CFD2020-第10讲-常微分方程数值解法
- 格式:ppt
- 大小:2.79 MB
- 文档页数:56
常微分方程的数值解法在自然科学的许多领域中,都会遇到常微分方程的求解问题。
然而,我们知道,只有少数十分简单的微分方程能够用初等方法求得它们的解,多数情形只能利用近似方法求解。
在常微分方程课中已经讲过的级数解法,逐步逼近法等就是近似解法。
这些方法可以给出解的近似表达式,通常称为近似解析方法。
还有一类近似方法称为数值方法,它可以给出解在一些离散点上的近似值。
利用计算机解微分方程主要使用数值方法。
我们考虑一阶常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(yx y y x f dx dy在区间[a, b]上的解,其中f (x, y )为x, y 的已知函数,y 0为给定的初始值,将上述问题的精确解记为y (x )。
数值方法的基本思想是:在解的存在区间上取n + 1个节点b x x x x a n =<<<<= 210这里差i i i x x h -=+1,i = 0,1, …, n 称为由x i 到x i +1的步长。
这些h i 可以不相等,但一般取成相等的,这时na b h -=。
在这些节点上采用离散化方法,(通常用数值积分、微分。
泰勒展开等)将上述初值问题化成关于离散变量的相应问题。
把这个相应问题的解y n 作为y (x n )的近似值。
这样求得的y n 就是上述初值问题在节点x n 上的数值解。
一般说来,不同的离散化导致不同的方法。
§1 欧拉法与改进欧拉法 1.欧拉法1.对常微分方程初始问题(9.2))((9.1) ),(00⎪⎩⎪⎨⎧==y x y y x f dx dy用数值方法求解时,我们总是认为(9.1)、(9.2)的解存在且唯一。
欧拉法是解初值问题的最简单的数值方法。
从(9.2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(9.3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为y (x 1)的近似值。
常微分方程的数值解法…………江南大学信计1203柯恒一、前言对于很多微分方程,我们很难求出解析解,这时我们需要采取数值手段求解。
在数值分析这门课中,老师讲到dy dt =f (t ,y )的数值解法,我们采用了欧拉格式,后退欧拉格式,梯形公式,改进欧拉格式及4阶龙格-库塔方法求解。
而老师没讲关于微分方程组和高阶微分方程的解法。
现在我来粗虐的说一下微分方程组及高阶微分方程的数值解,这里主要是借助matlab 中的相关函数进行计算并仿真出图像。
二、相关问题初值问题问题1,微分方程组问题描述:给定一个微分方程,并且告诉我们初始状态。
我们便可求出整个过程的解。
给定下面方程(L 表示省略号):11122112112(,,,,)(,,,,)(,,,,)n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ⎧=⎪⎪⎪=⎪⎨⎪⎪⎪=⎪⎩而且初始状态y ′i (x 0)已知记成y(0).问题解决:四阶龙格库塔方法:K i1=f i (x n ,y 1n ,y 2n ,……,y nn );K i2=f i (x n +h 2,y 1n +h 2∗k 11,y 2n +h 2∗K 21,……,y nn +h 2∗K n1) K i3=f i (x n +h ,y 1n +h ∗K 12,y 2n +h ∗K 22,……,y nn +h ∗K n2) K i4=f i (x n +h 2,y 1n +h 2∗K 13y 2n +h 2∗K 32,……,y nn +h 2∗K n3),y i,n+1=y i,n+h6∗(K i1+2∗K i2+2∗k i3+2∗K i4)通过龙格库塔方法,我们可以计算后面点的值,在matlab中调用ode45来实现四阶龙格库塔方法的调用。
应用举例:有一个同步地球卫星,现在加速到4km/s进行变轨,试分析变轨后卫星运动的轨迹。
已知地球的质量M=5.97e24,引力常量的值为6.672e-11问题建模:我们已经知道行星的运动是在一个平面上的。
