九年级周测一
- 格式:doc
- 大小:71.06 KB
- 文档页数:2
第二十九章投影与视图周周测1一、填空题1.物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是_________现象.2.形成投影应具备的条件有: _________、_________、.二、选择题3.两个不同长度的直立的物体在同一时刻、同一地点的太阳光下得到的投影()A.长度相等B.长的较长C.短的较长D.以上都不对4.皮影戏是在哪种光照射下形成的()A.灯光B.太阳光C.平行光D.以上都不是5.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的6.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是()7.如图,下面是北半球一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序进行排列,正确的是()A.③④②①B.②④③①C.③④①②D.③①②④8.如图,晚上小亮在路灯下散步,他从A处向路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短9.下图中灯与影子的位置最合理的是()10.如图,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是()A.△DCEB.四边形ABCDC.△ABFD.△ABE11.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1 m,继续往前走3 m到达E处时,测得影子EF的长为2 m.已知王华的身高是1.5 m,那么路灯A的高度AB等于()A.4.5 mB.6 mC.7.2 mD.8 m12.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明和小强的影子一样长D.无法判断谁的影子长三、解答题13.把下列物体与它们的投影(如图所示)用线连接起来.14.如图,竹竿和旗杆在同一平面直立着,其中竹竿在太阳光下某一时刻的影子已画出.(1)用线段表示同一时刻旗杆在太阳光下的影子;(2)比较竹竿与旗杆影子的长短;(3)图中是否出现了相似三角形?15.如图,小赵、小王、小李三人站在路灯下,他们在路灯下的影子在同一直线上.(1)确定图中路灯灯泡O所在的位置;(2)在图中画出表示小赵身高的线段.16.如图,下面两幅图分别是两棵小树在同一时刻的影子.你能判断出哪幅图是灯光下形成的,哪幅图是太阳光下形成的吗?17.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是___________投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.18.如图,花丛中有一根路灯杆AB,在光线下小明在点D处的影长DE=3 m,沿BD方向行走到达点G,测得DG=5 m,这时小明的影长GH=5 m,如果小明的身高为1.7 m,求路灯杆AB的高度.第二十九章投影与视图周周测1试题答案1.投影2.投影线;物体;投影面3.B4.A5.A6.A7.C8.A9.D10.D11.B 12.D13.解:如图所示.14.解:(1)如图,线段AB即为旗杆的影子.(2)由图可知,旗杆的影子长,竹竿的影子短.(3)出现了相似三角形,即旗杆与其影子及太阳光线构成的△ABC和竹竿与其影子及太阳光线构成的△DEF相似.15.解:如图所示.(1)点O为路灯灯泡所在的位置.(2)线段BC表示小赵的身高.16.解:如图,过树的顶端和对应影子的顶端分别作直线.由上图可知,图①为太阳光下形成的,图②为灯光下形成的.17.解:(1)平行(2)如图,连接AE,CG,过点E作EM△AB于M,过点G作GN△CD于N,则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.所以AM=10-2=8.由平行投影可知,=,即=,解得CD=7.即电线杆的高度为7米.18.解:依题意,得AB△BH,CD△BH,FG△BH.在Rt△ABE和Rt△CDE中,△AB△BH,CD△BH,△CD△AB,△Rt△ABE△Rt△CDE,△=.同理可得Rt△ABH△Rt△FGH,△=.又△CD=FG=1.7 m,△=.△DE=3 m,DG=5 m,GH=5 m,△=,解得BD=7.5m.△AB=·(DE+BD)==5.95(m).则路灯杆AB的高度为5.95 m.第二十九章投影与视图周周测2一、选择题1.皮影戏是在哪种光照射下形成的()A.灯光B.太阳光C.平行光D.都不是2.下列各种现象属于中心投影现象的是()A.上午10点时,走在路上的人的影子B.晚上10点时,走在路灯下的人的影子C.中午用来乘凉的树影D.升国旗时,地上旗杆的影子3.小刚走路时发现自己的影子越走越长,这是因为()A.从路灯下走开,离路灯越来越远B.走到路灯下,离路灯越来越近C.人与路灯的距离与影子长短无关D.路灯的灯光越来越亮4.如图,AB,CD是两根木杆,它们在同一平面内的同一直线MN上,则下列有关叙述正确的是()A.若射线BN正上方有一盏路灯,则AB,CD的影子都在射线BN上;B.若线段BD正上方有一盏路灯,则A B的影子在射线BM上,CD的影子在射线DN上;C.若在射线DN正上方有一盏路灯,则AB,CD的影子都在射线BN上;D.若太阳处在线段BD的正上方,则AB,CD的影子位置与选项B中相同.5.在一盏路灯的周围有一圈栏杆,则下列叙述中不正确的是()A.若栏杆的影子落在围栏里,则是在太阳光照射下形成的B.若这盏路灯有影子,则说明是在白天形成的影子C.若所有的栏杆的影子都在围栏外,则是在路灯照射下形成的D.若所有的栏杆的影子都在围栏外,则是在太阳光照射下形成的二、填空题6.两个物体映在地上的影子有时在同侧,有时在异侧,则这可能是________投影.7._______和_______都是在灯光照射下形成的影子.8.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB 在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_______.三、解答题9.说出平行投影与中心投影的异同.10.点光源发出的光线照射到物体上,会形成影子,那么在手术室里有4位医生,会有几个影子?说明你的理由.11.如图,BE,DF是甲,乙两人在路灯下形成的影子, 请在图中画出灯泡的位置.12.如图,在圆桌的正上方有一盏吊灯,在灯光下,圆桌在地板上的投影是面积为4 m2的圆.已知圆桌的高度为1m,圆桌面的半径为0.5m, 试求吊灯距圆桌面的距离.13.在太阳光下两根竹竿直立在地上,如图所示是其中一根竹竿的位置和它在地面上的投影,以及另一根竹竿在地面上的投影,请画出第二根竹竿的位置( 不写画法).14.请在图中画出灯泡的位置,并且画出形成影子MN的小木杆.15.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米, 它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8 米,求木杆PQ的长度.16.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.17.如图,教室窗户的高度AF为2.5米,遮阳篷外端一点D到窗户上椽的距离为AD,某一时刻太阳光从教室窗户射入室内,与地面的夹角 BPC为30°,PE为窗户的一部分在教室地面所形成的影子且长为3米,试求AD的长度.(结果保留根号)。
