求数列的通项的几种常用方法
- 格式:doc
- 大小:98.00 KB
- 文档页数:3
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a .注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a .注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。
求数列通项公式的几种基本方法一、递推法递推法是一种常用的求解数列通项公式的方法。
它是基于数列中的前一项或前几项与后一项或后几项之间的关系来推导数列的通项公式。
通过观察数列中的规律,我们可以写出数列中相邻两项之间的递推关系式,并利用该关系式递推得到数列的通项公式。
举例说明,假设要求解数列的通项公式:1,3,5,7,9,...通过观察数列可以发现,每一项都比前一项大2,可以推测数列的递推关系式为an = an-1 + 2、其中an表示数列中的第n项。
进一步,假设第一项为a1,则有a2 = a1 + 2,a3 = a2 + 2,依此类推。
通过这种方式,可以逐步得到数列中的每一项。
在本例中,由于数列的首项为1,所以数列的通项公式为an = 2n-1二、代数法代数法是另一种常用的求解数列通项公式的方法。
它通过假设数列的通项公式为一些未知数表达式,然后通过已知条件求解未知数的值,从而得到数列的通项公式。
举例说明,假设要求解数列的通项公式:1,4,9,16,25,...通过观察数列可以发现,每一项都是一些整数的平方。
假设数列的通项公式为an = n^2,其中n表示数列中的第n项。
我们可以通过验证前几项来确定这个假设是否成立。
在本例中,当n=1时,a1 = 1^2 = 1,当n=2时,a2 = 2^2 = 4,通过验证可知假设成立,因此数列的通项公式为an = n^2三、解方程法解方程法也是一种常用的求解数列通项公式的方法。
它通过设立数列中的一些项之间的方程,然后求解这个方程,从而得到数列的通项公式。
举例说明,假设要求解数列的通项公式:2,5,10,17,26,...通过观察数列可以发现,每一项都比前一项大3、5、7、9,可以推测数列的递推关系式为an = an-1 + 1 + (2n-1)。
其中an表示数列中的第n项。
进一步,假设第一项为a1,则有a2 = a1 + 1 + 1,a3 = a2 +1 + 3,依此类推。
求数列通项的方法
求数列通项的方法有很多种,以下是常用的几种方法:
1. 推导法:根据数列前几项的规律,通过观察和推导来找出数列的通项公式。
这种方法适用于数列的规律较明显的情况,需要一定的数学思维和经验。
2. 递推法:经常用于定义数列的递推关系的情况。
通过给出前几项和递推关系,逐步计算后续项,直到找到数列的通项公式。
3. 求和法:通过求和公式或逐项相加来求得数列的通项公式。
这种方法适用于数列是等差数列、等比数列或其他特定数列的情况。
4. 解方程法:如果数列满足某个方程,可以通过解方程来求得数列的通项。
例如,若数列满足递推关系an = a(n-1) + an-2,则可以通过解对应的递推方程来求得通项公式。
需要注意的是,有些数列可能没有简单的通项公式,或者通项非常复杂,这时可能需要借助数值计算或其他方法来近似求解。
数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。
解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。
二、累加法例2 已知数列满足,求数列的通项公式。
解:由得则所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例4已知数列满足,求数列的通项公式。
解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。
三、累乘法例5 已知数列满足,求数列的通项公式。
解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。
例6 已知数列满足,求的通项公式。
解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。
所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。
四、待定系数法例7已知数列满足,求数列的通项公式。
解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
例8 已知数列满足,求数列的通项公式。
解:设⑥将代入⑥式,得整理得。
令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。
数列通项公式常见求法1.等差数列:等差数列是指数列中相邻两项之间的差值保持不变的数列。
对于等差数列an,其通项公式可以通过以下方法求得:- 直接法:当等差数列已知首项a1和公差d时,通项公式可以通过观察数列的特点进行直接推导。
常用的通项公式为an = a1 + (n-1)d。
-递推法:对于等差数列,可以通过递推方法得到通项公式。
具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。
- 代数法:利用等差数列的性质,可以通过代数方法求得通项公式。
例如,可以使用方程an = a1 + (n-1)d,联立已知条件求解未知数。
2.等比数列:等比数列是指数列中相邻两项之间的比值保持不变的数列。
对于等比数列an,其通项公式可以通过以下方法求得:- 直接法:当等比数列已知首项a1和公比q时,通项公式可以通过观察数列的特点进行直接推导。