许多实际问题的数学模型是微分方程或微分方程的定解问题。
如物体运动、电路振荡、化学反映及生物群体的变化等。
常微分方程可分为线性、非线性、高阶方程与方程组等类;线性方程包含于非线性类中,高阶方程可化为一阶方程组。
若方程组中的所有未知量视作一个向量,则方程组可写成向量形式的单个方程。
因此研究一阶微分方程的初值问题⎪⎩⎪⎨⎧=≤≤=0)(),(y a y bx a y x f dxdy, (9-1) 的数值解法具有典型性。
常微分方程的解能用初等函数、特殊函数或它们的级数与积分表达的很少。
用解析方法只能求出线性常系数等特殊类型的方程的解。
对非线性方程来说,解析方法一般是无能为力的,即使某些解具有解析表达式,这个表达式也可能非常复杂而不便计算。
因此研究微分方程的数值解法是非常必要的。
只有保证问题(9-1)的解存在唯一的前提下,研究其数值解法或者说寻求其数值解才有意义。
由常微分方程的理论知,如果(9-1)中的),(y x f 满足条件(1)),(y x f 在区域} ),({+∞<<∞-≤≤=y b x a y x D ,上连续; (2)),(y x f 在上关于满足Lipschitz 条件,即存在常数,使得y y L y x f y x f -≤-),(),(则初值问题(9-1)在区间],[b a 上存在惟一的连续解)(x y y =。
在下面的讨论中,我们总假定方程满足以上两个条件。
所谓数值解法,就是求问题(9-1)的解)(x y y =在若干点b x x x x a N =<<<<= 210处的近似值),,2,1(N n y n =的方法。
),,2,1(N n y n =称为问题(9-1)的数值解,n n x x h -=+1称为由到1+n x 的步长。
今后如无特别说明,我们总假定步长为常量。
建立数值解法,首先要将微分方程离散化,一般采用以下几种方法: (1) 用差商近似导数在问题(9-1)中,若用向前差商hx y x y n n )()(1-+代替)(n x y ',则得)1,,1,0( ))(,()()(1-=≈-+N n x y x f hx y x y n n n n n)(n x y 用其近似值代替,所得结果作为)(1+n x y 的近似值,记为1+n y ,则有 1(,) (0,1,,1)n n n n y y hf x y n N +=+=-这样,问题(9-1)的近似解可通过求解下述问题100(,) (0,1,,1)()n n n n y y hf x y n N y y x +=+=-⎧⎨=⎩(9-2)得到,按式(9-2)由初值经过步迭代,可逐次算出N y y y ,,21。
第六章 常微分方程的数值解法 §6.0 引言§6.1 算法构造的主要途径§6.2 Runge-Kutta Method 算法§6.3 线性多步法§6.4 线性多步法的一般形式§6.5 算法的稳定性、收敛性§6.0 引 言1. 主要考虑如下的一阶常微分方程初值问题的求解:()()00,dy f x y dx y x y ⎧=⎪⎪⎨=⎪⎪⎩ 微分方程的解就是求一个函数y=y(x),使得该函数满足微分方程并且符合初值条件。
2. 例如微分方程:xy '-2y=4x ;初始条件: y(1)=-3。
于是可得一阶常微分方程的初始问题24(1)3y y x y ⎧'=+⎪⎨⎪=-⎩。
显然函数y(x)=x 2-4x 满足以上条件,因而是该初始问题的微分方程的解。
3. 但是,只有一些特殊类型的微分方程问题能够得到用解析表达式表示的函数解,而大量的微分方程问题很难得到其解析解,有的甚至无法用解析表达式来表示。
因此,只能依赖于数值方法去获得微分方程的数值解。
4. 微分方程的数值解:设微分方程问题的解y(x)的存在区间是[a,b ],初始点x 0=a ,将[a,b ]进行划分得一系列节点x 0 , x 1 ,...,x n ,其中a= x 0< x 1<…< x n =b 。
y(x)的解析表达式不容易得到或根本无法得到,我们用数值方法求得y(x)在每个节点x k 的近似值y(x k ),即y≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。