山西大同**学校选编练习周测一主备人:教研组长:一、选择题1.下列各式中,y是x的二次函数的是 ( )A.xy+x²=1B.x²−y+2=0D.y²−4x=3C.y=1x22.函数 y=2x(x--3)中,二次项系数是 ( )A.2B.2x²C. -6D. --6x3.在求解一元二次方程x²−2x−2=0的两个根x₁和x₂时,某同学使用电脑软件绘制了二次函数y= x²−2x−2的图象,然后通过观察抛物线与x轴的交点,得出结果.该同学采用的方法体现的数学思想是( )A.类比思想B.函数思想C.数形结合思想D.公理化思想x2图象的说法:①图象是一条抛物线;②开口向下;③对称轴是 y轴;④4.下列关于二次函数y=−12顶点坐标为(0,0).其中正确的有( )A.4个B.3个C.2个D.1个5.将抛物线y=3x²先向右平移2个单位长度,再向上平移3个单位长度,得到的抛物线的解析式是 ()A.y=3(x+2)²+3B.y=3(x+2)²−3C.y=3(x−2)²−3D.y=3(x−2)²+36.二次函数图象上部分点的坐标对应值列表如下,则该函数图象的对称轴是 ( )x --3 --2 --1 0 1 ...y ... -17 -17 -15 -11 --5 ...A.直线x=-3B.直线x=-2.5C.直线x=-2D.直线x=07.已知二次函数y=−x²+2x+4,当-2≤x≤3时,y的取值范围是( )A.-4≤y≤1B. y≤5C.1≤y≤5D.-4≤y≤58.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax²+bx+c(a≠0).若此炮弹在第7 秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是 ( )A.第8秒B.第10秒C.第12秒D.第15秒9.二次函数的图象如图所示,对称轴为直线. x=1,给出下列结论:①abc<0 ;②b²>4ac;③4a+2b+c<0;④2a+b=0.其中正确的结论有 ( )A.1个B.2个C.3个D.4个10.在同一平面直角坐标系中,二次函数y=ax²+bx与一次函数. y= bx-a的图象可能是 ( )二、填空题11.已知函数y=(2−k)x²+kx+1是二次函数,则k满足 .12.已知函数y=ax²+bx+c,当x=3时,函数取最大值4,当. x=0时,y=-14,,则函数解析式为.13.已知点 A(a,b)在二次函数y=−x²+8的图象上,则2a−b的最小值为 .14.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门,已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为m².(4题图)(5题图)15.已知二次函数y=(x−2a)²+(a−1)(a为常数),当 a 取不同的值时,其图象构成一个“抛物线系”.如图所示的分别是当( a=−1,a=0. a=1,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是 .三.解答题16.如图,一次函数. y₁=kx+b与二次函数y₁=ax²的图象交于 A,B两点.(1)利用图中条件,求两个函数的解析式.(2)根据图象写出使y₁>y₁的x的取值范围.17.如图,已知抛物线y=a(x−1)²−3(a≠0)的图象与y轴交于点A(0,-2),顶点为 B.(1)试确定a的值,并写出点 B的坐标.山西大同**学校选编练习周测一主备人:教研组长:(2)试在x轴上求一点 P,使得. △PAB的周长取最小值.18.某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店,该店采购了一种今年新上市的装饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件),销售价格Q(元/件)与销售时间x(天)( (1≤x≤30,且x为正整数)都满足一次函数关系,其函数图象如图所示:(1)销售量 P(件)与销售时间x(天)之间的函数关系式为;销售价格Q(元/件)与销售时间x(天)之间的函数关系式为 .(2)请问在 30天的试销售中,哪一天的日销售利润最大? 并求出这个最大利润.19.已知二次函数的图象经过点(0,3),( (−3,0),(2,−5).(1)试确定此二次函数的解析式.(2)请判断点P(−2,3)是否在这个二次函数的图象上.20.(本题8分)二次函数y=ax²+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax²+bx+c=0的两个根为(2)不等式ax²+bx+c>0的解集为(3)若y随x 的增大而减小,则自变量 x的取值范围为 .(4)若方程ax²+bx+c=k有两个不相等的实数根,则k 的取值范围为.m,与篮圈中心的水平距离为7 m,21.在一次篮球比赛中,如图,队员甲正在投篮.已知球出手时离地面209球出手后水平距离为4m时达到最大高度4m,设篮球运行轨迹为抛物线,篮圈距地面 3m.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,对方队员乙在甲面前1m 处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否成功拦截?。
周测制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日一选择题:1.以下长度〔单位:cm〕的三根小木棒,把它们首尾顺次相接能摆成一个三角形的是〔〕,2,,6,,8,18 ,3,62.(-x 4)3等于〔〕A.x7 12 7 123.用直尺和圆规作一个角的平分线的示意图如下图,那么能说明∠AOC=∠BOC的根据是〔〕A.SSSB.ASAC.AASD.角平分线上的点到角两边间隔相等第3 题图第4 题图第5 题图 4.如图, AB=AD,那A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90° 5.如图,△A.3B.4C.76.如图,△ABC 为直角三角形,∠C=90°,假设沿图中虚线剪去∠C,那么∠1+∠2 等于〔〕°°°°7.计算(-a-b)2等于〔〕A.a 2+b2 2﹣b2 2+2ab+b2 2﹣2ab+b28.边长为 a 的正方形中挖去一个边长为 b 的小正方形(a>b)(如图甲),把余下的局部拼成一个长方形(如图乙), 根据两个图形中阴影局部的面积相等,可以验证( )A.(a +b)2=a 2+2ab +b 2B.(a-b)2=a 2-2ab +b 22-b 2=(a +b)(a-b)D.