福州大学11级大学物理学规范练习答案06
- 格式:ppt
- 大小:336.00 KB
- 文档页数:11
大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
第八章 气体动理论习题解答8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。
若此理想气体的压强为1.35×1014 Pa 。
试估计太阳的温度。
(已知氢原子的质量m = 1.67×10-27kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030kg )解:mR MVm M mn 3π)3/4(===ρK 1015.1)3/4(73⨯===Mkm R nk p T π8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子?解:3462310/cm 1045.2103001038.110013.1⨯=⨯⨯⨯⨯===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。
解:(1)J 1014.41054001038.123)(233232321⨯=⨯⨯⨯⨯⨯=+=-∑N N kT tε(2)Pa kT n p i323231076.21054001038.1⨯=⨯⨯⨯⨯==-∑8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。
设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。
问气体的温度及压强各升高多少?(将氧气分子视为刚性分子)解:1mol 氧气的质量kg 10323-⨯=M ,5=i 由题意得T R Mv ∆=⋅ν25%80212K 102.62-⨯=∆⇒TT R V p RT pV ∆=⋅∆⇒=νν pa 52.0102.631.82=⨯⨯=∆=∆∴-VTR p 8-5 一个具有活塞的容器中盛有一定量的氧气,压强为1 atm 。
【关键字】大学第11章电磁感应11.1基本要求1理解电动势的概念。
2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。
3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。
4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。
5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。
6理解互感现象和互感系数的定义及物理意义,能计算简单导体回路间的互感系数。
7理解磁能(磁场能量)和磁能密度的概念,能计算一些简单情况下的磁场能量。
8了解位移电流的概念以及麦克斯韦方程组(积分形式)的物理意义。
11.2基本概念1电动势ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。
3感生电场:变化的磁场在其周围所激发的电场。
与静电场不同,感生电场的电场线是闭合的,所以感生电场也称有旋电场。
4感生电动势:仅由磁场变化而产生的感应电动势。
5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数:6自感电动势:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。
7互感系数:8互感电动势:当线圈2的电流发生变化时,在线圈1中所产生的感应电动势。
9磁场能量:贮存在磁场中的能量。
自感贮存磁能:磁能密度:单位体积中贮存的磁场能量10位移电流:,位移电流并不表示有真实的电荷在空间移动。
但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。
11位移电流密度:11.3基本规律1电磁感应的基本定律:描述电磁感应现象的基本规律有两条。
(1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。
楞次定律是判断感应电流方向的普适定则。
(2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即2动生电动势:,若,则表示电动势方向由;若,则表示电动势方向3感生电动势:(对于导体回路)(对于一段导体)4自感电动势:5互感电动势:6麦克斯韦方程组== -11.4 学习指导学习法拉第电磁感应定律要注意,公式中的电动势是整个回路的电动势,式中负号是楞次定律的要求,用以判断电动势的方向。
福州大学2012~2013学年第一学期期末考试卷(A)今将一电量为+Q 的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能=___________________。