如图所示:§6.1 算法构造的主要途径x 0 x 1 x 2 ...1 欧拉公式1.1 构造的思想:利用差商代替一阶导数,即010()()x x y x y x dy dx h =-≈,则 1000()()(,)y x y x f x y h -≈。
第七章 常微分方程数值解法常微分方程中只有一些典型方程能求出初等解(用初等函数表示的解),大部分的方程是求不出初等解的。
另外,有些初值问题虽然有初等解,但由于形式太复杂不便于应用。
因此,有必要探讨常微分方程初值问题的数值解法。
本章主要介绍一阶常微分方程初值问题的欧拉法、龙格-库塔法、阿达姆斯方法,在此基础上推出一阶微分方程组与高阶方程初值问题的 数值解法;此外,还将简要介绍求解二阶常微分方程值问题的差分方法、试射法。
第一节 欧拉法求解常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy(1)的数值解,就是寻求准确解)(x y 在一系列离散节点 <<<<<n x x x x 210 上的近似值 ,,,,,210n y y y y{}n y 称为问题的数值解,数值解所满足的离散方程统称为差分格式,1--=i i ix x h 称为步长,实用中常取定步长。
显然,只有当初值问题(1)的解存在且唯一时,使用数值解法才有意义,这一前提条件由下 面定理保证。
定理 设函数()y x f ,在区域+∞≤≤-∞≤≤y b x a D ,:上连续,且在区域D 内满足李普希兹(Lipschitz)条件,即存在正数L ,使得对于R 内任意两点()1,y x 与()2,y x ,恒有()()2121,,y y L y x f y x f -≤-则初值问题(1)的解()x y 存在并且唯一。
一、欧拉法(欧拉折线法)若将函数)xy 在点nx处的导数()n x y '用两点式代替, 即()hx y x y x y n n n )()(1-≈'+,再用n y 近似地代替()n x y ,则初值问题(1)变为⎩⎨⎧==++=+ ,2,1,0),()(001n x y y y x hf y y n n n n(2)(2)式就是著名的欧拉(Euler)公式。
以上方法称 为欧 拉法或欧拉折线法。
i.常微分方程初值问题数值解法i.1 常微分方程差分法考虑常微分方程初值问题:求函数()u t 满足(,), 0du f t u t T dt=<≤ (i.1a ) 0(0)u u = (i.1b)其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的函数,0u 和T 是给定的常数。
我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-∀∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。
通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。
本章讨论常微分方程最常用的近似数值解法--差分方法。
先来讨论最简单的Euler 法。
为此,首先将求解区域[0,]T 离散化为若干个离散点:0110N N t t t t T -=<<<<= (i.3) 其中n t hn =,0h >称为步长。
在微积分课程中我们熟知,微商(即导数)是差商的极限。
反过来,差商就是微商的近似。
在0t t =处,在(i.1a )中用向前差商10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到1000(,)u u hf t u -=一般地,我们有1Euler (,), 0,1,,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。
下面我们用数值积分法重新导出 Euler 法以及其它几种方法。
为此,在区间1[,]n n t t +上积分常微分方程(i.1a ),得11()()(,())n n t n n t u t u t f t u t dt ++=+⎰ (i.5)用各种数值积分公式计算(i.5)中的积分,便导致各种不同的差分法。
