人教版有理数—有理数加减法
- 格式:ppt
- 大小:1.11 MB
- 文档页数:35
第 2 讲有理数的加减知识定位讲解用时:3分钟A、适用范围:人教版初一,基础一般;B、知识点概述:本讲义主要用于人教版初一新课,本节课我们要学习有理数的加法,有理数的减法;核心部分是有理数加减法的混合运算。
知识梳理讲解用时:20分钟有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.3.运算律:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点诠释:交换加数的位置时,不要忘记符号.课堂精讲精练【例题1】我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.(﹣5)+(﹣2)B.(﹣5)+2 C.5+(﹣2)D.5+2【答案】C【解析】解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2),故选:C.讲解用时:3分钟解题思路:由图1可以看出白色表示正数,黑色表示负数,观察图2即可列式.教学建议:引导学生读懂题目信息是解题的关键.1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:.要点诠释:将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.()a b a b-=+-有理数的减法难度: 3 适应场景:当堂练习例题来源:无【练习1.1】在下列执行异号两数相加的步骤中,错误的是()①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④【答案】D【解析】解:执行异号两数相加的步骤:①求两个有理数的绝对值,正确;②比较两个有理数绝对值的大小,正确;③将绝对值较大数的符号作为结果的符号,正确;④将两个有理数绝对值的和作为结果的绝对值,错误.故选:D.讲解用时:2分钟解题思路:根据有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而判断即可.教学建议:强调有理数加减法的运算法则难度: 3 适应场景:当堂例题例题来源:无【例题2】如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1B.0C.1D.3【答案】C【解析】解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.讲解用时:3分钟解题思路:根据三个数的和为依次列式计算即可求解.教学建议:根据表格,先求出三个数的和是解题的关键.难度: 3 适应场景:当堂例题例题来源:无【练习2.1】下列说法:①所有有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数包括整数和分数;④两数相加,和一定大于任意一个加数.()A.3个B.2个C.1个D.0个【答案】B【解析】解:①所有有理数都能用数轴上的点表示,正确;②符号不同的两个数互为相反数,相加为零此时互为相反数,故此选项错误;③有理数包括整数和分数,正确;④两数相加,和一定大于任意一个加数,两负数相加则不同,故此选项错误,故选:B.讲解用时:2分钟解题思路:直接利用互为相反数以及有理数的定义和有理数加减运算法则分别判断得出答案.教学建议:此题主要考查了有理数的加法运算以及相反数的定义等知识,正确掌握运算法则是解题关键.难度: 3 适应场景:当堂练习例题来源:无【例题3】计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)【答案】0【解析】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.讲解用时:3分钟解题思路:原式结合后,相加即可求出值.教学建议:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.难度: 3 适应场景:当堂练习例题来源:无【练习3.1】已知a为正数,b为负数,且|a|=4,|b|=6,求a+b的值.【答案】﹣2【解析】解:因为a为正数,|a|=4,所以a=4,因为b为负数,|b|=6,所以b=﹣6,所以a+b=4+(﹣6)=﹣2.讲解用时:3分钟解题思路:先依据绝对值的性质求得a、b的值,最后依据加法法则进行计算即可.教学建议:巩固有理数的加法、绝对值的性质,熟练掌握相关法则是解题的关键.难度: 3 适应场景:当堂例题例题来源:无【例题4】下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8:00.(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14【答案】(1)现在纽约时间是晚上7点;(2)不合适.【解析】解:(1)现在纽约时间是晚上7点;(2)现在巴黎时间是凌晨1点,不合适.