(a +2b)(a-b)=a 2+ab-2b 2 9.(2x)n-81 分解因式后得(4x 2+9)(2x +3)(2x -3),那么 n 等于( )A.2B.4C.6 10.多项式(x+2)(2x A.2 B.﹣2C.411.803-80 能被〔 〕整除. A.76 B.78C.912.如图,C 为线段 AE 上一动点(不与点 A ,E 重合),在 AE 同侧分别作正△ABC 和正△CDE,AD 与 BE 交于点 O,AD 与 BC 交于点 P,BE 与 CD 交于点 Q,连接 PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP;⑤∠AOB=60°. 其中正确的结论的个数是( ) 个 个 个个二填空题:13.如图,直线AB、CD 被BC 所截,假设AB∥CD,∠1=45°,∠2=35°,那么∠3=.第13 题图第14 题图第15题图14.如图,直线a 经过正方形ABCD 的顶点A,分别过正方形的顶点B,D 作BF⊥a 于点F,DE⊥a 于点E,假设DE=8,BF=5,那么EF 的长为15.计算(0.125)2021 82021 = .16.将等边三角形、正方形、正五边形按如下图位置摆放,∠1=41°,∠2=51°,那么∠3 等于 .17. s+t=4,那么 s 2-t 2+8t=.18.如图,△ABC 的三个内角的平分线交于点 O,点 D 在 CA 的延长线上,且 DC=BC ,假设∠BAC=80°,那么∠BOD 的度 数为第 18 题图 第 19 题图第 20题图19.如图,△ABC 的角平分线交于点 P , AB ,BC ,CA 的长分别为 5,7,6,那么 S △ABP ∶S △BPC ∶S △APC =20.如图,相交直线 AB 和 CD 及另一直线 MN ,假如要在 MN 上找出与 AB ,CD 间隔 相等的点,那么这样的点至少 有个,最多有 个.21.比拟 3108 与2144 的大小关系:.22.如图,∠A=ɑ,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线相交于点 A 1,得∠A 1;假设∠A 1BC 的 平分线与∠A 1CD 的平分线相交于点 A 2,得∠A 2……∠A 2021BC 的平分线与∠A 2021CD 的平分线相交于点 A 2021,得∠A 2021, 那么∠A 2021= .(用含ɑ的式子表示)三计算题:23.化简以下多项式:(1) (a -2b)2 (2ab)(b -2a )4a(a b)(2)(a2b3)(a2b3)(3) (3m 5n )(53m)24.对以下多项式进展因式分解:(1)-2a2x 416a2x 232a2(2) a 2 (x y )b2 (x y)(3) (a 2 a)21)3四简答题:25.如图,某地有两所大学和两条相穿插的公路,〔点M,N 表示大学,AO,BO 表示公路〕.现方案修建一座物资仓库,希望仓库到两所大学的间隔相等,到两条公路的间隔也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;〔保存作图痕迹,不写做法〕26.如图,AD 是△ABC 的角平分线,BE⊥AD,交AD 的延长线于点E,EF∥AC 交AB 于点F.求证:AF=BF.27.a3m 3, b3n 2 .求(a3m )3 (b n )3 a 2m b na 4m b2n 的值.28假设a b + 3 2a +b 0 ,先化简再求值. 2a3b(2ab1) a 2 (2ab)2 .29.假设 x +y=3,且(x +2)(y +2)=12.(1)求 xy 的值;(2)求 x 2+3xy +y 2的值.30. x 2+y 2﹣4x+6y+13=0,求 x 2﹣6xy+9y 2 的值.31.阅读与考虑:整式乘法与因式分解是方向相反的变形 由(x+p)(x+q)=x 2+(p+q)x+pq 得,x 2+(p+q)x+pq=(x+p)(x+q); 利用这个式子可以将某些二次项系数是 1 的二次三项式分解因式, 例如:将式子 x 2+3x+2 分解因式.分析:这个式子的常数项 2=1×2,一次项系数 3=1+2,所以 x 2+3x+2=x 2+〔1+2〕x+1×2. 解:x 2+3x+2=〔x+1〕〔x+2〕 请仿照上面的方法,解答以下问题〔1〕分解因式:x 2+7x ﹣18=启发应用〔2〕利用因式分解法解方程:x 2﹣6x+8=0;〔3〕填空:假设 x 2+px ﹣8 可分解为两个一次因式的积,那么整数 p 的所有可能值是.32.如图,在△ABC 中,∠B=∠C,AB=10cm,BC=8cm,D 为AB 的中点,点P 在线段上以3cm/s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上以一样速度由点C 向点A 运动,一个点到达终点后另一个点也停顿运动.当△BPD 与△CQP全等时m 求点P 运动的时间是.参考答案1、B2、D3、B4、B5、C6、B7、C8、C9、B 10、D 11、C12、C13、80° 14、13_.15、0.12516、10. 17、16; 18、100°.19、.5∶7∶620、 1, 221、3108>2144 22、2202123、(1)原式=a 2﹣4ab+4b 2﹣b 2+4a 2﹣4a 2+4ab=a 2+3b 2; (2)原式=a 2﹣〔2b ﹣3〕2=a 2﹣4b 2+12b ﹣9; (3)原式=〔﹣3m 〕2﹣〔5n 〕2=9m 2﹣25n 2;24.(1)﹣2a 2x 4+16a 2x 2﹣32a 2=﹣2a 2〔x 4+8x 2﹣16〕=﹣2a 2〔x 2﹣4〕2=﹣2a 2〔x+2〕2〔x ﹣2〕〕2; (2)a 2〔x ﹣y 〕﹣b 2〔x ﹣y 〕=〔x ﹣y 〕〔a 2﹣b 2〕=〔x ﹣y 〕〔a+b 〕〔a ﹣b 〕; (3)〔a 2﹣a 〕2﹣〔a ﹣1〕2=〔a 2﹣a+a ﹣1〕〔a 2﹣a ﹣a+1〕=〔a 2﹣1〕〔a 2﹣2a+1〕=〔a+1〕〔a ﹣1〕〔a ﹣1〕2=〔a+1〕〔a ﹣1〕3.25.略;26、易证:AF=FE ,再证 BF=FE.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日27、1128.化简得 2a 3b, 求得 a=-1, b=2,等式=-429.(1)2; (2)11.30.解:∵x 2+y 2﹣4x+6y+13=(x ﹣2)2+(y+3)2=0,∴x ﹣2=0,y+3=0,即 x=2,y=﹣3,那么原式=〔x ﹣3y 〕2=112=121.31.解:〔1〕原式=〔x ﹣2〕〔x+9〕;〔2〕方程分解得:〔x ﹣2〕〔x ﹣4〕=0, 可得 x ﹣2=0 或者 x ﹣4=0,解得:x=2 或者 x=4;〔3〕﹣8=﹣1×8;﹣8=﹣8×1;﹣8=﹣2×4;﹣8=﹣4×2, 那么 p 的可能值为﹣1+8=7;﹣8+1=﹣7;﹣2+4=2;﹣4+2=﹣2.故答案为:〔1〕〔x ﹣2〕〔x+9〕;〔3〕7 或者﹣7 或者 2 或者﹣2.32.解:∵D 为 AB 的中点,AB=10 cm ,∴BD=AD=5 cm.设点 P 运动的时间是是 x s ,假设 BD 与 CQ 是对应边,那么 BD=CQ ,∴5=3x ,解得 x= 5 ,此时 BP=3× 5 =5 (cm),CP=8-5=3 (cm),BP ≠CP ,故舍去;假设 BD与 CP 是对应边,那么 BD=CP ,3 3∴5=8-3x ,解得 x=1,符合题意.综上,点 P 运动的时间是是 1 s制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。