常用的通项公式为an = a1 * q^(n-1)。
-递推法:对于等比数列,可以通过递推方法得到通项公式。
具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。
- 代数法:利用等比数列的性质,可以通过代数方法求得通项公式。
例如,可以使用方程an = a1 * q^(n-1),联立已知条件求解未知数。
3.斐波那契数列:斐波那契数列是指数列中每一项都是前两项的和的数列。
斐波那契数列的通项公式可以通过以下方法求得:- 通项公式法:斐波那契数列有一个特殊的通项公式,即an = φ^n - (1-φ)^n / √5,其中φ为黄金分割比(约等于1.618)。
这个公式可以通过矩阵求解、特征方程、黄金分割法等方法推导得到。
4.幂方数列:幂方数列是指数列中每一项都是公比为一个固定值k的幂函数的数列。
幂方数列的通项公式可以通过以下方法求得:-递推法:对于幂方数列,可以通过递推方法得到通项公式。
具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。
求通项公式的常用方法通项公式是数列中每一项与序号n之间的关系式,可通过递推关系和数列特点来确定。
下面将介绍几种常用的方法来求解通项公式。
一、等差数列等差数列是一种公差固定的数列,通项公式可以通过公差和首项求得。
1.递推法:设等差数列的首项为a₁,公差为d,则通项公式为an = a₁ + (n -1)d。
2.求和法:对于等差数列,可以根据前n项和与首项之间的关系来求解通项公式。
设前n项和为Sn,首项为a₁,公差为d,则有等差数列求和公式Sn =n/2(a₁ + an)。
二、等比数列等比数列是一种比值固定的数列,通项公式可以通过公比和首项求得。
1.递推法:设等比数列的首项为a₁,公比为r,则通项公式为an = a₁ * r^(n -1)。
2.求和法:对于等比数列,可以根据前n项和与首项之间的关系来求解通项公式。
设前n项和为Sn,首项为a₁,公比为r,则有等比数列求和公式Sn=a₁(r^n-1)/(r-1)。
三、斐波那契数列斐波那契数列是一种特殊的数列,前两项为1,之后的每一项都是前两项的和。
1.递推法:设斐波那契数列的第n项为F(n),则通项公式为F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=12.通项公式法:利用通项公式公式Fn = (Phi^n - (-Phi)^(-n))/sqrt(5),其中Phi是黄金分割比(约为1.618)。
四、多项式数列多项式数列是指通项由多项式表达的数列。
1.解线性递推关系:对于多项式数列,可以根据给定的递推关系式来推导通项公式。
具体的方法可以通过代入法、特征根法、辅助方程法等来求解。
2.拉格朗日插值法:对于已知部分数列项的数值,可以利用拉格朗日插值法求解通项公式。
该方法需要确定数列项数目与已知项数目一致。
以上是一些常见的求通项公式的方法,不同的数列类型可能需要不同的方法来求解。
在实际问题中,还可以根据数列性质和给定条件等将其转化为已知的数列类型,从而应用相应的求解方法。
求数列通项公式的方法总结:1)观察法。
例如1、3、5、7、9……2)公式法。
对于等差数列:a n=a1+(n-1)d;对于等比数列:a n=a1·q n-1。
3)形如a n+1=pa n+q,变形为(a n+1+k)=p(a n+k),其中k=q/(p-1)构造数列{a n+k}是以a1+k为首项,p为公比的等比数列。
4)形如a n+2=pa n+1+qa n,,变形为a n+2+ma n+1=n(a n+1+ma n),自行解出m和n构造数列{a n+1+ma n}是以a2+ma1为首项,n为公比的等比试列。
5)形如a n+1=pa n+q n,变形为a n+1/q n=p/q·a n/q n-1+1,再利用3)的步骤即可求出通项公式。
6)形如a n+1=pa n+q n+t n,变形为a n+1/q n=p/q·a n/q n-1+(t/q)n+1,则先忽略(t/q)n这一项,利用3)的方法配出3)的形式,然后再同时除以(t/q)n,再利用3)的步骤即可求出通项公式。
7)a n+1=ta n/(p+qa n)变形为1/a n+1=p/t·1/a n+q/t, 再利用3)的步骤即可求出通项公式。
8)利用s n-s n-1=a n的关系求出通项公式。
利用以上方法求通项公式时,要用到数列求和的方法,下面予以归纳:1)公式法。
对于等差数列s n=na1+n·(n-1)d或s n=n(a1+a n)/2,对于等比数列s n=a1·q n-I。
2)常用的几个基本求和公式a)1+2+3+……+n=n·(n+1)/2b)12+22+32+……+n2=n·(n+1)·(2n+1)/6c)13+23+33+……+n3=n2·(n+1)2/4d)1+3+5+……+(2n-1)=n23)倒序相加法。
主要用于等差数列或组合数列。
求数列的通项公式的几种常用方法
求数列的通项公式是数列考题中的常见形式,是利用数列知识考查数字运用能力的常见题型,这里归纳几种常用的求数列通项的方法如下:
一、 观察法求通项
已知数列的前几项,观察其特点,写出通项公式。
例1、 观察下列数的特点,写出每个数列的一个通项公式来。
二、
由公式n a =11n
n S S S -⎧⎨-≥⎩ (n=1)
(n 2)求通项
当条件中出现a n 与S n 的关系式时常用公式来求通项。
但是要注意a n =S n -S n-1并非对任
意的自然数n 都成立,只有当n ≥2时才成立,当n=1时,S 1=a 1,所以在由S n 求a n 时,要分n=1和n ≥2两种情况进行讨论。
例2、已知数列{a n }的前n 项和S n =10n +1,求通项公式a n .