讲解用时:3分钟解题思路:(1)根据时差求出纽约时间即可;(2)计算出巴黎的时间,即可做出判断.教学建议:熟练掌握运算法则是解本题的关键.难度: 3 适应场景:当堂例题例题来源:无【练习4.1】在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.【答案】(1)(2)x+y=13【解析】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.讲解用时:4分钟解题思路:(1)根据三个数的和为2+3+4=9,依次列式计算即可求解;(2)先求出下面中间的数,进一步得到右上面的数,从而得到x、y的值,相加可求x+y的值.教学建议:根据表格,先求出三个数的和是解题的关键,也是本题的突破口.难度: 3 适应场景:当堂练习例题来源:无【例题5】列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.【答案】(1)﹣2013;(2)﹣3【解析】解:(1)根据题意知乙数为﹣2020﹣(﹣7)=﹣2020+7=﹣2013;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.讲解用时:3分钟解题思路:(1)根据题意知乙数为﹣2020﹣(﹣7),计算可得;(2)由题意得x=﹣5,y=x﹣(﹣7)=﹣5+7=2,再代入x﹣(﹣y)计算可得.教学建议:本题主要考查有理数的加法,解题的关键是根据题意列出算式并熟练掌握有理数的加减运算法则.难度: 3 适应场景:当堂例题例题来源:无【练习5.1】已知有理数a,b,c在数轴上的位置如图所示,且|a|=1,|b|=2,|c|=4.求3b+2a ﹣c的值.【答案】8.【解析】解:∵a、c在原点的左侧,b在原点的右侧,∴b>0,c<0,a<0,∵|a|=1,|b|=2,|c|=4,∴a=﹣1,b=2,c=﹣4,∴3b+2a﹣c=6﹣2+4=8.讲解用时:3分钟解题思路:根据a 、b 、c 在数轴上的位置可知b >0,c <0,a <0,再根据|a|=1,|b|=2,|c|=4可求出a 、b 、c 的值,代入3b+2a ﹣c 进行计算即可. 教学建议:这题考查的是数轴的特点及绝对值的性质,属较简单题目. 难度: 3 适应场景:当堂练习 例题来源:无【例题6】某单位一周中收支情况如下:524.5+元,274.3-元,490+元,100-元,29.7+元,123.6-元,232.1-元.问该单位这一周,总共收入多少元?总共支出多少元?收支相抵后,余额是多少元?【答案】共收入1044.2元,共支出730元,收支相抵后,余额为314.2元.【解析】()524.5++()490+()+29.7=1044.2+解:共收入为:元,()274.3+-()100-()+123.6-()+232.1730-=- 共支出为:元()2.3147302.1044=-+ 收支相抵为:元.讲解用时:3分钟解题思路:利用收入与支出的概念和有理数的混合运算即可解决教学建议:引导学生理解有理数的加法的实际应用.难度: 3 适应场景:当堂例题 例题来源:无【练习6.1】(1)()()()()()1789614------+--;(2)21513263⎛⎫⎛⎫⎛⎫⎛⎫--+---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)()()1112 6.5 6.3625⎛⎫⎡⎤---+--- ⎪⎢⎥⎝⎭⎣⎦. 【答案】(1)8;(2)0;(3) 6.1-.【解析】()()()()()178961417896148------+--=-++-+=(1);215121151155503263332632666⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+----=-+-+=--+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2); ()111112 6.5 6.3612 6.412 6.4 6.12522⎛⎫⎡⎤⎛⎫⎛⎫=---+-=---=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭原式(3).讲解用时:4分钟 解题思路:利用有理数减法的运算法则即可解决,括号前面是负号时,去括号要注意变号.教学建议:注意跟学生强调变号问题难度: 3 适应场景:当堂练习 例题来源:无【例题7】 如果2113x ⎛⎫+-= ⎪⎝⎭,那么x 等于______. 【答案】322=x 或223x =-. 【解析】2113x ⎛⎫+-= ⎪⎝⎭解:因为,2211233x ⎛⎫=--= ⎪⎝⎭所以, 322=x 223x =-所以或.讲解用时:3分钟解题思路:利用绝对值的代数意义和有理数的加减法运算法则即可求出结果 教学建议:熟练掌握绝对值的代数意义是解本题的关键.