探讨高层钢筋混凝土框架结构住宅的抗震结构设计
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
高层混凝土建筑抗震结构设计探析【摘要】钢筋混凝土框架结构是我国大量存在的建筑结构形式之一,钢筋混凝土框架结构的柱端与节点的破坏较为严重,在抗震设计中,钢筋混凝土是高层建筑结构抗震关键设计。
本文详细介绍了高层建筑结构的特点和抗震结构设计重要性以及分析方法,并提出了相应的措,以保证施工的顺利进行。
【关键词】混泥土建筑抗震设计主要措施中图分类号:tu973+.31 文献标识码:a 文章编号:前言在我国现在的高层建筑中,钢筋混凝土框架结构是应用最普遍,最常用的结构形式。
结构抗震的本质就是延性,提高延性可以增加结构抗震潜力, 增强结构抗倒塌能力。
设计人员在合理体现框架结构的延性设计时,应进一步增大作用效应以提高结构设计的可靠度,以提高建筑物的抗震性能。
一、高层建筑结构的特点高层建筑从本质上讲是一个竖向悬臂结构,垂直荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩。
从受力特性看,垂直荷载方向不变,随建筑物的增高仅引起量的增加;而水平荷载可来自任何方向,当为均布荷载时,弯矩与建筑物高度呈二次方变化。
从侧移特性看,竖向荷载引起的侧移很小,而水平荷载当为均布荷载时,侧移与高度成四次方变化。
由此可以看出,在高层结构中,水平荷载的影响要远远大于垂直荷载的影响,水平荷载是结构设计的控制因素,结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外,同时要求结构要有足够的刚度,使随着高随着高度增加所引起的侧向变形限制在结构允许范围内。
由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能。
通过合理的抗震设计,使建筑物达到小震不坏,中震可修,大震不倒。
为了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。
框架结构设计应使节点基本不破坏,梁比柱的屈服易早发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜晚形成,应使梁!柱端的塑性铰出现得尽可能分散,充分发挥整体结构的抗震能力。
浅谈框架结构抗震设计钢筋混凝土框架结构是常见的建筑结构,如此进行抗震设计是有效减少地震所带来损失的关键。
因此实际工程中要注意运用提高框架结构抗震性能的设计方式,并做到严格按照设计进行施工,保证材料与施工的质量,最大化的提高框架结构的抗震等级,减少地震中受损害程度。
标签:框架;抗震;设计;前言:地震灾害的发生使得人们对建筑物的抗震设计变得尤为关注。
如果建筑物的抗震性能不好,所带来的损失是巨大的。
在框架结构设计中,做好抗震设计是保障居民安全的关键所在。
一、框架结构概念框架结构是一种常见的结构。
实现延性框架是结构抗震设计的关键。
延性框架的抗震设计概念,主要包括以下三个方面:通过调整构件之间承载力的相对大小,实现合理的屈服机制,即“强柱弱梁”、“强墙肢弱连梁”、“强核芯区弱构件”;通过调整构件斜截面承载力和正截面承载力之间的相对大小,实现构件延性破坏形态,即“强剪弱弯”;通过采取抗震构造措施,使构件自身具有大的延性和耗能能力二、框架结构优点(一)破坏前有明显预兆,破坏过程缓慢,确保生命安全,减少财产损失,因而可采用偏小的计算安全可靠度。