解:当n ≥2时,a n =S n -S n-1=10n +1-(10n-1+1)=9·10n-1,又当n=1时,a 1=S 1=11不适
合上式,∴通项公式a n =⎩⎨⎧≥⋅=-)
2(109)
1(111
n n n 。
三、 公式法求通项
若已知数列是一个特殊的数列(等差或等比),那么只需求出首相和公差(公+比)代入公式即可求出通项来。
例3、若等差数列{a n }满足b n =(21)n a ,且b 1+b 2+b 3=8
21,b 1·b 2·b 3=81
,求通
顶公式a n .
解:由b 1·b 2·b 3=81
⇒a 1+a 2+a 3=3⇒a 2=1,根据题设可设等差数列{a n }的公差为d ,
则由b 1+b 2+b 3=821,∴(21)1-d +(21)1+(21)1+d =821
⇒d=2或d=-2,∴
a n =a 2+(n-2)d=2n-1或a n =5-2n 。
四、 累加法求通项
例4、已知数列{ a n }中,a 1=3且a n+1 = a n +2n ,n ∈N+,求数列{ a n }的通项
((1)(65)1)1,7,13,19,;n n a n =---- (2)7,77,777,7777,7777(101)
9
77,;n
n a =- (3)5,0,5,0,5,0,5,0,.5sin 2
n n a π
--=
公式。
分析:由已知a n+1 = a n +2n ,可得a n+1- a n =2n ,由于相邻两项之差不是常数,所7以不能用等差数列的公式计算,但注意到数列{ a n }的递推公式的形式与等差数列的形式很相似,所以想到把若干个差依次相加,把中间若干项抵消,从而求得通项。
解:a 2- a 1 =21, a 3- a 2 =22, a 4- a 3 =23, ……
a n - a n-1 =2n-1,
以上n-1个式子相加得,a n - a 1 =21
+22
+23
+…+2n-1
=2(2n-1
-1), 所以,a n = a 1 +2n
-2=2n
+1。
又a 1=3,所以{ a n }的通项公式为a n = 2n +1。
五、 累积法求通项
例5、设{a n }是首项为1的正项数列且(n+1)·a n+12-na n 2+a n+1·a n =0(n=1,2, 3……),求它的通项公式a n .
22n =0得(a n+1)[(n+1)a ]=0,又a n ,a n+1>0,
∴a n+1/ a n ,则a 2/ a , a 3/ a 2……a n / a n-1=n
n 1
-,把n 个式子累乘得: a n =(21)·(32)……(n n 1-)·a 1,又a 1=1故得a n =n
1。
六、 构造新数列法求通项
在数列求通项的有关问题中,经常遇到给出数列相邻两项的线性递推关系求通项的,这时就可以根据已知条件构造新数列如构造等差数列或等比数列、构造出某个数列的相邻两项之差或和等来求通项。
例6、 数列{a n }中前n 项的++-和s n = 2n-a n ,,求数列的通项公式a n .
解 :由题a 1 = s 1 =2- a 1,得a 1=1,
当n ≥2时,a n =S n -S n-1 =2n- a n –[2(n-1) - a n-1 ]=- a n +2+ a n-1,
所以, a n =21 a n-1+1,即a n -2=21(a n-1-2),令b n = a n -2,则b n = 2
1
b n-1,且
b 1=1-2=-1, 所以{b n }是以21为公比的等比数列,b n =-1×(21)n-1=-(2
1
)n-1,
n =2-(
2
1
)n-1.
∴a。