2018-2019学年九年级第一学期期中考试数学试卷( 图片版 含答案)
- 格式:doc
- 大小:41.95 MB
- 文档页数:9
山西省太原市2018-2019学年九年级上学期数学期中考试试卷一、选择题 1. 若= =2(b+d≠0),则的值为( )A . 1B . 2C .D . 42. 将方程(x+1)(2x-3)=1化成“ax +bx+c=0”的形式,当a=2时,则b ,c 的值分别为( )A ., B ., C ., D . ,3. 矩形、菱形、正方形都具有的性质是( )A . 对角线相等B . 对角线互相平分C . 对角线互相垂直D . 对角线平分对角4. 如图,一组互相平行的直线a ,b ,c 分别与直线l , 1交于点A ,B ,C ,D ,E ,F ,直线1 , l 交于点O ,则下列各式不正确的是( )A .B .C .D .5. 一元二次方程x +6x+9=0的根的情况是( )A . 有两个相等的实数根B . 有两个不相等的实数偎C .只有一个实数根 D . 没有实数根6. 小明要用如图的两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为( )A .B .C .D . 7. 用配方法解方程x -8x+5=0,将其化为(x+a )=b 的形式,正确的是( )A .B .C .D .8. 如图,△ABC 中,点P 是AB 边上的一点,过点P 作PD ∥BC ,PE ∥AC ,分别交AC ,BC于点D ,E ,连按CP .若四边形CDPE 是菱形,则线段CP 应满足的条件是( ) A . CP 平分 B . C . CP 是AB 边上的中线 D .9. 为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x 米,则根据题意可列出方程( )A .B .C .D . 2121222210. 如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分∠ABC 和∠BCD ,点E 为矩形ABCD 外一点,连接BE ,CE .现添加下列条件:①EB ∥CF ,CE ∥BF ;②BE=CE ,BE=BF ;③BE ∥CF ,CE ⊥BE ;④BE=CE ,CE ∥BF ,其中能判定四边形BECF 是正方形的共有( )A . 1个B . 2个C . 3个D . 4个二、填空题11. 一元二次方程x +3x=0的解是________.12. 经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰好有一人直行,另一人左拐的概率为________.13. 如图,正方形ABCD 中,点E 是对角线BD 上的一点,BE=BC ,过点E 作EF ⊥AB ,EG ⊥BC ,垂足分别为点F ,G ,则正方形FBGE 与正方形ABCD 的相似比为________.14. 如图,正方形ABCD 中,AB=2,对角线AC ,BD 相交于点O ,将△OBC 绕点B 逆时针旋转得到△O′BC′,当射线O′C′经过点D 时,线段DC′的长为________.15. 如图,在菱形ABCD 中,AB=4,AE ⊥BC 于点E ,点F ,G 分别是AB ,AD 的中点,连接EF ,FG ,若∠EFG=90°,则FG 的长为________.三、计算题16. 解下列方程:(1) x -6x+3=0;(2) 3x (x-2)=2(x-2).17. 如图,矩形ABCD 中,AB=4,点E ,F 分别在AD ,BC 边上,且EF ⊥BC ,若矩形ABFE ∽矩形DEFC,且相似比为1:2,求AD 的长.22景点介绍,求甲、乙两人中恰好有一人介绍,到2018年“早黑宝”的种植面积达到EFB的边长.22. 已知:如图,菱形ABCD8 .2. 3. 4. 5. 6. 7. 8. 9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。
2018-2019学年度上学期期中考试 九年级数学试题 (满分120分,时间120分钟)卷一(请将正确选项涂在答题卡上)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四1. 下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正五边形 C .正方形 D .正三角形 2.二次函数y =12x 2-4x +3的顶点坐标和对称轴分别是( )A .(1,2),x =1B .(-1,2), x =-1C .(-4,-5),x =-4D .(4,-5),x =43.抛物线y =x 2-2x +1与x 轴的交点个数是( ) A .0 B .1 C .2 D .34.将y =(2x -1)(x +2)+1化成y =a(x +m)2+n 的形式为( ) A .y =2(x +34)2-2516 B .y =2(x -34)2-178C .y =2(x +34)2-178D .y =2(x +34)2+1785.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度6.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 27.如图所示的桥拱是抛物线形,其函数的解析式为y =-14x 2,当水位线在AB 位置时,水面宽12 m ,这时水面离桥顶的高度为( )A .3 mB .2 6 mC .4 3 mD .9 m,(第8题图)),(第10题图))8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c<0;②a -b +c>1;③abc>0;④4a -2b +c<0;⑤c -a>1.其中所有正确结论的序号是( ) A .①② B .①③④ C .①②③⑤ D .①②③④⑤9.下列方程采用配方法求解较简便的是( ) A .3x 2+x -1=0 B .4x 2-4x -8=0 C .x 2-7x =0 D.()x -32=4x 210.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) A .x =10,y =14 B .x =14,y =10 C .x =12,y =15 D .x =12,y =1211. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <112. 如图,O 是等边三角形的旋转中心,∠EOF =120°,∠EOF 绕点O 进行旋转,在旋转过程中,OE 与OF 与△ABC 的边构成的图形的面积( )A .等于△ABC 面积的13B .等于△ABC 面积的12 C .等于△ABC 面积的14 D .不能确定13. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A.y 3>y 2>y 1B.y 3>y 1=y 2C.y 1>y 2>y 3D.y 1=y 2>y 314. 如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中线段DF 的长与DB 相等,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论. 甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数不变. 那么,你认为( )A .甲、乙都对B .乙对甲不对C .甲对乙不对D .甲、乙都不对15. 如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为( ).A . (-b ,a) B. (b ,a) C. (-b ,-a) D. (b ,-a)16. 平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y =-16x 2+13x +32,绳子甩到最高处时刚好通过站在点(2,0)处跳绳的学生小明的头顶,则小明的身高为( )m .A.1.6B.1.5C.1.4 D1.314题图 15题图12题图2018-2019学年度上学期期中考试九年级数学试题卷二2分.把答案写在题中横线上)17.如图,把抛物线y=12x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.(第17题图) (第19题图)18.在二次函数y=2则m的值为.19.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为,∠APB=.