(二)出现非预计荷载,例如偶然超载,荷载反向,温度升高或基础沉降引起附加内力等情况下,有较强的承受和抗衡能力。
而这些因素在设计中一般是未予考虑的,因此延性材料的后期变形能力可作为出现上述情况的安全储备。
(三)有利于实现超静定结构的内力充分重分布。
延性结构容许构件的某些临界截面有一定的转动能力,形成塑性铰区域,产生内力重分布,从而使钢筋混凝土超静定结构能够按塑性方法进行设计,得到有利的弯矩分布,使配筋合理,节约材料,而且便于施工。
(四)在承受动力作用(如振动、地震、爆炸等)情况下,能减小惯性力,吸收更大动能,降低动力反应,减轻破坏程度,防止结构倒塌以及有利于修复。
5、延性结构的后期变形能力,可以作为各种意外情况时的安全储备。
三、框架结构的抗震设计原则根据工程中框架结构地震破坏的形式、抗震规范规定以及实际中累积的抗震经验总结了一些抗震设计需要注意的问题与原则,如下:(1)抗震验算时不同的楼盖及布置(整体性)决定了采用刚性、刚柔、柔性理论计算。
钢筋混凝土框架结构房屋建筑与结构设计钢筋混凝土框架结构房屋建筑是现代建筑中常见的一种结构形式,主要由楼板、梁、柱、墙体等组成,其结构特点是具有较高的抗震性能和稳定性。
在房屋建筑的设计中,结构设计是非常重要的一环。
本文将对钢筋混凝土框架结构房屋建筑的结构设计进行讲解。
一、承载力设计原则承载力设计原则是指在实现建筑结构承受和传递荷载的要求下,尽可能达到节约材料、降低成本和提高结构安全性的设计要求。
在钢筋混凝土框架结构房屋建筑中,承载力设计原则的主要内容包括以下几方面:1.荷载的设定:按照国家相关规范设定建筑物的选择性质及不利荷载,如:建筑自重、楼层荷载、风荷载、地震荷载等。
同时要考虑荷载的作用时间、作用区域等因素,以保证建筑结构的安全性。
2.材料的选择:根据建筑物的设计要求和性能指标,选择优质、合适的钢筋混凝土材料。
同时,要根据施工工艺、工地条件等因素进行材料的配合和保证其质量,以保证结构的整体性、稳定性和安全性。
3.构造形式的选择:根据不同的建筑的功能和荷载要求,选择适合的结构形式,如一层钢筋混凝土框架结构房屋建筑,两层钢筋混凝土框架结构房屋建筑,钢筋混凝土框架结构透视效果图等。
并结合地形、气候条件等因素进行设计。
4.系统的设计:设计时需注意结构整体的协调性和完整性,避免单一构件承受过多荷载,而导致并未出现断裂现象而影响其安全性。
二、框架结构的设计1.楼板的设计:楼板是连接楼层之间的通道,是房屋建筑中主要承载楼层荷载的构件,在框架结构设计中,楼板一般采用波形板和薄板,其横向和纵向均需满足规范要求,保证其承载能力和稳定性。
若楼层的荷载比较大,则需要采用厚板或预应力板等结构形式,以提高其承载能力。
2.梁的设计:梁是连接墙体和柱子的承重构件,其设计需要满足梁的受力要求,保证其承载能力并提高其刚度和稳定性。
在框架结构设计中,梁的截面要大,角度要小,建议梁宽度超过楼板厚度两倍以上。
3.柱的设计:柱是支撑楼层荷载和承受地震荷载的支撑构件,其设计应考虑柱子截面的大小、杆件的强度、状态、桁架的强度和柱的连接等因素,以确保柱的承载能力和稳定性。
高层建筑钢筋混凝土的结构设计分析随着城市化进程的不断加快,高层建筑已经成为城市发展的重要标志和特色之一。
高层建筑的结构设计不仅影响建筑的稳定性和安全性,还直接关系到建筑的经济性和实用性。
在高层建筑的结构设计中,钢筋混凝土结构因其优良的性能和适应性,已经成为了主流选择。