周测一: 一元二次方程的解法(21.1-21.2)班级 姓名 总分一、选择题(每小题4分,共24分)1. 下列方程中属于一元二次方程的是( )A. 25(1)x x x x +=-B. 23x 520xy +-=C. 21x 2x-= D. 26x 710x -+= 2. 方程03562=+-x x 的一次项系数是( )A. 6B. 5C. -5D. 33. 若方程0243=-++x mx m 是关于x 的一元二次方程,则该方程的二次项系数是( )1-.A 2.B 1.C 4.D4. 方程0122=+-x x 的解是( )A. x=1B. x 1=1,x 2=-1C. x 1=x 2=1D. x 1=1,x 2=05.用配方法解方程0142=-+x x ,配方后的方程是( )5)2.(2=-x A 1)2.(2-=+x B 5)2.(2=+x C 1)4.(2=+x D6.一元二次方程方程2432-=-x x x 根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定二、填空题(每小题4分,共24分)7. 方程2725x x +=的一次项系数是_________.8. 若关于x 的方程0132=-+x kx 有两个相等的实数根,则k 的取值为________.9. 关于x 的方程012)1(2=+-+x x k 有两个不相等的实数根,k 的取值范围是 _____.10. 已知036)1(1=+-++x x a a 是关于x 的一元二次方程,则a 的值为________.11. 将方程0542=+-x x 配方成k h x =+2)(的形式,则k h +的值为_____ __.12.已知关于x 的方程032=++mx x 的一个根是3,则m 的取值为________.三、解下列一元二次方程(共52分)13. (8分)配方法解一元二次方程 2620x x -+=14.解下列一元二次方程(每小题9分,共36分)(1)2100-490x = (2)(7)70x x x -+-=(3)2225y y += (4)225432x x x +=+15.(8分)已知关于x 的方程0242=++a x x 有实数根.(1)求a 的取值范围;(2)当a 取最大整数值时,求该方程的解。
周测(21.1~21.2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2,其中是一元二次方程的有( )A .1个B .2个C .3个D .4个 2.方程x 2-x =0的解为( )A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 3.一元二次方程3x 2-4x +1=0的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 4.若1-3是方程x 2-2x +c =0的一个根,则c 的值为( )A .-2B .43-2C .3- 3D .1+ 3 5.一元二次方程x 2-6x -6=0配方后可化为( )A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=36.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.如果关于x 的一元二次方程x 2+3x -7=0的两根分别为α,β,那么α2+4α+β=( )A .4B .10C .-4D .-108.解方程(x -1)2-5(x -1)+4=0时,我们可以将(x -1)看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为( )A .x 1=1,x 2=3B .x 1=-2,x 2=3C .x 1=-3,x 2=-1D .x 1=-1,x 2=-2二、填空题(每小题4分,共24分)9.若关于x 的方程(m +2)x |m|+2x -1=0是一元二次方程,则m = . 10.用适当的数填空:x 2-3x + =(x - )2;x 2+27x + =(x + )2.11.若关于x 的一元二次方程(p -1)x 2-x +p 2-1=0的一个根为0,则实数p 的值是 .12.关于x 的一元二次方程x 2+bx +2=0有两个不相等的实数根,写出一个满足条件的实数b 的值: . 13.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为 . 14.对于两个不相等的实数a ,b ,我们规定max{a ,b}表示a ,b 中较大的数,如max{1,2}=2.那么方程max{2x ,x -2}=x 2-4的解为 . 三、解答题(共44分)15.(8分)写出下列方程的一般形式、二次项系数、一次项系数以及常数项.16.(15(1)4x2-3x+1=0; (2)3(x-3)2-25=0; (3)3x2+1=23x.17.(10分)阅读例题:解方程:x2-|x|-2=0.解:当x≥0时,得x2-x-2=0,解得x1=2,x2=-1<0(舍去);当x<0时,得x2+x-2=0,解得x1=1>0(舍去),x2=-2.故原方程的根为x1=2,x2=-2.请参照例题的方法解方程:x2-|x+1|-1=0.18.(11分)已知关于x的一元二次方程x2+(2m+1)x+m2=0.(1)若方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1-x2)2+m2=21,求m的值.单元测试(一) 一元二次方程(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0 B.1x 2+1x =2 C .x 2+2x =y 2-1 D .3(x +1)2=2(x +1)2.方程x 2-3=0的根是( )A. 3 B .- 3 C .± 3 D .3 3.一元二次方程2x 2+x +1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 4.用配方法解方程x 2+10x +9=0,配方后可得( )A .(x +5)2=16 B .(x +5)2=1 C .(x +10)2=91 D .(x +10)2=109 5.若x =-1是关于x 的一元二次方程x 2-2kx +k 2=0的一个根,则k 的值为( )A .-1B .0C .1D .26.在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根为x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是( )A .甲错误,乙正确 B .甲正确,乙错误 C .甲、乙都正确 D .甲、乙都错误7.