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. (本题8分)(1)用公式法解方程x2-3x-7=0.(2)解方程:4x(2x-1)=3(2x-1)21. (本题7分)如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.22.(本题8分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.23. (9分)如图,一个二次函数的图象经过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.24. (10分)已知关于x的函数y=ax2+x+1(a为常数).(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.25. (本题12分)感知:如图①,在△ABC 中,∠C =90°,AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合).连接AD ,将AD 绕着点D 逆时针旋转90°,得到DE ,连接BE ,过点D 作DF ∥AC 交AB 于点F ,可知△ADF ≌△EDB ,则∠ABE 的大小为________.并说明理由.探究:如图②,在△ABC 中,∠C =α(0°<α<90°),AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合),连接AD ,将AD 绕着点D 逆时针旋转α,得到DE ,连接BE ,求证:∠ABE =α. 应用:设图②中的α=60°,AC =2.当△ABE 是直角三角形时,AE =________.并说明理由.26. (本题12分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,种植花卉的利润y 2与投资成本x 的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户计划用8万元资金投入种植花卉和树木,设他投入种植花卉金额m 万元,种植花卉和树木共获利润w 万元,求出w 与m 之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的范围.。
2018-2019学年山西省太原市九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.若ab =cd=2(b+d≠0),则a+cb+d的值为()A. 1B. 2C. 12D. 42.将方程(x+1)(2x-3)=1化成“ax2+bx+c=0”的形式,当a=2时,则b,c的值分别为()A. b=−1,c=−3B. b=−5,c=−3C. b=−1,c=−4D. b=5,c=−43.矩形、菱形、正方形都具有的性质是()A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 对角线平分对角4.如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A. ABBC =DEEFB. ABAC =DEDFC. EFBC =DEABD. OEEF =EBFC5.一元二次方程x2+6x+9=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数偎C. 只有一个实数根D. 没有实数根6.小明要用如图的两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为()A. 16B. 14C. 13D. 127.用配方法解方程x2-8x+5=0,将其化为(x+a)2=b的形式,正确的是()A. (x+4)2=11B. (x+4)2=21C. (x−8)2=11D. (x−4)2=118.如图,△ABC中,点P是AB边上的一点,过点P作PD∥BC,PE∥AC,分别交AC,BC于点D,E,连按CP.若四边形CDPE是菱形,则线段CP应满足的条件是()A. CP平分∠ACBB. CP⊥ABC. CP是AB边上的中线D. CP=AP9.为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x米,则根据题意可列出方程()A. 90%×(2+x)(1+x)=2×1B. 90%×(2+2x)(1+2x)=2×1C. 90%×(2−2x)(1−2x)=2×1D. (2+2x)(1+2x)=2×1×90%10.如图,在矩形ABCD内有一点F,FB与FC分别平分∠ABC和∠BCD,点E为矩形ABCD外一点,连接BE,CE.现添加下列条件:①EB∥CF,CE∥BF;②BE=CE,BE=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF,其中能判定四边形BECF是正方形的共有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共5小题,共10.0分)11.一元二次方程x2+3x=0的解是______.12.经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰好有一人直行,另一人左拐的概率为______.13.如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为______.14.如图,正方形ABCD中,AB=2,对角线AC,BD相交于点O,将△OBC绕点B逆时针旋转得到△O′BC′,当射线O′C′经过点D时,线段DC′的长为______.15.如图,在菱形ABCD中,AB=4,AE⊥BC于点E,点F,G分别是AB,AD的中点,连接EF,FG,若∠EFG=90°,则FG的长为______.三、计算题(本大题共2小题,共14.0分)16.解下列方程:(1)x2-6x+3=0;(2)3x(x-2)=2(x-2).17.如图,矩形ABCD中,AB=4,点E,F分别在AD,BC边上,且EF⊥BC,若矩形ABFE∽矩形DEFC,且相似比为1:2,求AD的长.四、解答题(本大题共6小题,共46.0分)18.已知,如图,矩形ABCD中,AC与BD相交于点O,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.19.太原是一座具有4700多年历史、2500年建城史的历史古都,系有“锦绣太原城”的美誉,在“我可爱的家乡”主题班会中,主持人准备了“晋祠园林”、“崇山大佛”、“龙山石窟”、“凌霄双塔”这四处景点的照片各一张,并将它们背面朝上放置(照片背面完全相同),甲同学从中随机抽取一张,不放回,乙再从剩下的照片中随机抽取一张,若要根据抽取的照片作相关景点介绍,求甲、乙两人中恰好有一人介绍“晋祠园林”的概率.(提示:可用照片序号列表或画树状图)20.“早黑宝”是我省农科院研制的优质新品种,在我省被广泛种植.清徐县某葡萄种植基地2016年种植“早黑宝”100亩,到2018年“早黑宝”的种植面积达到225亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”售价为20元/千克时,每天能售出200千克,售价每降低1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1800元,则售价应降低多少元?21.如图,在△ABC中,点D,E,F分别在AB,AC,BC边上,若四边形DEFB为菱形,且AB=8,BC=12,求菱形DEFB的边长.22.已知:如图,菱形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,且BE=BF=DH=DG.(1)求证:四边形EFGH是矩形;(2)已知∠B=60°,AB=6.请从A,B两题中任选一题作答,我选择______题.A题:当点E是AB的中点时,矩形EFGH的面积是______.B题:当BE=______时,矩形EFGH的面积是8√3.23.综合与实践问题情境:正方形折叠中的数学已知正方形纸片ABCD中,AB=4,点E是AB边上的一点,点G是CE的中点,将正方形纸片沿CE所在直线折叠,点B的对应点为点B′.(1)如图1,当∠BCE=30°时,连接BG,B′G,求证:四边形BEB′G是菱形;深入探究:(2)在CD边上取点F,使DF=BE,点H是AF的中点,再将正方形纸片ABCD 沿AF所在直线折叠,点D的对应点为D′,顺次连接B′,G,D′,H,B',得到四边形B′GD′H.