本文将就高层建筑钢筋混凝土的结构设计进行分析,并探讨其设计要点和特点。
一、高层建筑的结构特点1.1. 高层建筑的承载力要求高高层建筑一般具有较大的自重和风荷载,同时还需要承受地震和动荷载等多种外部力的作用。
高层建筑的结构设计要求具有较高的承载能力和抗震性能。
1.2. 高层建筑的结构形式多样为了满足不同的使用需求和设计要求,高层建筑的结构形式多样,包括框架结构、筒体结构、框筒结构、悬挑结构等。
不同的结构形式对于结构设计和构件设计都有不同的要求。
1.3. 高层建筑的变形和挠度要求严格高层建筑的变形和挠度控制直接关系到建筑的使用性能和外观效果。
结构设计需要根据建筑的使用功能和外观要求合理控制建筑的变形和挠度。
1.4. 高层建筑的材料和施工要求高高层建筑的结构设计对材料和施工质量有较高的要求,需要选择具有高强度和耐久性的材料,并严格控制施工工艺和质量。
二、钢筋混凝土结构设计要点2.1. 结构稳定性钢筋混凝土结构的稳定性是结构设计的首要考虑因素。
在高层建筑的结构设计中,需要采用适当的结构形式和构件布局,合理分配荷载,确保结构的稳定性和可靠性。
2.2. 抗震性能高层建筑通常处于地震频繁的地区,因此抗震性能是结构设计的重要考虑因素。
钢筋混凝土结构在设计中需要采用合理的抗震措施,包括设置剪力墙、增加节点刚度和采用横向抗力系统等,提高建筑的抗震性能。
3.1. 结构形式选择在高层建筑的结构设计中,需要根据建筑的使用功能和周边环境选择合适的结构形式。
一般情况下,高层建筑常采用框架结构或筒体结构,以满足较高的承载能力和抗震性能要求。
3.2. 支撑系统设计高层建筑的支撑系统设计是结构设计中的关键环节。
探讨高层钢筋混凝土框架结构住宅的抗震结构设计摘要:我国是世界上地震灾害最严重的国家之一,因此对新建和既有建筑是否具有足够的抗震能力十分重视。
钢筋混凝土结构是目前我国建筑结构的主要型式,其抗震能力是保障人民生命财产安全的重要指标。
文章根据实践经验和对有关资料的总结,对高层钢筋混凝土房屋的抗震设计问题进行了研究和探讨。
关键词:钢筋混凝土、框架结构、防震设计据统计,历史上各种自然灾害曾毁灭了世界各地52个城市,其中因地震而毁灭的城市有27个。
地震之外的其它各种灾害,如水灾、火灾、火山喷发、风灾、沙灾、旱灾等毁灭的城市为25座。
因此,地震占灾害总数的52%。
可见地震灾害确系“群害之首”。
我国作为发展中国家,人口稠密,建筑物抗震能力低。
因此,我国的地震灾害可谓全球之最。
因此,建筑物的抗震设防问题是我国减轻自然灾害、保障国民经济建设和社会持续发展,特别是保障人民群众生命安全的一个重要问题。
一、高层住宅钢筋混凝土结构设计的要点1 水平荷载逐渐成为钢筋混凝土结构设计的控制因素在低层住宅中,往往是以重力为代表的竖向荷载控制着钢筋混凝土结构设计;而在高层住宅中,尽管竖向荷载仍对钢筋混凝土结构设计产生着重要影响,但水平荷载将成为控制因素。
2 轴向变形不容忽视对于采用框架体系或框架一剪力墙体系的高层住宅,框架中柱的轴压应力往往大于边柱的轴压应力,这就使得中柱的轴向压缩变形大于边柱的轴向压缩变形。
3 侧移成为钢筋混凝土结构设计的控制指标与低层住宅不同,结构侧移己成为高层住宅钢筋混凝土结构设计的关键因素。
随着房屋高度的增加,水平荷载下结构的侧移变形迅速增大,结构的顶点侧移一般与房屋高度h的四次方成正比。
①过大的侧移会使人不舒服,影响房屋的正常使用。