如图,某小区计划在一个长40米,宽30米的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每块草坪面积都为168平方米,设道路的宽度为x 米,则可列方程为( )A .(40-2x)(30-x)=168×6B .30×40-2×30x -40x =168×6C .(30-2x)(40-x)=168D .(40-2x)(30-x)=1688.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m的值是( ) A .3或-1 B .3 C .1 D .-3或1 二、填空题(每小题4分,共24分)9.一元二次方程(x -2)(x +3)=2x +1化为一般形式是 . 10.若一元二次方程(m +2)x 2+2x +m 2-4=0的常数项为0,则m = . 11.已知实数a ,b 是方程x 2-x -1=0的两根,则b a +a b的值为 .12.六一儿童节当天,某班同学每人向本班其他每名同学送一份小礼品,全班共互送306份小礼品,则该班有 名同学.13.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,连续两次降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为 .14.阅读材料:如果a ,b 分别是一元二次方程x 2+x -1=0的两个实数根,则有a 2+a -1=0,b 2+b -1=0;创新应用:如果m ,n 是两个不相等的实数,且满足m 2-m =3,n 2-n =3,那么代数式2n 2-mn +2m +2 009= . 三、解答题(共44分)15.(12分)我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择合适的方法解下列方程.(1)x2-3x+1=0; (2)(x-1)2=3; (3)x2-3x=0; (4)x2-2x=4.16.(10分)定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程2x2-bx+a=0的根的情况.17.(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为29米的篱笆围成,已知墙长为18米,为方便进入,在墙的对面留出1米宽的门(如图所示).设这个苗圃园垂直于墙的一边长为x米,苗圃园的面积为100平方米,求x的值.18.(12分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.周测(22.1.1~22.1.3)(时间:40分钟 满分:100分)一、选择题(每小题4分,共28分)1.已知函数:①y =2x -1;②y =2x 2-1;③y =2x 2;④y =2x 3+x 2;⑤y =x 2-x -1,其中二次函数的个数为( )A .1B .2C .3D .42.二次函数y =a(x -1)2+b(a ≠0)的图象经过点(0,2),则a +b 的值是( )A .-3B .-1C .2D .33.对于抛物线y =12x 2,y =x 2和y =-x 2的共同性质有以下说法:①都是开口向上;②都以点(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数是( )A .1B .2C .3D .44.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为( )A .y =-12x 2B .y =-12(x +1)2C .y =-12(x -1)2-1D .y =-12(x +1)2-15.已知二次函数y =2(x -3)2-2,下列说法:①其图象开口向上;②顶点坐标为(3,-2);③其图象与y 轴的交点坐标为(0,-2);④当x ≤3时,y 随x 的增大而减小,其中正确的有( )A .1个B .2个C .3个D .4个6.若正比例函数y =mx(m ≠0),y 随x 的增大而减小,则它和二次函数y =mx 2+m 的图象大致是( )7.如图是有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k =nC .k >nD .h >0,k >0 二、填空题(每小题5分,共25分)8.函数y =-12(x +3)2中,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.9.将二次函数 y =x 2-1 的图象向上平移 3 个单位长度,得到的图象所对应的函数解析式是 . 10.若二次函数y =a(x -1)2+b 有最大值2,则a b(填“>”“=”或“<”).11.若点A(0,y 1),B(-3,y 2),C(1,y 3)为二次函数y =(x +2)2-9的图象上的三点,则y 1,y 2,y 3的大小关系是12.如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 且与x 轴平行的直线交抛物线y =13x 2于点B ,C ,则BC 的长为 .三、解答题(共47分)13.(10分)已知二次函数y =12(x +1)2+4.(1)写出抛物线的开口方向、顶点坐标和对称轴;(2)画出此函数的图象,并说出由此函数图象经过怎样平移可得到函数y =12x 2的图象.14.(10分)函数y =(m -3)xm2-3m -2是关于x 的二次函数.(1)若函数的图象开口向上,求函数的解析式,并说明在函数图象上y 随x 怎样变化?(2)在(1)中的图象上是否存在一点P ,使其到两坐标轴的距离相等?若存在,求出点P 的坐标;若不存在,请说明理由.15.(12分)如图,已知二次函数y =(x -1)2图象的顶点为C ,图象与直线y =x +m 交于A ,B 两点,其中点A 的坐标为(3,4),点B 在y 轴上.(1)求m 的值;(2)P 为线段AB 上的一个动点(点P 与点A ,B 不重合),过点P 作x 轴的垂线与这个二次函数的图象交于点E ,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数解析式,并写出自变量x 的取值范围.16.(15分)如图,抛物线y =-14x 2+x 的顶点为A ,它与x 轴交于点O 和点B.(1)求点A 和点B 的坐标; (2)求△AOB 的面积;(3)若点P(m ,-m)(m ≠0)为抛物线上一点,求与点P 关于抛物线对称轴对称的点Q 的坐标.周测(22.1.4~22.3)(时间:40分钟 满分:100分)一、选择题(每小题4分,共28分)1.已知二次函数y =ax 2+bx +1,若当x =1时,y =0;当x =-1时,y =4,则a ,b 的值分别为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-22.如图,抛物线与x 轴的两个交点为A(-3,0),B(1,0),则由图象可知y <0时,x 的取值范围是( )A .-3<x <1B .x >1C .x <-3D .0<x <1 3.