请你从A,B两题中任选一题作答,我选择______题.A题:如图2,当点B',D′均落在对角线AC上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直写出此时点H,G之间的距离.B题:如图3,点M是AB的中点,MN∥BC交CD于点N,当点B',D′均落在MN 上时,①判断B′G与D′H的数量关系与位置关系,并说明理由;②直接写出此时点H,G之间的距离.答案和解析1.【答案】B【解析】解:∵若==2(b+d≠0),∴=2(等比性质),故选:B.利用等比的性质即可解决问题;本题考查比例线段、等比的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.【答案】C【解析】解:(x+1)(2x-3)=1,整理得2x2-x-4=0,则a=2,b=-1,c=-4,故选:C.把原方程根据整式的乘法运算法则化简,整理为一般形式,即可解答.本题考查的是一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.【答案】B【解析】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:B.利用特殊四边形的性质进而得出符合题意的答案.此题主要考查了多边形,正确掌握多边形的性质是解题关键.4.【答案】D【解析】解:A、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;B、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;C、∵直线a∥直线b∥直线c,∴=,正确,故本选项不符合题意;D、∵直线b∥直线c,∴△OEB∽△OFC,∴=,错误,故本选项符合题意;故选:D.根据平行线分线段成比例定理逐个判断即可.本题考查了平行线分线段成比例定理,能灵活运用定理进行推理是解此题的关键.5.【答案】A【解析】解:∵△=62-4×1×9=0,∴一元二次方程x2+6x+9=有两个相等的实数根.故选:A.根据方程的系数结合根的判别式,可得出△=0,进而即可得出原方程有两个相等的实数根.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.6.【答案】C【解析】解:根据题意列表如下:白蓝红红(红,白)(红,蓝)(红,红)蓝(蓝,白)(蓝,蓝)(蓝,红)上面等可能出现的6种结果中,有2种情况可能得到紫色,故配成紫色的概率是=,故选:C.根据题意先列表,得出所有可能出现的情况数和配成紫色的情况数,再根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.7.【答案】D【解析】解:x2-8x+5=0,x2-8x=-5,x2-8x+16=-5+16,(x-4)2=11.故选:D.把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式.本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.8.【答案】A【解析】解:∵四边形CDPE是菱形,∴∠DCP=∠ECP,∴CP平分∠ACB,故选:A.根据菱形的性质解答即可.此题考查菱形的性质,关键是根据菱形的性质解答.9.【答案】B【解析】解:设白边的宽为x米,则整幅宣传版面的长为(2+2x)米、宽为(1+2x)米,根据题意得:90%(2+2x)(1+2x)=2×1.故选:B.设白边的宽为x米,则整幅宣传版面的长为(2+2x)米、宽为(1+2x)米,根据矩形的面积公式结合图案面积占整幅宣传版面面积的90%,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】D【解析】解:∵四边形ABCD是矩形,∴∠DCB=∠ABC=90°,∵FB与FC分别平分∠ABC和∠BCD,∴∠FCB=DCB=45°,∠FBC=ABC=45°,∴∠FCB=∠FBC=45°,∴CF=BF,∠F=180°-45°-45°=90°,①∵EB∥CF,CE∥BF,∴四边形BFCE是平行四边形,∵CF=BF,∠F=90°,∴四边形BFCE是正方形,故①正确;∵BE=CE,BF=BE,CF=BF,∴BF=CF=CE=BE,∴四边形BFCE是菱形,∵∠F=90°,∴四边形BFCE是正方形,故②正确;∵BE∥CF,CE⊥BE,∴CF⊥CE,∴∠FCE=∠E=∠F=90°,∴四边形BFCE是矩形,∵BF=CF,∴四边形BFCE是正方形,故③正确;∵CE∥BF,∠FBC=∠FCB=45°,∴∠ECB=∠FBC=45°,∠EBC=∠FCB=45°,∵∠F=90°,∴∠FCE=∠FBE=∠F=90°,∵BF=CF,∴四边形BFCE是正方形,故④正确;即正确的个数是4个,故选:D.求出∠F=90°,FB=FC,再根据正方形的判定方法逐个判断即可.本题考查了矩形的判定、平行四边形的判定、菱形的判定、正方形的判定等知识点,能灵活运用判定定理进行推理是解此题的关键.11.【答案】0,-3【解析】解:提公因式得,x(x+3)=0,解得x1=0,x2=-3.故答案为0,-3.提公因式后直接解答即可.本题考查了解一元二次方程--因式分解法,要根据方程特点选择合适的方法.12.【答案】29【解析】解:画树状图为:共有9种等可能的结果数,其中恰好有一人直行,另一人左拐的结果数为2,所以恰好有一人直行,另一人左拐的概率=.故答案为.画树状图展示所有9种等可能的结果数,再找出恰好有一人直行,另一人左拐的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A 或B的概率.13.【答案】√22【解析】解:设BG=x,则BE=x,∵BE=BC,∴BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2,故答案为:.设BG=x,根据正方形的性质知BE=BC=x,由正方形FBGE与正方形ABCD的相似比=BG:BC可得答案.本题主要考查相似多边形的性质,解题的关键是掌握正方形的性质和相似多边形的性质.14.【答案】√6-√2【解析】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,∴OB=CO=BO′=O′C′═OD=,设DC′=x,在Rt△BDO′中,∵BD2=BO′2+O′D2,∴(2)2=()2+(+x)2,∴x=-,故答案为-.设DC′=x,在Rt△BDO′中,根据BD2=BO′2+O′D2,构建方程即可解决问题;本题考查旋转变换、全等三角形的判定和性质、正方形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】2√3【解析】解:如图,连接BD交AC于点O.∵四边形ABCD是菱形,∴AC⊥BD,∵AF=FB,AG=GD,∴FG∥BD,∵∠EFG=90°,∴GF⊥EF,∴BD⊥EF,∵AC⊥BD,∴EF∥AC,∵AF=BF,∴BE=EC,∵AE⊥BC,∴AB=AC=BC,∴△ABC是等边三角形,∵AB=4,∴OB=2,∴BD=2OB=4,∵FG=BD,∴FG=2,故答案为2.如图,连接BD交AC于点O.首先证明△ABC是等边三角形,求出OB,BD,再利用三角形的中位线定理即可解决问题;本题考查菱形的性质、三角形的中位线定理、平行线分线段成比例定理、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】解:(1)x2-6x+3=0,x2-6x=-3,x2-6x+9=-3+9,(x-3)2=6,x-3=±√6,x1=3+√6,x2=3-√6;(2)3x(x-2)=2(x-2),3x(x-2)-2(x-2)=0,(x-2)(3x-2)=0,x-2=0,3x-2=0,x1=2,x2=23.【解析】(1)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,因式分解法,公式法,配方法等.17.【答案】解:∵矩形ABFE∽矩形DEFC,且相似比为1:2,∴AB DE =AEDC=12,∵四边形ABCD为矩形,∴CD=AB=4∴4 DE =AE4=12,∴DE=8,AE=2,∴AD=AE+DE=2+8=10.【解析】利用相似多边形的性质得到==,而根据矩形的性质得到CD=AB=4,从而利用比例性质得到DE=8,AE=2,然后计算AE+DE即可.本题考查了相似多边形的性质:对应角相等;对应边的比相等.也考查了矩形的性质.18.