②过大的侧移会使隔墙、围护墙以及它们的高级饰面材料出现裂缝或损坏,也会使电梯轨道变形而导致不能正常运行。
③过大的侧移会因p一△效应使结构产生附加内力,甚至因侧移与附加内力的恶性循环导致建筑物的倒塌。
高层住宅施工方案抗震防火施工设计方案随着城市化进程的加快,高层住宅的建设成为了当前建筑领域的热点之一。
然而,在高层住宅的施工中,抗震和防火是两个至关重要的方面。
本文将着重探讨高层住宅施工方案抗震和防火的设计方案。
一、抗震设计方案1. 地基处理:地基工程的施工对高层住宅的抗震性能至关重要。
在地基处理阶段,必须进行综合的地质勘察和土壤工程测试,以确定地基的承载力和不同地层的特性。
根据实际情况,可以采取加固地基的措施,如灌注桩、钉墙等。
2. 结构设计:高层住宅的结构设计应该遵循抗震设计规范,采用抗震性能较好的结构形式。
常见的结构形式包括钢筋混凝土框架结构和钢结构。
在结构设计中,应根据地震烈度和建筑的重要性等级,选取合适的抗震设防标准。
3. 抗震设备:在高层住宅建设中,抗震设备的安装也是十分重要的。
常见的抗震设备包括减震器、阻尼器和隔震基础等。
这些设备能够有效地减轻地震对建筑物的影响,提高建筑的抗震性能。
二、防火设计方案1. 材料选择:在高层住宅的施工中,应选择符合防火要求的建筑材料。
例如,外墙应采用防火墙体材料,并进行阻燃处理。
室内装修材料应选择抗火、阻燃等性能较好的材料。
2. 配电系统:高层住宅的配电系统是容易引发火灾的部位之一。
为了提高防火性能,应合理规划配电系统,并选用符合防火标准的电缆、开关等设备。
3. 消防设施:高层住宅的消防设施应齐全,包括灭火器、消防栓、自动喷水灭火系统等。
在设计过程中,应根据建筑的特点和规模,确定合理的消防设施布局,并确保其正常运行。
三、施工期控制1. 施工技术:在高层住宅的施工中,应严格按照施工图纸和相关规范进行操作,确保施工工艺的正确性和可靠性。
施工过程中,应严格控制施工质量,避免施工过程中出现质量问题。
2. 建筑材料:高层住宅施工中所使用的建筑材料应由正规供应商提供,并具备相关的防火、抗震认证。
对于材料的质量问题,应进行严格的监控和检测。
3. 监理管理:在高层住宅施工期间,应加强监理管理,确保施工按照设计方案进行,并及时解决施工过程中的问题。
钢筋混凝土框架结构的抗震性能分析与设计钢筋混凝土框架结构是当前主要的建筑结构形式之一,其在抗震性能方面具有较高的稳定性和承载能力,广泛应用于各类建筑中。
本文将对钢筋混凝土框架结构的抗震性能进行分析与设计,以提高建筑在地震等自然灾害中的安全性和稳定性。
一、抗震性能分析钢筋混凝土框架结构的抗震性能主要体现在其刚度、强度和韧性三个方面。
1. 刚度刚度是指结构在受力时抵抗变形的能力,是保证结构整体稳定性的基础。
钢筋混凝土框架结构通常具有较高的刚度,其主要受到构件的截面尺寸和材料的影响。
在抗震设计中,应根据地震作用的水平和垂直特点,合理确定结构的刚度。
2. 强度强度是指结构在受到外力作用下抵抗破坏的能力。
钢筋混凝土框架结构的强度主要体现在构件的截面大小和材料的抗压和抗拉强度上。
在抗震设计中,应根据结构所处地震烈度区域和设计要求,合理确定构件的截面尺寸和材料的强度等级。
3. 韧性韧性是指结构在受到地震荷载作用时具有较大的变形能力,能够消耗地震能量,减小地震反应。
钢筋混凝土框架结构的韧性主要受到构件的延性和连接的影响。
在抗震设计中,应采用具有良好延性的构件和可靠的连接方式,确保结构具有足够的韧性。