5 一个半径为R 的接地导体球,原来不带电。
今将一点电荷q 放在球外距球心距离为r 的地方,则导体球上的感应电荷总量=________,导体球内部的电场强度=___________。
6静电场对闭合回路的积分(环流)=_______________。
7 如图所示,边长为a 的正三角形导线中通有电流I ,则图中P 处的磁感应强度的大小为_________________,方向_________________。
8 如图所示,一半径为R ,通有电流I 的圆形回路,位于Oxy 平面内,圆心为O 。
一带正电荷为q 的粒子,以速度v沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的磁力的大小为_____________,作用在带电粒子上的磁力的大小为________________。
9 如图所示,在半径为R 的圆柱形区域内,磁感应强度保持均匀,并以dB/dt 的速率增加,则在离轴线a (a <R )的a 处的感生电场的大小Ea = ____ ;图中所示杆①和杆②的感应电势ε1= ;ε2= 。
10 原子从某一激发态跃迁到基态,发射光子的中心波长为λ,谱线宽度为∆λ。
根据不确定关系E h τ∆≈,原子在激发态上的寿命τ约为__________________。
波长为λ的光子的质量m=______________,静止质量m 0=_________________。
Ioxyzvq第8题图第7题图第9题图第3题图五、一半径为R的塑料圆盘均匀带电,电荷面密度为σ,圆盘绕通过圆盘中心且垂直于盘面的轴以角速度ω转动。
(1)求圆盘中心处的磁感应强度;(2)将该转动圆盘放在磁感应强度为B的磁场中,磁场方向和圆盘平面的法线垂直,求圆盘受到的磁力矩的大小。
福州大学大学物理(下)期中考试卷2006.11部分常数:真空介电常数εo=8.85×10-12F·m-1、玻尔兹曼常数k=1.38×10-23 J·K-1、气体普适常数R=8.31 J·K-1·mol-1。
一、填空题(每空2分,共40分)1.一容积为10cm3的电子真空器件,温度300K时玻璃管内压强为0.67Pa。
管内空气分子数为1.6⨯1015,这些空气分子的平均平动动能的总和是1.01⨯10-5J。
2.若室内生炉子后温度从15o C升到27o C,而室内气压不变,则此时室内的分子数减少的百分数为4%。
3.一定量的理想气体储于某一容器内,温度为T,气体分子的质量为m。
根据理想气体分子模型和统计假设,分子速度在x方向分量的平均值为0。
4.一绝热的封闭容器,用隔板分成相等的两部分,左边充有一定量的某种气体,压强为p;右边为真空,若把隔板抽去(对外不漏气),当又达到平衡时,气体的压强为P/2。
5.一定量的理想气体从同一初态a开始,分别经ac为绝热过程,如图所示,则ab过程是放热过程,ad过程是吸热过程(填吸热或放热)。
V 6.等温膨胀过程对物体加热而不致升高物体的温度;绝热过程不作任何热交换,而使系统的温度发生变化。
7. 一个卡诺热机在两个温度一定的热库间工作时,如果工作物质体积膨胀得多些,它做的净功多些(填多或少),它的效率不变些(填高或低或不变)。
8.如图所示,真空中两个点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯面S,则通过该球面的电场强度通量Φe= Q/ε0,电荷连线的交点)的电场强度大小分别为E a=0,E b= 5 Q / 18 πε0 R2。
9. 半径为r的导体球带电q,球外有一半径为R的同心球壳,其带电量为Q,则两球的电势差为q / 4 πε0 r – q / 4 πε0 R 。
10.把一个带电物体移近一个导体壳,那么带电体单独在导体壳的腔内产生的电场强度为零?否(填是或否),导体壳腔内的电场强度为零?是(填是或否)。
第11章 静电场【例题精选】例11-1 (见书上) 例11-2()22300(428qd qdR R d R πεππε-或),从O 点指向缺口中心点例11-3 D 例11-4 D 例11-5 B例11-6 0/2σε, 向右; 03/2σε, 向右; 0/2σε, 向左 例11-7 (见书上)【练习题】11-1 B 11-2 0/d λε,220(4)d R d λπε-,沿矢径OP11-3 0/Q ε,0205180Q Rπε和r11-4 B11-5 【解】(1)作与球体同心,半径r <R 的高斯球面S 1。
球体内电荷密度ρ随r 变化,因此,球面S 1内包含的电荷214()d ro Q r r r πρ=⎰。
已知的电荷体密度ρ(r ) =kr ,根据高斯定理:11d s o Q Φε=⋅=⎰E S , 230144d rr o E r k r r ππε⋅=⎰,可求得球体内任意点的场强:24r o r E k ε=,r <R 。