【答案】证明:矩形对角线互相平分且相等,∴OB=OC,在△BOE和△COF中∵{∠BEO=∠CFO ∠EOB=∠FOC BO=CO∴△BOE≌△COF(AAS),∴BE =CF .【解析】长方形对角线相等且互相平分,即可证明OC=OB ,进而证明△BOE ≌△COF ,即可得:BE=CF .本题考查了矩形对角线相等且互相平分的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,本题中求证△BOE ≌△COF 是解题的关键. 19.【答案】解:画树状图为:共有12种等可能的结果数,其中甲、乙两人中恰好有一人介绍“晋祠园林”的情况有6种,所以甲、乙两人中恰好有一人介绍“晋祠园林”的概率为612=12.【解析】利用树状图展示12种等可能的结果数,从中找到甲、乙两人中恰好有一人介绍“晋祠园林”的结果数,根据概率公式计算可得.本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.也考查了勾股数.20.【答案】解:(1)设该基地这两年“早黑宝”种植面积的平均增长率为x , 根据题意得:100(1+x )2=225,解得:x 1=0.5=50%,x 2=-2.5(不合题意,舍去).答:该基地这两年“早黑宝”种植面积的平均增长率为50%.(2)设售价应降低y 元,则每天可售出(200+50y )千克,根据题意得:(20-12-y )(200+50y )=1800,整理得:y 2-4y +4=0,解得:y 1=y 2=2.答:售价应降价2元.【解析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据该基地2016年及2018年种植“早黑宝”的面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设售价应降低y 元,则每天可售出(200+50y )千克,根据总利润=每千克的利润×销售数量,即可得出关于y 的一元二次方程,解之即可得出结论. 本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【答案】解:设菱形DEFB 的边长为x ,∵四边形DEFB 是菱形,∴BD =DE =BF =x ,DE ∥BF ,∴△ADE ∽△ABC , ∴DE BC =AD AB ,∵AB =8,BC =12, ∴x 12=8−x8,解得:x =245,即菱形DEFB 的边长为245.【解析】设菱形DEFB 的边长为x ,根据菱形的性质得出BD=DE=BF=x ,DE ∥BF ,根据相似三角形的判定得出△ADE ∽△ABC ,得出比例式=,代入求出即可.本题考查了菱形的性质和相似三角形的性质和判定,能求出△ADE ∽△ABC 是解此题的关键.22.【答案】A 或B 9√3 2或4【解析】 (1)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,AB=BC=CD=AD ,∴∠A+∠B=180°, ∵BE=BF=DH=DG ,∴AE=AH=CF=CG ,∴∠AEH=∠AHE=(180°-∠A ),∠BEF=∠BFE=(180°-∠B ), ∴∠AEH+∠BEF=(180°-∠A )+(180°-∠B )=90°, 同法可证:∠EFG=∠EHG=90°,∴四边形EFGH 是矩形.(2)解:A题:连接AC,BD交于点O.∵AE=BE,∴AH=DH,BF=CF,CG=GD,∴EF=AC,EH=BD,∵AB=BC=6,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=6,∵OB⊥AC,∴OB=3,BD=2OB=6,∴EF=3,EH=3,∴S矩形EFGH=EF•EH=9.故答案为9.B题:设BE=x,则AE=6-x,EF=x,EH=(6-x),由题意:x•(6-x)=8,解得x=4或2,∴BE=2或4.故答案为A或B,9,2或4.(1)根据三个角是直角的四边形是矩形即可解决问题;(2)A题:求出EF,EH即可解决问题;B题:设BE=x,则AE=6-x,EF=x,EH=(6-x),构建方程即可解决问题;本题考查菱形的判定和性质,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】A或B【解析】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠ABC=90°,由折叠可知:BE=BE′,∠CB′E=∠ABC=90°,在Rt△BCE和Rt△ECB′中,∵EG=GC,∴BG=EC,GB′=EC,∴BG=GB′,在Rt△BCE中,∵∠BCE=30°,∴BE=CE,∴BE=EB′=B′G=BG,∴四边形BEB′G是菱形.(2)选A或B.故答案为A或B.A题:①结论:B′G=D′H,B′G∥D′H.理由:如图2中,由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∴B′G∥D′H.②连接GH,则四边形AEGH是平行四边形,∴AE=GH,设BE=EB′=m,则AE=m,∴m+m=4,∴m=4-4,∴GH=AE=8-4B题:①结论:B′G=D′H,B′G∥D′H.理由:由(1)得到:B′G=CE,∵点G是CE的中点,∴CG=CE,∴B′G=CG,∴∠1=∠2,∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=BC,AD∥BC,∵BE=DF,∴△BCE≌△ADF(SAS),∴CE=CF,∠3=∠4,由折叠可知:∠D=∠AD′F=90°,∠2=∠3,∠4=∠5,∴∠2=∠5=∠1,在Rt△AD′F中,∵H是AF的中点,∴D′H=AH=AF,∴B′G=D′H,∠5=∠6,∴∠1=∠6,∵MN∥BC,∴MN∥BC∥AD,∴∠AD′M=∠DAD′=2∠4,∠CB′N=∠BCB′=2∠3,∴∠AD′M=∠CB′N,∴∠AD′M+∠6=∠CB′N+∠1,即∠HD′M=∠GB′N,∴B′G∥D′H.②连接GH,则四边形AECH是平行四边形,∴AE=GH,在Rt△CNB′中,CB′=4,CN=2,∴NB′=2,∴MB′=4-2,设BE=EB′=y,在R△EMB′Z中,则有y2=(2-y)2+(4-2)2,∴y=8-4,∴AE=AB-BE=4-4.(1)根据四边相等的四边形是菱形即可判断;(2)A题:①结论:B′G=D′H,B′G∥D′H.只要证明△BCE≌△ADF(SAS)即可解决问题;②连接GH,则四边形AEGH是平行四边形,推出AE=GH,设BE=EB′=m,则AE=m,构建方程求出m即可解决问题;B题:①结论:B′G=D′H,B′G∥D′H.想办法证明△BCE≌△ADF(SAS),∠HD′M=∠GB′N,即可解决问题;②连接GH,则四边形AECH是平行四边形,推出AE=GH,在Rt△CNB′中,CB′=4,CN=2,推出NB′=2,推出MB′=4-2,设BE=EB′=y,在R△EMB′Z中,则有y2=(2-y)2+(4-2)2,求出y即可解决问题;本题是四边形综合题,考查翻折变换、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、平行线的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2018-2019学年上海市闵行区华师二附中九年级上学期数学期中考试卷(考试时间:100分钟、满分150分)一、选择题(本大题共6题,每题4分。
