三点,则系数a,b,c可由证明:设二次三项式为:f(x)=a(x-x1)(x-x2),a∈N.依题意知:0<x1<1,0<x2<1,且x1≠x2.于是有f(0)>0,f(1)>0.又f(x)=ax2-a(x1+x2)x+ax1x2为整系数二次三项式,所以f(0)=ax1x2、f(1)=a·(1-x1)(1-x2)为正整数.故f(0)≥1,f(1)≥1.从而f(0)·f(1)≥1.①另一方面,且由x1≠x2知等号不同时成立,所以由①、②得,a2>16.又a∈N,所以a≥5.说明:二次函数是一类被广泛应用的函数,用它构造的不等式证明问题,往往比较灵活.根据题设条件恰当选择二次函数的表达形式,是解决这类问题的关键.例5.设等差数列{an}的首项a1>0且S m=S n(m≠n).问:它的前多少项的和最大?分析:要求前n项和的最大值,首先要分析此数列是递增数列还是递减数列.解:设等差数列{an}的公差为d,由S m=S n得a k≥0,且a k+1<0.(k∈N).说明:诸多数学问题可归结为解某一不等式(组).正确列出不等式(组),并分析其解在具体问题的意义,是得到合理结论的关键.例6.若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.解:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax2+bx.于是解法一(利用基本不等式的性质)不等式组(Ⅰ)变形得(Ⅰ)所以f(-2)的取值范围是[6,10].解法二(数形结合)建立直角坐标系aob ,作出不等式组(Ⅰ)所表示的区域,如图6中的阴影部分.因为f(-2)=4a-2b ,所以4a-2b-f(-2)=0表示斜率为2的直线系.如图6,当直线4a-2b-f(-2)=0过点A(2,1),B(3,1)时,分别取得f(-2)的最小值6,最大值10.即f(-2)的取值范围是:6≤f(-2)≤10.解法三(利用方程的思想)又f(-2)=4a-2b=3f(-1)+f(1),而1≤f(-1)≤2,3≤f(1)≤4, ① 所以 3≤3f(-1)≤6. ② ①+②得4≤3f(-1)+f(1)≤10,即6≤f(-2)≤10.说明:(1)在解不等式时,要求作同解变形.要避免出现以下一种错解:2b ,8≤4a ≤12,-3≤-2b ≤-1,所以 5≤f(-2)≤11.(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.例7.(2002 江苏)己知2)(,0bx ax x f a -=>函数, (1)();2,10b a x f R x b ≤≤∈>证明:都有时,若对任意当(2)时当1>b ,证明:对任意]1,0[∈x ,1|)(|≤x f 的充要条件是b a b 21≤≤-; (3)时,当10≤<b 讨论:对任意]1,0[∈x ,1|)(|≤x f 的充要条件。