二、抗震性能设计根据钢筋混凝土框架结构的抗震性能要求,设计中应遵循以下几个原则。
1. 合理选取结构形式根据建筑的高度、用途和地震烈度等因素,选择合适的钢筋混凝土框架结构形式,如普通框架、剪力墙-框架结构等。
并根据具体情况增加防震措施,如设置剪力墙、加强柱-梁节点等。
2. 优化结构参数通过合理调整结构的刚度和强度等参数,实现结构的韧性和稳定性之间的平衡。
根据设计要求和结构的受力特点,选择合适的构件尺寸、钢筋配筋和混凝土强度等参数。
3. 加强结构连接结构的连接部位是钢筋混凝土框架的薄弱环节,需要采用可靠的连接方式,如焊接、螺栓连接等。
同时,应加强节点的抗震设计,通过设置剪力墙、加强节点钢筋配置等措施,提高结构的整体抗震性能。
高层建筑结构抗震分析与优化设计共3篇高层建筑结构抗震分析与优化设计1高层建筑作为一种高度复杂的建筑结构体系,在地震等极端条件下,其结构稳定性会受到极大的挑战。
为此,在高层建筑结构的抗震设计中,需要对其结构体系进行充分的抗震分析和优化设计,以确保其在地震等极端条件下的结构安全性。
首先,在高层建筑的抗震设计中,需要考虑各种因素对结构稳定性的影响。
这些因素包括建筑结构的高度、结构形式、材料等等。
我们需要采用科学的方法对这些因素进行分析,并找出其对建筑结构抗震性能的主要影响因素。
其次,我们需要针对建筑结构的主要影响因素进行抗震分析。
这种分析方法的核心是对建筑结构体系的动力特性进行研究,以找出其在不同地震条件下的抗震性能表现,并加以评估。
这种方法需要结合计算机模拟等技术手段,对建筑模型进行模拟并进行动力分析,以获取建筑结构的动态响应曲线。
最后,在对建筑结构进行抗震分析和评估之后,我们需要进行相应的优化设计,以提高建筑结构的抗震性能。
这种优化设计可以针对建筑结构的不同部位和因素进行,比如调整结构形式、加强连接构件、使用更耐震性的材料等等。
需要注意的是,在高层建筑的抗震设计中,我们还需要考虑到建筑结构的经济性和可持续性。
因此,在进行抗震分析和优化设计时,我们需要综合各种因素进行评估,以找出最经济、最可行的设计方案。
总之,高层建筑的抗震设计是一项极为复杂和关键的工作,它需要结合多种技术手段和科学方法进行研究和应用,以确保建筑结构在地震等极端情况下的安全和稳定。
高层建筑结构抗震分析与优化设计2高层建筑结构抗震分析与优化设计随着经济的发展和城市化的加速,高层建筑的数量逐年增加。
然而,高层建筑在地震发生时容易受到破坏,不仅影响建筑的使用安全,也会造成严重的人员伤亡和财产损失。
因此,在高层建筑的设计和建设过程中,结构的抗震性能是非常重要的。
本文将从高层建筑结构的抗震分析和优化设计两个方面进行探讨。
一、高层建筑结构的抗震分析高层建筑结构的抗震分析是建筑工程中非常重要的环节之一。
探讨高层钢筋混凝土框架结构住宅的抗震结构设计
摘要:我国是世界上地震灾害最严重的国家之一,因此对新建和既有建筑是否具有足够的抗震能力十分重视。
钢筋混凝土结构是目前我国建筑结构的主要型式,其抗震能力是保障人民生命财产安全的重要指标。
文章根据实践经验和对有关资料的总结,对高层钢筋混凝土房屋的抗震设计问题进行了研究和探讨。
关键词:钢筋混凝土、框架结构、防震设计
据统计,历史上各种自然灾害曾毁灭了世界各地52个城市,其中因地震而毁灭的城市有27个。
地震之外的其它各种灾害,如水灾、火灾、火山喷发、风灾、沙灾、旱灾等毁灭的城市为25座。
因此,地震占灾害总数的52%。