满分24分)1、已知线段d c b a 、、、,如果cd ab =,那么下列式子中一定正确的是( )【A 】d b c a =【B 】c b d a =【C 】b d c a =【D 】d c b a = 【答案】C2、在ABC Rt ∆中,∠C=90°,BC=1,那么AB 的长为( )【A 】sin A【B 】cos A【C 】A cos 1【D 】A sin 1 【答案】D3、如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A 的余切值( )【A 】扩大为原来的两倍【B 】缩小为原来的21 【C 】不变【D 】不能确定【答案】C4、下列关于向量的说法中,不正确的是( )【A 】()333a b a b -=-333a b a b a b ===-,则或 3a a =【D 】()()m na mn a =【答案】B5、如图,在△ABC 中,80,40B C ∠=∠=,直线l 平行于BC .现将直线l 绕点A 逆时针旋转,所得直线分别交边AB 和AC 于点M 、N ,若△AMN 与△ABC 相似,则旋转角为 ( )【A 】20°【B 】40°【C 】60°【D 】80°【答案】B6、如图,在△ABC 中,BF 平分∠ABC ,AF ⊥BF 于点F ,D 为AB 的中点,连接DF 延长交AC 于点E. 若AB=10,BC=16,则线段EF 的长为( )【A 】2【B 】3【C 】4【D 】5【答案】B二、填空(每题4分,共48分 )7、已知2a=3b,那么a:b=【答案】3:28.在比例尺是1:40000的地图上,若某条道路长约5cm,则它的实际长度约为 千米【答案】29、在△ABC 中,点D 、E 分别是边AB 、AC 的中点,那么△ADE 的面积与△ABC 的面积的比是【答案】1:410、如果点P 把线段AB 分割成AP 和PB 两段(AP >PB),其中AP 是AB 与PB 的比例中项,那么AP:AB 的值为【答案】215-11、如果一个斜坡的坡度i=1:33, 那么该斜坡的坡角为 度 【答案】60° 12、如图,E 是平行四边形ABCD 的边AD 上一点,AE=21ED ,CE 与BD 相较于点F ,BD=10,那么DF=【答案】413【答案】2114【答案】2:315、已知BD 是平行四边形ABCD 的对角线,那么BD BC -【答案】BAEH 的长为___3上,AB 、CD 相交于点P ,则tan ∠APD 的值是______90,30,3B BC ∠==,点AB 边于点E ,将∠B 沿直线上的点F处,当△AEF 为直角三角形时,求BD 的长:ADE ADCS S【答案】(1)30°;(【解析】(1)在ACDRt∆过点E作ADEF⊥交AD于F解答:23、(每小题6分,共12分)如图:四边形ABCD 对角线AC 与BD 相交于点O ,OD=2OA ,OC=2OB.(1)求证:△AOB ∽ △DOC(2)点E 在线段OC 上,若AB ∥DE ,求证:OC OE OD 2⋅=∴OC OE OD 2⋅=(1分) 腰三角形,求完美分割线CD 的长。
2018—2019第一学期期中九年级数学参考答案1.C 2.A 3.B 4.B 5.C 6.D 7.D 8.A 9.B 10.C10题解析:①x = 1时,y 1 = a + b + c ,y 1>0,∴a + b + c >0 ②a = b 时,x =12但不知a 的正负性无法判断y 1与y 2 ③y 1 = a + b + c ,y 2 = 4a + 2b + c ∴2130y y a b -=+> 又a + b <0 ∴2a >0 ∴a >0 ④ ()2213y ax a x a =+-+-∴x = 1时,y 1 =2130a a a +-+-> ∴a >1,开口向上 对称轴 x 2111122a a a-=-=-+>-且x <0 又()222313y ax ax x a a x x =+-+-=+-- ∴恒过(-1,-2) 又对称轴x >-1 ∴顶点的纵坐标小于-2 ∴顶点在第三象限11.4 12.-1 13.()2720018450x += 14.(-5,4) 15.416.16题解析:取AC 的中点M 设MD = a ∴AB = 2a由题可知:AB + AE = EC 设AE = b EC = 2a + b ∴AE =2a + 2b ∴AM = MC = a + b ∴EM = a ∴ED ⊥DF ∴MF = a ∴CF = b 又AC ⇒CF ⇒b ∴EF = 5b作AG ⊥BC 于G ,BG =52bAC ⇒b ,GC =5·5b ∴BC = 8b = 8 ∴b = 1 ∴12S BCAG =⨯⨯=182⨯17.解:(3)(1)0x x -+= 4分 30x -=或 10x += 6分13x =,21x =-8分 (其他方法按步骤给分)18.解:设每个支干长出的小分支数目为xx 2 + x + 1=91 4分 解得x 1 = 9,x 2 = -10 6分又∵x >0 ∴x = 9 7分答:每个支干长出的小分支数目为9。
()22222513.02251---------12255125()-24216533()---------24165---------34455x x x x x x x x --=∴-=∴-+=+∴-=∴-=±分分分()12(1).x+1(23)0---------231,---------42x x x -=∴=-=分分()212(2).x+13(1)0---------2(1)(13)0---------31,2---------4x x x x x -+=∴++-=∴=-=分分分2019~2019年(上)九年级数学期中数学试卷参考答案(仅供参考,其它方法酌情给分)一、选择题:1.B2.C3.A4. B5.B6.B7.B8.C 二、填空题9. 4 ;362 10. x ≥-1 11. 0或2 ; 12.4 13. 5和6. 14. .316.(答案不唯一)范围不写扣1分) 三、计算题:(()17.1=-=分每个化简对均得1分分 (()3233( -a b 223b ----3b2a a ⎫=⋅⋅⎪⎪⎭=-分每个化简对均得1分分四、解方程:18 解:19.解(1) ∵043614)6(422≥-=⨯⨯--=-k k ac b ---------1分 ∴k ≤9 ---------2分(2) ∵k 是符合条件的最大整数且k ≤9 ∴k=9 ---------3分当k=9时,方程x 2-6x +9=0的根为x 1=x 2=3; ---------4分把x=3代入方程x 2+mx -1=0得9+3m-1=0 ---------5分∴m= 38----------6分 20. 解:x 1+x 2=ab-=4;x 1x 2=a c =-1---------2分(1)(x 1+1)(x 2+1) (2)2112x x x x + =x 1x 2+x 1+x 2+1---------3分 =221221x x x x +=-1+4+1 21212212)(x x x x x x -+=---------5分= 4 ---------4分 = -18 ---------6分21. 证明:(1)∵AB ∥DC ∴∠ABE=∠CEB ---------2分 又∵BE 平分∠ABC∴∠ABE=∠CBE --------4分∴∠CBE=∠CEB---------5分 ∴CB=CE---------6分 又∵CO 平分∠BCE∴∠BCO=∠ECO∴OB=OE ---------8分()2⎛ ⎝=分分22. 证明(1)∵E 是AC 的中点∴EC=12AC---------1分 又∵DB=12AC∴DB= EC---------2分 又∵DB ∥AC∴四边形DBEA 是平行四边形---------3分 ∴BC=DE ;(2)△ABC 添加BA=BC证明:同上可证四边形DBEA 是平行四边形---------4分又∵BA=BC ;BC=DE ∴AB=DE---------5分∴四边形DBEA 是矩形---------6分 (3)∠C= 45 0 ---------8分23.思考发现:四边形ABEF 为矩形-------1分;四边形ABEF 的面积是c b a )(21+-------2分实践探究:作图-------3分作图------4分联想拓展:(1)如图4过点E 作PE ∥AB 交BC 与P 交AD 的延长线于Q ,则有S 梯形ABCD =S □ ABPQ = AB ×EF =5×4=20 -------5分(2)作图-------7分取AB 的中点F ,BC 的中点G ,作直线FG 分别交AE ,CD 于点P ,Q , 则可拼成一平行四边形PQDE ------8分24.解:(1)当点P 与点N 重合时,由x 2x 24+=2,得12x 4x 6==-、(舍去)所以x 4=时点P 与点N 重合 ·························································· 2分 (2) 当点Q 与点M 重合时,由x+3x=24,得x=6----------3分此时2DN=x 3624=≥,不符合题意. 故点Q 与点M 不能重合.------ ----4分 (2)由(1)知,点Q 只能在点M 的左侧, ① 当点P 在点N 的左侧时,由224x 3x 242x+x -+=-()(),解得120()2x x ==舍去,.当x =2时四边形PQMN 是平行四边形. ········································· 6分② 当点P 在点N 的右侧时,由224x+3x)(2)24x x -=+-(,解得1233x x =-=-.当x时四边形NQMP 是平行四边形. ····································· 8分 综上:当x =2或x时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.ABDCP QMN。