难度: 3 适应场景:当堂例题 例题来源:无【练习7.1】若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求m+cd+的值.【答案】(1)a+b=0,cd=1,m=±2.(2)3或﹣1.【解析】解:(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2, ∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3; 当m=﹣2时,m+cd+=﹣2+1+0=﹣1. 讲解用时:4分钟解题思路:(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.教学建议:解决本题的关键是熟记倒数、相反数、绝对值的意义.难度: 3 适应场景:当堂练习 例题来源:无课后作业【作业1】如果规定运算()()23a b a b ⊗=---,求73124⎛⎫⊗- ⎪⎝⎭的值. 【答案】1253- 【解析】7373795=2331241246412⎡⎤⎛⎫⎛⎫⎛⎫⊗--⨯--⨯-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 讲解用时:4分钟难度: 2 适应场景:练习题 例题来源:无【作业2】计算:123456789101112201720182019+--++--++--+++-.【答案】0.【解析】123456789101112201720182019+--++--++--+++-()()()()504123456789101112201720182019=+--++--++--+++-对括号 45042016=-⨯+20162016=-+0=.讲解用时:4分钟难度: 4 适应场景:练习题 例题来源:无【作业3】 计算:21150543236-+---. 【答案】31. 【解析】211521154543236322=-+--=-+--原式2111543223=-+-= 讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无。
人教版七年级上册数学1.3.2有理数的加减法知识点1:有理数减法法则(重点)①有理数减法法则:减去一个数,等于加上这个数的相反数.字母表达式为: a –b=a + (–b)②有理数减法运算的四种情况:(1)任意一个数减去一个正数等于加上一个负数,如a-b=a+(-b);(2)任意一个数减去一个负数等于加上一个正数,如a-(-b)=a+b;(3)任何一个数减去0仍得这个数,如a-0=a;(4)0减去一个数等于这个数的相反数,如0-a=-a.当堂练习1 计算:(1)(–3)–(–5); (2)0–7; (3)7.2–(–4.8).方法总结1.有理数减法的运算步骤:①根据有理数的减法法则将减法运算变为加法运算;②根据有理数的加法法则和运算律计算出结果.2. 有理数的减法是有理数加法的逆运算,在转化过程中,应注意“两变一不变”,即减法变加法、减数变成它的相反数、被减数不变.随堂检测1. 填空:(1)–4 –(–3.2)= –4+ = ;(2)(–35)–(+12)= .2. 计算(1)6–9;(2)(+4)–(–7);(3)(–5)–(–8) ;(4)(–4)–9;(5)0–(–5);(6)0–5.3.已知│a│= 5,│b│= 3,且a>0,b<0,则a–b= .4.若x是2的相反数,|y|=3,则x–y的值是()。
A.–5 B.1C.–1或5 D.1或–55. –3–(–2)的值是()。
A.–1 B.1 C.5 D.–56. 比–1小2的数是()。
A.3 B.1 C.–2 D.–37.(1)(+7) –(–4); (2)(–0.45)–(–0.55);(3)0–(–9);(4)(–4)– 0 ;(5)(–5)–(+3).8.填空:(1)温度4℃比–6℃高________℃;(2)温度–7℃比–2℃低_________℃;(3)海拔高度–13m比–200m高_______m;(4)从海拔20m到–40m,下降了______m.9. 判断并说明理由.(1)在有理数的加法中,两数的和一定比加数大.()(2)两个数相减,被减数一定比减数大.()(3)两数之差一定小于被减数.()(4)0减去任何数,差都为负数.()(5)较大的数减去较小的数,差一定是正数.()10.世界上最高的山峰是珠穆朗玛峰,其海拔高度是8844 米,吐鲁番盆地的海拔高度是–155 米,两处高度相差多少米?11. 以地面为基准,A处高+2.5 m,B处高–17.8 m,C处高–32.4 m.问:(1)A处比B处高多少?(2)B处和C处哪个地方高?高多少?(3)A处和C处哪个地方低?低多少?12.已知|x|=3,|y|=5,且|x–y|=|x|+|y|,求x+y和x–y的值.知识点2:有理数的加减混合运算(难点)(1)运用减法法则,将有理数加减混合运算中的减法转化为加法,转化为加法后的式子是几个正数、负数的和的形式;(2)运用加法交换律、加法结合律,使运算简便。