(2)作与球体同心、半径r >R 的球面S 2,因R 外电荷为零,故S 2内的电荷Q 2=Q 总,根据高斯定理:1231d 44d Rrs oEr k r r Φππε=⋅=⋅=⎰⎰E S ,得球体外任意一点的场强:4204r R E k r ε=,r >R 。
11-6 0/(2)σε-,03/(2)σε11-7 【解】两同轴圆柱面带有等量异号电荷,则内外电荷线密度分别为λ和-λ。
电场分布具有轴对称性。
(1)建立半径1r R <的同轴高斯柱面,设高为h 。
高斯柱面内无电荷分布。
1d 20SE rh π⋅=⋅=⎰E S ,则,10E=(1r R <)(2)建立12R r R <<的同轴高斯柱面,设高为h 。
高斯柱面内包含电荷。
柱面的上下底面无电场分布,电场均匀分布在侧面。
20d 2Sh E rh λπε⋅=⋅=⎰E S ,则,202E rλπε=(12R r R <<) (3)建立半径2r R >的同轴高斯柱面,设高为h 。
习题1111.1选择题(1)一圆形线圈在均匀磁场中作下列运动时,哪些情况会产生感应电流()(A)沿垂直磁场方向平移;(B)以直径为轴转动,轴跟磁场垂直;(C)沿平行磁场方向平移;(D)以直径为轴转动,轴跟磁场平彳丁。
[答案:B](2)下列哪些矢量场为保守力场()(A)静电场;(B)稳恒磁场;(C)感生电场;(D)变化的磁场。
[答案:A]⑶用线圈的自感系数L来表示载流线圈磁场能量的公式比”=£厶厂()(A)只适用于无限长密绕线管;(B)只适用于一个匝数很多,且密绕的螺线环;(C)只适用于单匝圆线圈;(D)适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A)涡旋电场对电荷有作用力;(B)涡旋电场由变化的磁场产生;(C)涡旋场山电荷激发;(D)涡旋电场的电力线闭合的。
[答案:C]11.2填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到—o[答案:磁力](2)产生动生电动势的非静电场力是—,产生感生电动势的非静电场力是—,激发感生电场的场源是—。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为/的金属直导线在垂直于均匀的平面内以角速度(»转动,如果转轴的位置在—,这个导线上的电动势最大,数值为—;如果转轴的位置在—,整个导线上的电动势最小,数值为—。
[答案:端点,”中点,0]11.3—半径r =10cm的圆形回路放在B =0. 8T的均匀磁场中.回路平面与鸟垂直.当回路半dr径以恒定速率一=80cm/s收缩时,求回路中感应电动势的大小.dr解:回路磁通^,…=B S = Bn r2感应电动势大d©”dt解:取半圆形cbcz 法向为亍, 则①=—Bcosad ①,d t-nR 2 dBcos a -------- = d/ -8.89 x IO -2V即:S MeN ~ S MN则:fia+b&MN = ]_兀ea(vB sin —) dZ cos^ = -I 2 a cifi ?* =—(B TI r 2) = B2nr — = 0.40dt dt 11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm,如题11.4图所示.均匀磁场 B =80X 10^3T, B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角 a 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.同理,半圆形adc 法向为j ,则------ B cos a2T 万与亍夹角和鸟与了夹角相等,a = 45°①m = Bn R 2 cos a方向与cbadc 相反,即顺时针方向. 11.5如题10-5图所示,载有电流Z 的长直导线附近,放一导体半圆环MeN 与长直 导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b,环心O 与导 线相距a.设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方 向及MN 两端的电压C/M -U N •解:作辅助线MN,则在MeNM 回路中,沿/方向运动时d<D m = 0• •£MeNM ~ ° 以逆时针为回路正向,严”型d 心丛in 乜<0I 27rl2 龙 a + b解所以%斂沿NeM 方向,大小为:"学山气Ln a-bM 点电势高于N 点电势,即:U M -U N =^ln —2兀 a-b11.6如题10-6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导 线中的电流方向相反、大小相等,且电流以〒的变化率增大,求:dr(1) 任一时刻线圈内所通过的磁通量; (2) 线圈中的感应电动势.