学校 班级 姓名 考号 ………………………………………密……………………………………封……………………………………线………………………………………2018-2019学年第一学期期中检测试卷九年级 数学一、选择题(每小题3分,共30分)1.下面四个标志是中心对称图形的是( )2.在下列方程中,一元二次方程是( )A .x 2﹣2xy +y 2=0B .x (x +3)=x 2﹣1C .x 2﹣2x =3D .x +=0 3.方程02=+x x 的解是( ) A .x =±1B .x =0C .1x 0x 21-==,D .x =14.抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 5. 把一元二次方程2x 2-3x +1=0转化为 (x +a )2=b 的形式,正确的是( )A . 23162x ⎛⎫-= ⎪⎝⎭ B .2312416x ⎛⎫-= ⎪⎝⎭ C . 231416x ⎛⎫-= ⎪⎝⎭ D .以上都不对 6.不解方程判断下列方程中无实数根的是( )A .-x 2=2x -1 B .4x 2+4x +54=0 C 20x -= D .(x +2)(x -3)=-57. 关于x 的方程ax 2-3x +3=0是一元二次方程,则a 的取值范围是( ) A .a>0 B .a ≠0 C .a =1 D .a ≥08.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每 月增长率为x,则由题意列方程应为( )A .200(1+x )2=1000B .200+200×2x =1000C .200+200×3x =1000D .200[1+(1+x )+(1+x )2]=1000 9.已知一个直角三角形的两条直角边的长恰好是方程07822=+-x x 的两个根,则这个直角三角形的斜边长是( )A B .3 C .6 D .910.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.把一元二次方(x -3)2 = 4化为一般形式是________________,其中二次项为______,一次项系数为______,常数项为_____.12.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后的抛物线解析式为 。
2018-2019学年第一学期期中试卷初三数学一、选择题(本大题共10小题,每小题3分,共30分) 1.已知a b=23,则ba a +的值为( )A .53B .52C .25D .352.一元二次方程x 2-3x +k =0的一个根为x =2,则k 的值为 ( ) A .1B .2C .3D .43.若△ABC ∽△DEF ,面积比1:9,则△ABC 与△DEF 的相似比为 ( ) A .1:9B .9:1C .1:3D .3:14.将二次函数212y x =的图象向左移1个单位,再向下移2个单位后所得函数的关系式为()A.()21122y x =+- B.()21122y x =-- C.()21122y x =++ D.()21122y x =-+5.已知圆锥的底面半径为4cm ,母线长为5cm ,则这个圆锥的侧面积为 ( )A .220cmB .240cm πC .240cmD .220cm π 6. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定 ( )A .与x 轴相离、与y 轴相切B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切7.如图,在平行四边形ABCD 中,点E 是边AD 上一点,且2AE ED =,EC 交对角线BD 于点F ,则EFFC等于 A.13 B.12 C.23D.32( )8.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心.若25B ∠=︒,则C∠的大小等于( )A.20︒B.25︒C.40︒D. 50︒ 9. 在同一坐标系中一次函数y ax b =+和二次函数2y ax bx=+的图象可能为( )10如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P D Q →→运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,AEF ∆的面积为y ,能大致刻画y 与x 的函数关系的图象是 ( )二、填空题(本大题共有8小题,每小题3分,共24分) 11.函数()312+-=x y 的最小值为 .12.己知 (a ,0) (b ,0) 是抛物线y =x 2-3x -4与x 轴的两个交点,则aOxyOxyOxy O xyA B C Db= .13.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54o,则∠BAC的度数等于.14.已知抛物线()02≠bxy与x轴交于A、B两点,若点A的坐标为ax=ac++(-2,0),抛物线的对称轴为直线x=2,则线段AB的长为.15.直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是.16.如图,AB是⊙O的直径,CA是弦,C3∠BO=∠AO.若用扇形A=,C2COA(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径C是.第13题图第16题图第18题图17.二次函数y=ax2 + b x + c的部分对应值如下表:二次函数y=ax2 + b x + c图像的对称轴为直线x= ,x=2对应的函数值y= ;18. 如图,抛物线2y ax bx c =++与x 轴交于点A (一1,0),B ( 5,0),下列判断:①ac <0;② 2b >4ac ;③4b a +>0;④42a b c -+<0.其中判断一定正确的序号是 .三、解答题(本大题共有8小题,共76分) 19.解方程(每小题4分,共8分)(1)(1) x 2-6x -3=0 ; (2)105)2(+=+x x x . 20.(本题5分)先化简,再求值:1)11(2-÷--x xx x ,其中x 满足0432=-+x x . 21.(本题6分)已知抛物线()21y x m x m =+++,根据下列条件,分别求出m 的值. (1)若抛物线过原点; (2)若抛物线的顶点在x 轴上; (3)若抛物线的对称轴为直线x =2;22.(本题满分6分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 与△DCE 的顶点都在格点上,ED 的延长线交AB 于点F . (1)求证:△ACB ∽△DCE ;(2)猜想线段EF 与AB 有怎样的位置关系,试说明理由.23.(本题6分)如图,二次函数的图象与x 轴相交于A (-3,0)、B(1,0)两点,与y 轴相交于点C(0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)D 点坐标( ▲ ); (2)求一次函数的表达式;(3)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围.24.(本题满分9分)已知,函数2(1)(4)(5)y m x m x m =+--+-的图象过点A (-6,7). (1)求此函数的关系式;(2)求该函数图象与x 轴的两个交点B 、C 与顶点P 所围成的△BPC 面积是 ;(3)观察函数图象,指出当31x -<<时y 的取值范围是 . (4)若()()21,1,,y a B y a A +两点都在该二次函数的图象上,试比较1y 与2y 的大小.25.(本题满分8分)如图,在Rt △ABC 中,∠B=90°,点O 在边AB 上,以点O 为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使∠BCM=2∠A .(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.(结果保留 ).26.(本题满分8分)某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)写出该文具店每周销售这种纪念册所获得的利润为w元与销售单价x(元)的函数关系式;当销售单价x为何值时,利润最大?