第8章常微分方程的数值解法8.4单步法的收敛性与稳定性8.4.1相容性与收敛性上面所介绍的方法都是用离散化的方法,将微分方程初值问题化为差分方程初值问题求解的.这些转化是否合理?即当h →∞时,差分方程是否能无限逼近微分方程,差分方程的解n y 是否能无限逼近微分方程初值问题的准确解()n y x ,这就是相容性与收敛性问题.用单步法(8.3.14)求解初值问题(8.1.1),即用差分方程初值问题100(,,)()n n n n y y h x y h y x y ϕ+=+⎧⎨=⎩(8.4.1)的解作为问题(8.1.1)的近似解,如果近似是合理的,则应有()()(,(),)0 (0)y x h y x x y x h h hϕ+--→→(8.4.2)其中()y x 为问题(8.1.1)的精确解.因为0()()lim ()(,)h y x h y x y x f x y h→+-'==故由(8.4.2)得lim (,,)(,)h x y h f x y ϕ→=如果增量函数(,(),)x y x h ϕ关于h 连续,则有(,,0)(,)x y f x y ϕ=(8.4.3)定义8.3如果单步法的增量函数(,,)x y h ϕ满足条件(8.4.3),则称单步法(8.3.14)与初值问题(8.1.1)相容.通常称(8.4.3)为单步法的相容条件.满足相容条件(8.4.3)是可以用单步法求解初值问题(8.1.1)的必要条件.容易验证欧拉法和改进欧拉法均满足相容性条件.一般地,如果单步法有p 阶精度(1p ≥),则其局部截断误差为[]1()()(,(),)()p y x h y x h x y x h O h ϕ++-+=上式两端同除以h ,得()()(,,)()p y x h y x x y h O h hϕ+--=令0h →,如果(,(),)x y x h ϕ连续,则有()(,,0)0y x x y ϕ'-=所以1p ≥的单步法均与问题(8.1.1)相容.由此即得各阶龙格-库塔法与初值问题(8.1.1)相容.定义8.4一种数值方法称为是收敛的,如果对于任意初值0y 及任意固定的(,]x a b ∈,都有lim () ()n h y y x x a nh →==+其中()y x 为初值问题(8.1.1)的精确解.如果我们取消局部化假定,使用某单步法公式,从0x 出发,一步一步地推算到1n x +处的近似值1n y +.若不计各步的舍入误差,而每一步都有局部截断误差,这些局部截断误差的积累就是整体截断误差.定义8.5称111()n n n e y x y +++=-为某数值方法的整体截断误差.其中()y x 为初值问题(8.1.1)的精确解,1n y +为不计舍入误差时用某数值方法从0x 开始,逐步得到的在1n x +处的近似值(不考虑舍入误差的情况下,局部截断误差的积累).定理8.1设单步法(8.3.14)具有p 阶精度,其增量函数(,,)x y h ϕ关于y 满足利普希茨条件,问题(8.1.1)的初值是精确的,即00()y x y =,则单步法的整体截断误差为111()()p n n n e y x y O h +++=-=证明由已知,(,,)x y h ϕ关于y 满足利普希茨条件,故存在0L >,使得对任意的12,y y 及[,]x a b ∈,00h h <≤,都有1212(,,)(,,)x y h x y h L y y ϕϕ-≤-记1()(,(),)n n n n y y x h x y x h ϕ+=+,因为单步法具有p 阶精度,故存在0M >,使得1111()p n n n R y x y Mh ++++=-≤从而有111111111()()()(,(),)(,,)()(,(),)(,,)n n n n n n n p n n n n n n p n n n n n n e y x y y x y y y Mh y x h x y x h y h x y h Mh y x y h x y x h x y h ϕϕϕϕ+++++++++=-≤-+-≤++--≤+-+-1(1)p nMh hL e +≤++反复递推得11111101110(1)(1)1(1)(1)(1)(1)1(1)p p n n n p n n p n e Mh hL Mh hL e hL hL Mh hL e