可见地震灾害确系“群害之首”。
我国作为发展中国家,人口稠密,建筑物抗震能力低。
因此,我国的地震灾害可谓全球之最。
因此,建筑物的抗震设防问题是我国减轻自然灾害、保障国民经济建设和社会持续发展,特别是保障人民群众生命安全的一个重要问题。
一、高层住宅钢筋混凝土结构设计的要点
1 水平荷载逐渐成为钢筋混凝土结构设计的控制因素在低层住宅中,往往是以重力为代表的竖向荷载控制着钢筋混凝土结构设计;而在高层住宅中,尽管竖向荷载仍对钢筋混凝土结构设计产生着重要影响,但水平荷载将成为控制因素。
2 轴向变形不容忽视对于采用框架体系或框架一剪力墙体系的高层住宅,框架中柱的轴压应力往往大于边柱的轴压应力,这就使得中柱的轴向压缩变形大于边柱的轴向压缩变形。
3 侧移成为钢筋混凝土结构设计的控制指标与低层住宅不同,结构侧移己成为高层住宅钢筋混凝土结构设计的关键因素。
随着房屋高度的增加,水平荷载下结构的侧移变形迅速增大,结构的顶点侧移一般与房屋高度H的四次方成正比。
①过大的侧移会使人不舒服,影响房屋的正常使用。
②过大的侧移会使隔墙、围护墙以及它们的高级饰面材料出现裂缝或损坏,也会使电梯轨道变形而导致不能正常运行。
③过大的侧移会因P一△效应使结构产生附加内力,甚至因侧移与附加内力的恶性循环导致建筑物的倒塌。
4 结构延性是钢筋混凝土结构设计的重要指标相对于低层住宅而言,小高层住宅更柔一些,地震作用下的变形就更大一些。
为了使结构在进入塑性阶段后
仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。
二、抗震结构设计
较合理的框架地震破坏机制,应该是节点基本不破坏,梁比柱屈服可能早发生、多发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜最晚形成。
即:框架的抗震设计应使梁、柱端的塑性铰出现尽可能分散,充分发挥整个结构的抗震能力。
(一)抗震计算中的延性保证
从用楼层水平地震剪力与层间位移关系来描述楼层破坏的全过程可反映出,在抗震设防的第二、三水准时,框架结构构件已进入弹塑性阶段,构件在保持一定承载力条件下主要以弹塑性变形来耗散地震能量,所以框架结构需有足够的变形能力才不致抗震失效。
试验研究表明,“强节点”、“强柱弱梁’、“强底层柱底”和“强剪弱弯”的框架结构有较大的内力重分布和能量消耗能力,极限层间位移大,抗震性能较好。
规范通过构件承载力调整办法在一定程度上可以体现上述的强弱要求,且考虑了设计者的使用方便,采用地震组合内力的抗震承载力验算表达式,只是要对地震组合内力的设计值按有关公式进行相应的调整。
(二)构造措施上的延性保证
1.限制轴压比与纵筋最大配筋率合理的受力过程可明显提高构件延性,为实现受拉钢筋的屈服先与受压区混凝土压碎的破坏形态,以提高塑性铰区域的转动能力,规范限制轴压比与纵筋最大配筋率,同时对混凝土受压区高度也提出相应要求。
2.限制约束配筋和配筋形式。
加密塑性铰区内的箍筋间距是很重要的一点,为保证“强节点”、“强柱弱梁”、“强底层柱底”和“强剪弱弯”的设计原则及塑性铰区域的局部延性,有必要加密塑性铰区内的箍筋间距,这不但可提高柱端抗剪能力,还可约束核心区内混凝土,对纵向钢筋提供侧向支承,防止大变形下纵筋压曲,从而改善塑性铰区域的局部延性。
3.限制材料。
拒绝豆腐渣工程的第一关就是把握好材料质量,材料延性对确保构件(结构)延性极为重要,为此规范对材料也提出了相应的限制,如保证钢筋强屈比、延伸率及混凝土强度等级等,同时对施工过程中可能出现的钢筋代换也提出了相应的限制。