(3)试通过(2)中的函数关系式及其大致图象,帮助该文具店确定产品的销售单价范围,使利润不低于150元(请直接写出销售单价x的范围).27.(本题满分10分)如图,在平面直角坐标系中,点A的坐标是(8,0),点B的坐标是(0,6)点P从点O开始沿x轴向点A以1 cm/s的速度移动,点Q从点B开始沿y轴向点O 以相同的速度移动,若P 、Q 同时出发,移动时间为 (s)(0t <<6). (1)当//PQ AB 时,求的值;(2)是否存在这样的值,使得线段PQ 将AOB ∆的面积分成1:5的两部分.若存在,求出的值;若不存在,请说明理由;(3)当=2时,试判断此时POQ ∆的外接圆与直线AB 的位置关系,并说明理由.28.(本题满分10分)已知抛物线2y x bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,O 是坐标原点,点A 的坐标是(-l,0),点C 的坐标是(0,-3).在第四象限内的抛物线上有一动点D ,过D 作DE x ⊥轴,垂足为E ,交BC 于点F .设点D 的横坐标为m . (1)求抛物线的函数表达式;(2)连接AC ,AF ,若ACB FAB ∠=∠,求点F 的坐标;(3)在直线DE 上作点H ,使点H 与点D 关于点F 对称,以H 为圆心,HD 为半径作⊙H ,当⊙H 与其中一条坐标轴相切时,求m 的值.张家港市梁丰初中2017-2018学年第一学期期中试卷……………………初三数学答案卷一、选择题:(把每题的答案填在下表中,每题3分,共30分) 二、填空题:(每题3分,共24分)11 ___________12 ___________13 ____________14 ____________15 ___________16 ___________17 ____________18 ____________ 三、解答题:(共76分)19.解方程(每小题4分,共8分)(1)(1) x 2-6x -3=0 ; (2)42322-=-x x )(.________________________________________________________________________20.(本题5分)先化简,再求值:1)11(2-÷--x xx x ,其中x 满足0432=-+x x .序号 1 2 3 4 5 6 7 8 9 10 答案______________________________________________________________ _21.(本题6分)22.(本题满分6分)(1)求证:△ACB∽△DCE;(2)_________________________________________________________________ ____________23.(本题满分8分)(1)D点坐标(,);(2)(3)____________________._____________________________________________________________________________24. (本题9分).(1)(2)△BPC 面积是 ;(3)观察函数图象,指出当31x -<<时y 的取值范围是 .(4)若()()21,1,,y a B y a A +两点都在该二次函数的图象上,试比较1y 与2y 的大小.25.(本题满分8分)_________________________________________________________________ ____________26.(本题满分8分)(1) .(2)(3) ._________________________________________________________________ ____________27.(本题满分10分)28.(本题满分10分)备用图。
第4题图 第5题图 第6题图 第7题图O C A B · C A D B ' B ' 1 D' B C O D A 2018-2019学年上学期期中考试九年级数学试卷 本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题。
注意事项:1.答卷前将密封线左侧的项目填写清楚。
2.答案须用蓝色、黑色钢笔或圆珠笔书写。
卷I (选择题,共42分)一、选择题(本大题共16个小题,1~10题,每小题3分;11~16小题,每小题2分, 共42分,在每小题给出的四个选项中,只有一项符合题目要求的)1.用配方法解方程x 2-23x -1=0时,应将其变形为( ) A .(x -13)2=89 B .(x+13)2=109 C .(x -23)2=0 D .(x -13)2=109 2.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计,窗棂上 雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构 的图案中,是中心对称图形但不是轴对称图形的是( ) A . B . C . D . 3.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是180° D .抛一枚硬币,落地后正面朝上 4.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α< 90°).若∠1=112°,则∠α的大小是( ) A .68° B .20° C .28° D .22° 5.如图,BC 是⊙O 的弦,OA ⊥BC ,∠AOB=70°,则∠ADC 的度数是( ) A .70° B .35° C .45° D .60° 6.如图,在△ABC 中,∠C=90°,AB=4,以C 点为圆心,2为半径作⊙C ,则AB 的中 点O 与⊙C 的位置关系是( ) A .点O 在⊙C 外 B .点O 在⊙C 上 C .点O 在⊙C 内 D .不能确定 7.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始 至结束所走过的路径长度为( )A .32πB .43πC .4D .2+32π第9题图第10题图第12题图ABC10203040506070 80 90100110120130140150160170180CDA BE ·第14题图第15题图第16题图8.定义运算“※”为:a※b=⎩⎨⎧)(-)(≤bab>bab22,如:1※(-2)=-1×(-2)2=-4.则函数y=2※x)9.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为88°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°10.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为()A.8cm B.12cm C.16cm D.20cm11.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2B.50πcm2C.60πcm2D.391πcm2 12.如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是()A.127B.19C.16D.1313.河北省某市2018年现有森林和人工绿化面积为20万亩,为了响应十九大的“绿水青山就是金山银山”,现计划在两年后将本市的绿化面积提高到24.2万亩,设每年平均增长率为x,则列方程为()A.20(1+x)×2=24.2 B.20(1+x)2=24.2×2C.20+20(1+x)+20(1+x)2=24.2 D.20(1+x)2=24.214.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°15.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>-1 时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个16.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=2,则阴影部分面积为()A.23πB.23π-1 C.43π+1 D.43π第18题图卷II (非选择题,共78分)二、填空题(本大题共3个小题;共12分。