hL Mh hL e hL+++-+++++⎡⎤≤++++⎣⎦⎡⎤≤+++++++⎣⎦+-≤++因为00()y x y =,即00e =,又(1)n h b a +≤-,于是ln(1)1()(1)(1)b a b a hL n L b a h h hL hL e e --++-+≤+=≤所以()11()p L b a p n M e h e O h L -+⎡⎤≤-=⎣⎦推论设单步法具有p (1p ≥)阶精度,增量函数(,,)x y h ϕ在区域G :, , 0a x b y h h ≤≤-∞<<+∞≤≤上连续,且关于y 满足利普希茨条件,则单步法是收敛的.当(,)f x y 在区域:,D a x b y ≤≤-∞<<+∞上连续,且关于y 满足利普希茨条件时,改进欧拉法,各阶龙格-库塔法的增量函数(,,)x y h ϕ在区域G 上连续,且关于y 满足利普希茨条件,因而它们都是收敛的.关于单步法收敛的一般结果是:定理8.2设增量函数(,,)x y h ϕ在区域G 上连续,且关于y 满足利普希茨条件,则单步法收敛的充分必要条件是相容性条件(8.4.3).8.4.2稳定性稳定性与收敛性是两个不同的概念,收敛性是在假定每一步计算都准确的前提下,讨论当步长0h →时,方法的整体截断误差是否趋于零的问题.而稳定性则是讨论舍入误差的积累能否对计算结果有严重影响的问题.定义8.6若一种数值方法在节点值n y 上有一个大小为δ的扰动,于以后各节点()m y m n >上产生的偏差均不超过δ,则称该方法是稳定的.我们以欧拉法为例进行讨论.假设由于舍入误差,实际得到的不是n y 而是n n n y y δ=+,其中n δ是误差.由此再计算一步,得到1(,)n n n n y y hf x y +=+把它与不考虑舍入误差的欧拉公式相减,并记111n n n y y δ+++=-,就有[]1(,)(,)1(,)n n n n n n y n nh f x y f x y hf x δδηδ+⎡⎤=+-=+⎣⎦其中y f f y∂=∂.如果满足条件1(,)1y n hf x η+≤,(8.4.4)则从n y 到1n y +的计算,误差是不增的,可以认为计算是稳定的.如果条件(8.4.4)不满足,则每步误差将增大.当0y f >时,显然条件(8.4.4)不可能满足,我们认为问题本身具有先天的不稳定性.当0y f <时,为了满足稳定性要求(8.4.4),有时h 要很小.一般的,稳定性与方法有关,也与步长h 的大小有关,当然也与方程中的(,)f x y 有关.为简单起见,通常只考虑数值方法用于求解模型方程的稳定性,模型方程为y y λ'=(8.4.5)其中λ为复数.一般的方程可以通过局部线性化转化为模型方程,例如在(,)x y 的邻域(,)(,)(,)()(,)()x y y f x y f x y f x y x x f x y y y '==+-+-+略去高阶项,再作变量替换就得到u u λ'=的形式.对于模型方程(8.4.5),若Re 0λ>,类似以上分析,可以认为方程是不稳定的.所以我们只考虑Re 0λ<的情形,这时不同的数值方法可能是数值稳定的或者是数值不稳定的.当一个单步法用于试验方程y y λ'=,从n y 计算一步得到1()n n y E h y λ+=(8.4.6)其中()E h λ依赖于所选的方法.因为通过点(,)n n x y 试验方程的解曲线(它满足,()n n y y y x y λ'==)为[]exp ()n n y y x x λ=-,而一个p 阶单步法的局部截断误差在()n n y x y =时有1111()()p n n n T y x y O h ++++=-=,所以有1exp()()()p n n y h E h y O h λλ+-=(8.4.7)这样可以看出()E h λ是h e λ的一个近似值.由(8.4.6)可以看到,若n y 计算中有误差ε,则计算1n y +时将产生误差()E h λε,所以有下面定义.定义8.7如果(8.4.6)式中,()1E h λ<,则称单步法(8.3.14)是绝对稳定的.在复平面上复变量h λ满足()1E h λ<的区域,称为方法(8.3.14)的绝对稳定区域,它与实轴的交称为绝对稳定区间.