对于二次函数y =-14x 2+x -4,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点4.二次函数y =2x 2-4x +3的图象先向左平移4个单位长度,再向下平移2个单位长度后的抛物线解析式为( )A .y =2(x -4)2-4x +1 B .y =2(x +4)2+1 C .y =2x 2+12x +17 D .y =2x 2-10x -175.在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n)x +n 关于y 轴对称,则符合条件的m ,n 的值为( )A .m =57,n =-187B .m =5,n =-6C .m =-1,n =6D .m =1,n =-26.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y =-4x +440,要获得最大利润,该商品的售价应定为( )A .60元B .70元C .80元D .90元7.如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在(2,0)和(3,0)之间,对称轴是直线x =1.对于下列说法:①ab<0;②2a +b =0;③3a +c>0;④a +b ≥m(am +b) (m 为实数);⑤当-1<x<3时,y>0.其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤ 二、填空题(每小题5分,共25分)8.当x =1时,二次函数y =x 2-2x +6有最小值 .9.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是10.如图的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m .已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系.若选取点A 为坐标原点时的抛物线解析式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线的解析式是 .11.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是12.如图,在等腰Rt △ABC 中,∠C =90°,AB =10,点F 是AB 的中点,点D ,E 分别在AC ,BC 边上运动,且始终保持DF ⊥EF ,则△CDE 面积的最大值为 . 三、解答题(共47分)13.(8分)已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.14.(12分)抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).(1)求出m的值,并画出这条抛物线;(2)求抛物线与x轴的交点和顶点坐标;(3)当x取什么值时,抛物线在x轴上方?(4)当x取什么值时,y的值随x的增大而减小.15.(12分)用一段长32 m的篱笆和长8 m的墙,围成一个矩形的菜园.(1)如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成.①设DE=x m,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;②菜园的面积能不能等于110 m2?若能,求出此时x的值;若不能,请说明理由;(2)如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,求菜园面积的最大值.16.(15分)已知二次函数y=-x2+bx+c的图象过点A(3,0),C(-1,0).(1)求二次函数的解析式;(2)如图,点P是二次函数图象的对称轴上的一个动点,二次函数的图象与y轴交于点B,当PB+PC最小时,求点P的坐标;(3)在第一象限内的抛物线上有一点Q,当△QAB的面积最大时,求点Q的坐标.单元测试(二) 二次函数(A卷)(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,y是x的二次函数的是( )A.xy+x2=1 B.x2-y+2=0 C.y=1x2D.y2-4x=32.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x-1)2+4 D.y=(x-1)2+23.将抛物线y=2(x-4)2-1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为(A)A.y=2x2+1 B.y=2x2-3 C.y=2(x-8)2+1 D.y=2(x-8)2-34.二次函数图象上部分点的坐标对应值列表如下:x …-3 -2 -1 0 1 …y …-3 -2 -3 -6 -11 …A.直线x=-3 B.直线x=-2 C.直线x=-1 D.直线x=05.若抛物线y=x2-x-1与x轴的一个交点的坐标为(m,0),则代数式m2-m+2 019的值为( ) A.2 019 B.2 017 C.2 018 D.2 0206.已知抛物线y=a(x-2)2+k(a>0,a,k为常数),A(-3,y1),B(3,y2),C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依次排列为( )A.y1<y2<y3 B.y2<y1<y3 C.y2<y3<y1 D.y3<y2<y17.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是( )A.a<0,b<0,c>0 B.-b2a=1 C.a+b+c<0 D.关于x的方程ax2+bx+c=-1有两个不相等的实数根8.如图,△ABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm,点P从点A出发,沿AB方向以2 cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1 cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则△APQ的最大面积是( )A.8 cm2 B.16 cm2 C.24 cm2 D.32 cm2二、填空题(每小题5分,共20分)9.若点A(3,n)在二次函数y=x2+2x-3的图象上,则n的值为.10.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的函数解析式:.11.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第象限.12.已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧).若B,C是线段AD的三等分点,则m的值为.三、解答题(共48分)13.