2018-2019学年度第一学期九年级期中数学试卷(满分120分,考试时间120分钟)一.选择题(本大题共6小题,每小题2分,共12分) 1.一元二次方程 x 2= x 的根是A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.用配方法解方程x 2-2x -5=0时,原方程应变形为A .(x +1)2=6B .(x +2)2=9C .(x -1)2=6D .(x -2)2=93. 下列说法正确的是 A .甲组数据的方差S 甲2 =0.28,乙组数据的方差S 乙2=0.25,则甲组数据比乙组数据稳定 B . 从1,2,3,4,5,中随机抽取一个数,是偶数的可能性比较大 C . 数据3,5,4,1,﹣2的中位数是3 D .若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖4. 关于x 的一元二次方程(k +1)x 2+2x =0有两个不相等的实数根,则k 的取值范围为A .k >-1B .k <-1C .k ≠-1D .k <0且k ≠-15. 如图,点A 、B 、C 、D 、E 都是⊙O 上的点,AC ⌒ =AE ⌒,∠D =128°,则∠B 的度数为A .128°B .126°C .118°D .116°6. 如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连结CD .若点D 与圆心O 不重合,∠BAC =26°,则∠DCA 的度数为A .36°B .38°C .40°D .42°(第5题)(第6题)二、填空题(本大题共10小题,每小题2分,共20分)7. 关于x 的一元二次方程(x +3)2=a -1有实数根,则a 的取值范围是 ▲ .8. 在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为 ▲ . 9.小明等五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小 明等五位同学年龄的方差 ▲ (填“不变”“增大”或“减小”).10. 如图,在⊙O 中,直径EF ⊥CD ,垂足为M ,若CD =2,EM =5,则⊙O 的半径为 ▲ .11. 关于x 的一元二次方程x 2-3x +m =0的一个根为2 ,则另一个根为 ▲ ,m 的值为 ▲ 12. 现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为 ▲ cm .13. 如图,连接正十边形的对角线AC 与BD 交于点E ,则∠AED = ▲ °. 14. ⊙O 是△ABC 的外接圆,连接OB ,∠ABO =38°,则∠C 的度数为 ▲ .15. 如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,若AC =2 2 ,则∠BAC 的度数为 ▲ .16. 如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线OF 绕O 点旋转时,CD 的最小值为 ▲ .(第16题)ABO (第15题)ECOM DF(第10题)CE(第13题)ADB三、解答题(共11题,共88分)17.(8分)解下列方程(1)2x2-5x-1=0;(2)(x+2)2=3x+6.18.(8分)某班准备选一名学生参加数学史知识竞赛,现统计了两名选手本学期的五次测试成绩:甲:83,80,90,87,85;乙:78,92,82,89,84.(1)请根据上面的数据完成下表:极差平均数方差甲10 ▲ ▲乙▲ 85 24.8(2)请你推选出一名参赛选手,并用所学的统计知识说明理由.19.(8分)(1)在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,请通过列表或树状图求2次摸出的球都是白球的概率;(2)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘3次,指针3次都指向白色区域的概率为▲ .20.(7分)已知关于x 的方程x 2+ax +a -1=0.(1)若方程有一个根为1,求a 的值及该方程的另一个根; (2)求证:不论a 取何实数,该方程都有实数根.21.(7分)某企业2016年盈利1500万元,2018年盈利2160万元.求该企业每年盈利的年平均增长率.若该企业盈利的年增长率继续保持不变,预计2019年盈利多少万元?22.(8分)如图,△ABC 中,⊙O 经过A 、B 两点,且交AC 于点D ,连接BD ,∠DBC =∠BAC .(1)证明BC 与⊙O 相切;(2)若⊙O 的半径为6,∠BAC =30°,求图中阴影部分的面积.23. (8分)某商店将进价为10元的商品按每件15元售出,每天可售出460件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售 量就减少20件.(1)若售价提价1元,此时单件利润为 ▲ 元,销售量为 ▲ 件; (2)应将每件售价定为多少元时,才能使每天利润为2720元?OC B AD24.(8分)请用配方法解关于x的一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0).25.(8分)如图,四边形ABCD是⊙O的内接四边形,BD是∠ABC的角平分线,过点D分别作DE⊥AB,DF⊥BC,垂足分别为E、F.(1)求证△AED≌△CFD;(2)若AB=10,BC=8,∠ABC=60°,求BD的长度.26.(8分)如图,已知直角△ABC ,∠C =90°,BC =3,AC =4.⊙C 的半径长为1,已知点P 是△ABC 边上一动点(可以与顶点重合).(1)若点P 到⊙C 的切线长为3,则AP 的长度为 ▲ ;(2)若点P 到⊙C 的切线长为m ,求点P 的位置有几个?(直接写出结果)27. (10分) 如图,已知等腰△ABC ,AB =AC ,⊙O 是△ABC 的外接圆,点D 是AC ⌒上一动点,连接CD 并延长至点E ,使得AE =AD . (1)求证:①∠DAE =∠BAC ;②EC =BD ; (2)若EC ∥AB ,判断AE 与⊙O 的位置关系; (3) 若∠CAB =30°,BC =6,点D 从点A 运动到点C 处,则点E 运动路径的长为 ▲ .2018-2019学年度第一学期九年级期中数学试卷(答案)一.选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7. a ≥1 8. 45 9. 不变10. 2.6 11. 5,﹣1012. 2 13. 126° 14.52°128° 15.15°或105°16. 2 -1三、解答题(共11题,共88分) 18. (8分)解下列方程(1)2x 2-5x -1=0; 解:∵a =2,b =-5,c =-1,∴b 2-4ac =33x =-b ±b 2-4ac 2a =5±33 4 , ....................................................................2分∴x 1=5+33 4 ,x 2=5-334 ..................................................................................4分(配方正确2分,答案各1分)(2)(x +2)2=3x +6.解:(x +2)2=3(x +2) (x +2)2-3(x +2)=0 (x +2)[(x +2)-3]=0∴x +2=0或(x +2)-3=0, ..........................................................................................2分 ∴x 1=-2或x =1 . ..........................................................................................4分 (配方正确2分,答案各1分;代入公式正确2分,答案2分) 18.(8分)(1) 85、11.6、14 .......................................................................3分 (2)选择甲参加比赛 ...............................................................................5分 理由两者的平均数一样,两者水平相当,但是甲的极差比乙的极差小,甲的方差也比乙的方差小,则甲比乙稳定。