解:距长直导线为r 处的磁感应强度大小为:筈 以逆时针为回路正向,则:⑴磁通量:①m = r^Zdr- r^7dr = ^[ln^-ln^] h 2nr h 2nr In bd/c\舟亠曲dQ uJ ri d +a ■ b + a^dluJ di. b(a+d) 亠2n db At2n dt d(a +b)向逆时针11.7如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率/•绕图中半圆的直径旋转.整个电路的电阻为求:感应电流的最大值.① m =B-S = B —cos(a )t + ^)2d ①,” Bnr 2a ) # A= _ -TT = —sin (3/ + 札) at 2『竺也弩2吋"讪11.8如题11-8图所示,长直导线通以电流Z=5A,在其右方放一长方形线圈,两 者共面.线圈长b =0. 06m,宽a=0. 04m,线圈以速度v=0. 03m/s 垂直于直线平移 远离.求:d=0.05m 时线圈中感应电动势的大小和方向.解:AB. CD 运动速度);方向与磁力线平行,不产生感应电动势.以顺 :题10-6解:=Blvt cos 60° = kt 2lv - = -klvt 2 2 2£ = - ^^ = -klvt dt即沿abed 方向顺时针方解:如图逆时针为矩形导线框正向,则时针为回路正向,则:ZM 产生电动势:务订如)•归"盟si 吟・叭如筈0眈产生电动势…2 =加湎小-韵方.•.回路中总感应电动势:£ = £]+£2=如凹(丄-一) = 1.6xl0-8y方向沿2兀 a a+a顺时针11.9长度为/的金属杆ab 以速率v 在导电轨道abed 上平行移动.已知导轨处于均匀磁场直中,为的方向与回路的法线成60°角(如题11.9图所示),鸟的大小为B=kt (k 为正常).设/=0时杆位于cd 处,求:任一时刻/导线回路中感应电动势的大小和方向.11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B 的方向如题11.10图所示.取 逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).题 11. 10 图(a)d<Z>在磁场中时 --- =0, £ = 0;dt d<Z>一出场时 --- > 0 , £<0,故I - t 曲线如题10-9图(b)所不.dt1111导线必长为儿绕过。
光的干涉(一) (48)1.用某单色光作杨氏双缝实验,双缝间距为0.6mm,在离双缝2.5m 处的屏上出现干涉条纹,现测得相邻明纹间的距离为2.27mm,则该单色光的波长是:( A)解: 由∆x=Dλ/d得λ=dΔx/D=5.448×10-7m(A)5448Å (B)2724Å (C)7000Å (D)10960Å2.在杨氏双缝实验中,入射光波长为λ,屏上形成明暗相间的干涉条纹,如果屏上P点是第一级暗条纹的中心位置,则S1,S2至P点的光程差δ=r2-r1为(D)(A)λ (B)3λ/2 (C)5λ/2 (D)λ/2解: δ=r2-r1=(2k-1)λ/2 将k=1代入得δ=r2-r1=λ/23.在双缝实验中,两缝相距2mm,双缝到屏距离约1.5m,现用λ为5000Å的单色平行光垂直照射,则中央明纹中心到第三级明纹中心的距离是:(C)解: x=k Dλ/d=1.125(mm)(A) 0.750mm (B) 2.625mm(C) 1.125mm (D) 0.563mm4.用平行单色光垂直照射双缝,若双缝之间的距离为d,双缝到光屏的距离为D,则屏上的P点为第八级明条纹位置,今把双缝之间的距离缩小为d′,则P点为第四级明条纹位置,那么d′/d=1/2,若d=0.1mm,D=1m,P点距屏中心O的距离为4cm,则入射光波长为5⨯10-7m。
解:由x=k Dλ/d=k'Dλ/d' 得d'/d= k'/k=4/8=1/2λ=x d/k D=4×10-2×0.1×10-3/8×1=5×10-7m5.在双缝实验中,用厚度为6μm 的云母片,覆盖其中一条缝,从而使原中央明纹位置变为第七级明纹,若入射光波长为5000Å,则云母片的折射率为n = 1.58 。
解:δ0 =r -r =0 δ=[(r -e )+ne ]-r =(n -1)e =7λ∴ n =1+7λ/e = 1.586.用折射率n=1.5的透明膜覆盖在一单缝上,双缝间距d=0.5mm ,D=2.5m ,当用λ=5000Å光垂直照射双缝,观察到屏上第五级明纹移到未盖薄膜时的中央明纹位置,求:(1)膜的厚度及第10级干涉明纹的宽度;(2)放置膜后,零级明纹和它的上下方第一级明纹的位置分别在何处?解:已知 n=1.5 , d=0.5mm , D=2.5×103mmλ=5×10- 4mm(1) δ =(n -1)e =5λ , e =5λ/(n -1)=5×10-3mmΔx =D λ/d=2.5×103mm ×5×10- 4mm/0.5mm=2.5mm(2)设置放膜后,屏幕下方第五级明纹移到原中央明纹处,则置放膜后的零级明纹移到原来上方第五级明纹处。