(12分)二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为 ; (2)不等式ax 2+bx +c>0的解集为 ;(3)y 随x 的增大而减小的自变量x 的取值范围为 ;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为 . 14.(10分)如图,一次函数y 1=kx +b 与二次函数y 2=ax 2的图象交于A ,B 两点.(1)利用图中条件,求两个函数的解析式; (2)根据图象写出使y 1>y 2的x 的取值范围.15.(12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x ≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y 元.(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?16.(14分)如图,在平面直角坐标系中,二次函数y =x 2-2x -3的部分图象与x 轴交于点A ,B(A 在B 的左边),与y 轴交于点C ,D 为顶点,连接BC.(1)求∠OBC 的度数;(2)在x 轴下方的抛物线上是否存在一点Q ,使△ABQ 的面积等于5?如存在,求Q 点的坐标;若不存在,说明理由;(3)点P 是第四象限的抛物线上的一个动点(不与点D 重合),过点P 作PF ⊥x 轴交BC 于点F ,求线段PF 长度的最大值.时间x(天) 1≤x <50 50≤x ≤90售价(元/件) x +40 90 每天销量(件)200-2x单元测试(二) 二次函数(B卷)(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.抛物线y=-2(x-3)2+1的顶点坐标是( )A.(-3,1) B.(-3,-1) C.(3,1) D.(3,-1)2.下表给出了二次函数y=x2+2x-10中x,y的一些对应值,则可以估计一元二次方程x2+2x-10=0的一个近似解为( )x … 2.1 2.2 2.3 2.4 2.5 …y …-1.39 -0.76 -0.11 0.56 1.25 …A.2.2 B.2.3 C3.已知二次函数y=-x2+2x+1,若y随x的增大而增大,则x的取值范围是( )A.x<1 B.x>1 C.x<-1 D.x>-14.如图是二次函数y=-x2+2x+4的图象,使y≤1成立的x的取值范围是( )A.-1≤x≤3 B.x≤-1 C.x≥1 D.x≤-1或x≥35.为搞好环保,某公司准备修建一个长方体污水处理池,池底矩形的周长为100 m,则池底的最大面积是( ) A.600 m2 B.625 m2 C.650 m2 D.675 m26.对于二次函数y=x2-2mx-3,下列结论不一定成立的是( )A.它的图象与x轴有两个交点 B.方程x2-2mx=3的两根之积为-3C.它的图象的对称轴在y轴的右侧 D.当x<m时,y随x的增大而减小7.将二次函数y=x2的图象先向下平移1个单位长度,再向右平移3个单位长度,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是( )A.b>8 B.b>-8 C.b≥8 D.b≥-88.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①4a+2b+c>0;②5a-b+c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-4.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个二、填空题(每小题5分,共20分)9.当a=时,函数y=(a-1)xa2+1+x-3是二次函数.10.如果点A(-2,y1)和点B(2,y2)是抛物线y=(x+3)2上的两点,那么y1 y2.(填“>”“=”或“<”) 11.二次函数y=x2-4x+3,当0≤x≤5时,y的取值范围为.12.科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度(其他条件均相同)的环境中,经过一天后,测试出这种植物高度的增长情况如下表:温度x/℃…-4 -2 0 2 4 4.5 …植物每天高度增长量y/mm …41 49 49 41 2519.75…①该植物在0 ℃时,每天高度增长量最大;②该植物在-6 ℃时,每天高度增长量仍能保持在20 mm以上;③该植物与大多数植物不同,6 ℃以上的环境下高度几乎不增长.其中正确的是.(填序号)三、解答题(共48分)13.(10分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.14.(10分)已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?15.(14分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4 800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.16.(14分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一个动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.单元测试(三) 旋转(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分) 1.下列运动属于旋转的是( )A .足球在草地上滚动B .一个图形沿某直线对折的过程C .气球升空的运动D .钟表钟摆的摆动2.下面四个手机应用图标中,属于中心对称图形的是( )3.如图,在Rt △ABC 中,∠BAC =90°.将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ,点A 在边B ′C 上,则∠B ′的度数为( )A .42°B .48°C .52°D .58°4.如图,经过矩形对称中心的任意一条直线把矩形分成面积分别为S 1和S 2的两部分,则S 1与S 2的大小关系是( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1与S 2的关系由直线的位置而定 5.点P(ac 2,b a)在第二象限,则点Q(a ,b)关于原点对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD.则下列结论:①AC =AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( )A .0B .1C .2D .37.如图,在△ABO 中,AB ⊥OB ,OB =3,∠AOB =30°,把△ABO 绕点O 旋转150°后得到△A 1B 1O ,则点A 1的坐标为( )A .(-1,-3)B .(-1,-3)或(-2,0)C .(-3,-1)或(0,-2)D .(-3,-1)8.如图,将△ABC 沿BC 翻折得到△DBC ,再将△DBC 绕点C 逆时针旋转60°得到△FEC ,延长BD 交EF于点H.