在上述定义中,规定严格不等式成立,是为了和线性多步法的绝对稳定性定义一致.事实上,()1E h λ=时也可以认为误差不增长.(1)欧拉法的稳定性欧拉法用于模型方程(8.4.5),得1(1)n n y h y λ+=+,所以有()1E h h λλ=+.所以绝对稳定条件是11h λ+<,它的绝对稳定区域是h λ复平面上以(1,0)-为中心的单位圆,见图8.3.而λ为实数时,绝对稳定区间是(2,0)-.Im()h λRe()h λ2-1-O 图8.3欧拉法的绝对稳定区域(2)梯形公式的稳定性对模型方程,梯形公式的具体表达式为11()2n n n n h y y y y λλ++=++,即11212n nh y y h λλ++=-,所以梯形公式的绝对稳定区域为12112h h λλ+<-.化简得Re()0h λ<,因此梯形公式的绝对稳定区域为h λ平面的左半平面,见图8.4.特别地,当λ为负实数时,对任意的0h >,梯形公式都是稳定的.Im()h λRe()h λO 图8.4梯形公式的绝对稳定区域(3)龙格-库塔法的稳定性与前面的讨论相仿,将龙格-库塔法用于模型方程(8.4.5),可得二、三、四阶龙格-库塔法的绝对稳定区域分别为211()12h h λλ++<23111()()126h h h λλλ+++<2341111()()()12624h h h h λλλλ++++<当λ为实数时,二、三、四阶显式龙格-库塔法的绝对稳定区域分别为20h λ-<<、2.510h λ-<<、 2.780h λ-<<.例8.5设有初值问题21010101(0)0xy y x x y ⎧'=-≤≤⎪+⎨⎪=⎩用四阶经典龙格-库塔公式求解时,从绝对稳定性考虑,对步长h 有何限制?解对于所给的微分方程有2100,(010)1f x x y xλ∂==-<≤≤∂+在区间[0,10]上,有201010max ||max51t x x λ<<==+由于四阶经典龙格-库塔公式的绝对稳定区间为 2.7850h λ-<<,则步长h 应满足00.557h <<.。
常微分方程数值解算法常微分方程是在物理、经济、生物、环境科学等领域中最基本的数学工具之一。
为了解决实际问题,需要求解这些方程的解。
但是,大部分常微分方程是无法求得解析解的,因此需要通过数值方法来求解。
在数值方法中,其基本思想是将微分方程化为一个逐步求解的问题。
通过离散化得到一个差分方程,然后通过数值方法求解这个差分方程。
本文将就常微分方程的数值解算法进行介绍和探讨。
1.欧拉方法欧拉方法是最基本的一种常微分方程数值解方法。
它的基本思想是将微分方程化为差分方程。
欧拉方法是一种一阶的显式方法。
通过计算当前点处的斜率即可进行逼近。
如下所示:y(t + h) = y(t) + hf(t, y(t))其中,h是步长。
f(t, y)是微分方程右边的函数。
欧拉方法的由来是其是以欧拉为名的。
这种方法的优点是简单明了,易于理解。
但是,其与真实解的误差随着步长增大而增大,误差不精,计算速度较慢等缺点也使其并非一个完美的数值解方法。
2.改进的欧拉方法改进的欧拉方法被认为是欧拉方法的一个进化版。
它是二阶数值方法,明显优于欧拉方法。
其基本思想是通过步长的平均值h/2来进行逼近。
y(t + h) = y(t) + h[ f(t, y(t)) + f(t + h, y(t) + hf(t, y(t))/2) ]其优点是能够更准确地逼近微分方程的解,只比欧拉方法多计算一些,但是其步长的误差随着步长增大而减小,并且计算速度比欧拉方法稍快。
因此,改进的欧拉方法是比欧拉方法更好的方法,效果相对较好。
3.龙格库塔方法龙格库塔方法是一种经典的数值解方法。
对于非刚性的方程可以得到较为精确的数值解。
其算法思路是利用多阶段迭代的方式,求解一些重要的插值点,并利用插值点的结果来逼近方程的解。
其公式如下:y(t + h) = y(t) + (h/6)*(k1 + 2k2 + 2k3 + k4)其中,k1 = f(t, y(t))k2 = f(t + h/2, y(t) + h/2k1)k3 = f(t + h/2, y(t) + h/2k2)k4 = f(t + h, y(t) + hk3)其优点是更精确,计算速度更快。