人教版七年级数学上册有理数的加减法第三讲有理数的加减法知识点一:有理数的加法有理数的加法有以下规律:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.3.一个数同相加,仍得这个数。
例如:1.计算-2+3的结果是1.2.下列各式的值等于5的是-9+4.3.两个数的和为零,则这两个数互为相反数。
4.一个数是15,另一个数比15的相反数大4,则两个数的和是26.5.有理数的加法规律是:两个负数相加,取负号,把绝对值相减;零加正数,和为正数;负数加正数,和为负数;两正数相加,和为正数。
知识点二:有理数的加法运算律有理数的加法运算律有以下规律:1.加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a。
2.加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即(a+b)+c=a+(b+c)。
在运算时,一定要根据需要灵活运用以下规律,以达到简化运算的目的:1.互为相反数的两个数可先相加——相反数结合法。
2.同分母的分数可先相加——同分母结合法。
3.几个数相加得整数时,可先相加——凑整法。
4.符号相同的数可先相加——同号结合法。
5分数可拆成整数和真分数两部分再相加,这是同形结合法的应用。
例如,9、7+(-3)+(-4)+18+(-11)=(7+8)+[(-3)+(-4)+(-11)]。
例9的应用了加法结合律。
七年级(1)班一学期班费收支情况如下(收入为正):+250元,-55元,-120元,+7元,则该班期末时班费结余为82元。
若m、n互为相反数,则m+5+n=0;已知a+c=-2013,b+(-d)=2014,则a+b+c+(-d)=-1.利用加法运算律运算:1)(-5)+3+(+5)+(-2);2)(-3)+(+) +(-0.5)+(1);3)4.5+(-2.5)+9+(-15)+2.例13,计算-10-8所得的结果是-18.下列计算错误的是A。
人教版初一数学上册有理数的加减法知识点有理数是初一开学的第一课,也是很多同学学习的重难点,为大家整理了有理数的加减法知识点,供大家参考和学习,希望对大家的学习和成绩的提高有所帮助。
一、正确理解有理数的加法的法则有理数加法的法则是:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)一个数同0 相加,仍得这个数.这里的难点是异号两数相加.所以要特别注意异号两数相加,在确定符号后,施行的是绝对值的减法.另外,此时的-”号有两重意义:一是表示性质,如负数、相反数;二是运算符号,表示减去,所以要根据具体情况去正确理解.+”号也是一样.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).二、正确理解有理数减法的法则,知道减法是加法的逆运算有理数减法的法则是:减去一个数,等于加上这个数的相反数.可见,减法是加法的逆运算,就是说,有理数的减法实际上是转化为加法来计算的.有了有理数减法的法则,这样加减法便统一成加法了.这时,把加减法统一写成加法的式子叫做代数和.如,(-3)+(+6)+(-4)+(-7)+(+5),把其中的加号省略,便写成-3+6-4-7+5.计算时,要把它看成-3、+6、-4、-7、+5 的和,简写后的+”、-”都是性质符号,它们与后面的数字是一个不可分割的整体,当我们要交换加数的位置时,性质符号也要跟着带走,如,-3+6-4- 7+5=-3-4-5+6+5,而不能写成-3+4+7-6+5.三、明确有理数加法的运算步骤有理数加法的运算步骤可分为两步:一是确定和的符号;二是确定和的绝对值.如。
计算(-4)+(-7)是同号两数相加且两个加数是负号,所以结果是-”的,再把-4 的绝对值与-7 的绝对值相加,结果是-11;又如,计算(+3)+(-5)是异号两数相加,取绝对值较大的-5 的符号,所以结果是-”的,,再用绝对值较大的5 减去绝对值较小的3,结果是-2.四、注意加法运算的灵活运用有理数加减法的运算律主要是指:1,加法交换律.即两个数相加,交换加数的位置,和不变.用字母表示为:a+b=b+a.2,加法结合律.即三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用字母表示为:(a+b)+c=a+(b+c).五、课后练习1.一个数是3,另一个数比它的相反数大3,则这两个数的和为( )A. 3B. 0C. -3D. ±32. 计算2-3 的结果是( )A. 5B. -5C. 1D. -13. 哈市4 月份某天的最高气温是5℃,最低气温是-3℃,那幺这天的温差(最高气温减最低气温)是( )A. -2℃B. 8℃C. -8℃D. 2℃4. 下列说法中正确的是( )A. 若两个有理数的和为正数,则这两个数都为正数B. 若两个有理数的和为负数,则这两个数都为负数C. 若两个数的和为零,则这两个数都为零D. 数轴上右边的点所表示的数减去左边的点所表示的数的差是正数有理数的加减法知识点大家都掌握了吗?有理数知识点已经出炉,大家在学习新知识时一定要注意复习。