三、能力设计法
能力设计法是结构延性设计的主要内容,包括我国规范的内力调整和构造两个方面。
它是二十世纪70年代后期,新西兰知名学者T.Paulay和Park提出的钢筋混凝土结构在设计地震力取值偏低的情况下具有足够延性的方法。
其核心思想
为:通过“强柱弱梁”引导结构形成“梁铰机构”或者“梁柱铰机构”;通过“强剪弱弯”避免结构在达到预计延性能力前发生剪切破坏;通过必要构造措施使可能形成塑性铰的部位具有必要的塑性转动能力和耗能能力。
从以上三个方面保证使结构具有必要的延性。
框架结构作为常见的结构形式,当然其延性设计也主要是从这三个方面来体现的。
1 强柱弱梁
结构动力反应分析表明,结构的变形能力和破坏机制有关。
常见有三种典型的耗能机构,“梁铰机构”、“柱铰机构”、“梁柱铰机构”。
“梁铰机构” 和“梁柱铰机构”的梁先屈服,可使整个框架有较大的内力重分布和能量消耗能力,极限层间位移大,塑性铰数量多,不因个别塑性铰失效而结构整体失效。
因而抗震性能好,是钢筋混凝土理想的耗能机构。
2 强剪弱弯
“强剪弱弯”是为了保证塑性铰截面在达到预期非弹性变形之前不发生剪切破坏。
就常见的结构而言,主要表现在梁端、柱端、剪力墙底部加强区、剪力墙洞口连梁端部、梁柱节点核心区。
与非抗震相比,增强措施主要表现在提高作用剪力;调整抗剪承载力两个方面。
2.1 作用剪力
一、二、三级框架梁和抗震墙中跨高比大于2.5的连梁,剪力设计值其中,一级取1.3,二级取1.2,三级取1.1,一级框架结构及9度尚应符合。
梁柱节点一、二级抗震等级进行节点核心区抗震受剪承载力验算,三四级应符合抗震构造措施,对9度设防及一级抗震等级的框架结构,考虑到梁端已出现塑性铰,节点的剪力完全由梁端实际屈服弯矩决定,按梁端实配钢筋面积和材料强度标准值计算,同时乘以1.15的增大系数。
其它一级按梁端弯矩设计值计算,剪力增大系数为1.35,二级为1.2。
2.2 抗剪公式
国内外低周反复荷载作用下钢筋混凝土连续梁及悬臂梁受剪承载力实验表明,混凝土剪压区剪切强度的降低、斜裂缝间骨料咬合力及纵筋暗销力的降低是梁受剪承载力降低的主要原因。
为了防止梁、柱、连梁、剪力墙、节点发生斜压破坏,我们对受剪截面规定了受剪承载力上限,即规定了配箍率的上限值。
3 构造措施
构造措施是梁、柱、剪力墙塑性铰区要达到实际需要的塑性转动能力和耗能能力的保证。
它与“强剪弱弯”、“强柱弱梁”相互关联,一起保证结构的延性。
1.梁的构造措施
2.柱的构造措施
3.节点构造措施
4.剪力墙构造措施
结束语:我国在50年代建成了一批钢筋混凝土框架结构,至今已有近60年的历史,接近设计的基准期,并且原结构设计中多数未考虑抗震设防,需进行结构的鉴定和加固。
通过迅速发展的计算机技术编制了准确性更好的非线性动力反应程序;在设计方法上也不再拘泥于以前单一的基于力的传统抗震设计方法,开始尝试基于性能和位移的新的抗震设计理念。
在这样的环境中,我国的抗震设计思路也应该在完善自身不足的同时,不断向前发展。
参考文献:
[1]张敬书.建筑抗震鉴定与加固.北京:知识产权出版社,2006.
[2]刘大海.房屋抗震设计.西安:陕西科学技术出版社,2002.
[3]李宏南.多层及高层建筑结构设计.北京:中国建筑工业出版社,2002.
[4]苏三庆.地震工程.西安:陕西科学技术出版社,2001.转贴于。