已知∠ABC=30°,∠BAC=90°,AC=1,则四边形CDHF的面积为( )A.312B.36C.33D.32二、填空题(每小题5分,共20分)9.王明、杨磊两家所在位置关于学校成中心对称.如果王明家距离学校500米,那么他们两家相距米.10.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.11.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地上(如图2),则灰斗柄AB绕点C转动的角度为.12.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG.若BE=2,DF=3,则AH的长为.三、解答题(共48分)13.(10分)如图,正方形网格中,△ABC的顶点及点O都在格点上.(1)画出△ABC关于点O中心对称的图形△A′B′C′;(2)画出△ABC绕点O顺时针旋转90°的图形△A″B″C″.14.(12分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(请将两个小题依次作答在图1、图2中,均只需画出符合条件的一种情形)15.(12分)如图,△BAD是由△BEC在平面内绕点B逆时针旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)判断四边形ABED的形状,并说明理由.16.(14分)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状,并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图1图2期中测试(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列图形中,属于中心对称图形的是( )A. B.C.D.2.将一元二次方程x 2-2x -2=0配方后所得的方程是( )A .(x -2)2=2 B .(x -1)2=2 C .(x -1)2=3 D .(x -2)2=33.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数解析式是 ( )A .y =(x +2)2+1 B .y =(x -2)2+1 C .y =(x +2)2-1 D .y =(x -2)2-14.在平面直角坐标系中,将点(-2,3)关于原点对称的点向左平移2个单位长度得到的点的坐标是( )A .(4,-3)B .(-4,3)C .(0,-3)D .(0,3) 5.用公式法解方程4y 2=12y +3,解为( )A .y =-3±62B .y =3±62C .y =3±232D .y =-3±2326.已知抛物线y =x 2-8x +c 的顶点在x 轴上,则c 的值是( )A .16B .-4C .4D .87.已知关于x 的一元二次方程(k -1)x 2-2x +2=0有两个不相等的实数根,则k 的取值范围值是( )A .k<32B .k ≤32C .k <32且k ≠1D .k ≤32且k ≠18.在同一平面直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( )9.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A.7 B .2 2 C .3 D .2 310.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a-b+c>0;⑤若ax21+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的是( ) A.①②③ B.②④ C.②⑤ D.②③⑤二、填空题(每小题3分,共24分)11.方程x2=x的根是.12.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有.①②③④13.已知方程3x2-4x-2=0的两个根是x1,x2,则1x1+1x2=.14.某楼盘2018年房价为每平方米8 100元,经过两年连续降价后,2020年房价为每平方米7 600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为.15.已知点P在抛物线y=(x-2)2上,设点P的坐标为(x,y),当0≤x≤3时,y的取值范围是.16.如图,若将图中的抛物线y=x2-2x+c向上平移,使它经过点(2,0),则此时抛物线位于x轴下方的图象对应的x的取值范围是.17.如图,在边长为1的正方形网格中,A(1,7),B(5,5),C(7,5),D(5,1).若线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为.18.运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20 m;②足球飞行路线的对称轴是直线t=;③足球被踢出9.5 s2时落地;④足球被踢出7.5 s时,距离地面的高度是11.25 m,其中不正确的结论是.三、解答题(共66分)19.(8分)解方程:(1)2x2+3=7x; (2)(2x+1)2+4(2x+1)+3=0.20.(8分)如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(-1,3),B(-4,0),C(0,0).(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到的△A2B2O.21.(9分)如图,将矩形ABCD绕点A顺时针旋转得到矩形AEFG,点E在BD上.(1)求证:FD=AB;(2)连接AF,求证:∠DAF=∠EFA.22.(9分)已知关于x的一元二次方程x2-2x+m-1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x21+x22=6x1x2时,求m的值.23.(10分)某农场要建一个长方形的养鸡场,养鸡场的一边靠墙(墙长25 m),另外三边用木栏围成,木栏长40 m.(1)若养鸡场的面积为200 m2,求养鸡场平行于墙的一边长;(2)养鸡场的面积能达到250 m2吗?如果能,请给出设计方案;如果不能,请说明理由.24.(10分)服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y 与x 之间所满足的函数关系式,并写出x 的取值范围;(2)设服装厂所获利润为w(元),若10≤x ≤50(x 为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?25.(12分)如图,二次函数y =12x 2+bx +c 的图象交x 轴于A ,D 两点并经过点B ,已知点A 的坐标是(2,0),点B的坐标是(8,6).(1)求二次函数的解析式;(2)若抛物线的对称轴上是否存在一个动点P ,使点P 到点B ,点D 的距离之和最短,若存在,求出点P 的坐标;若不存在,请说明理由;(3)该二次函数的对称轴交x 轴于点C ,连接BC ,并延长BC 交抛物线于点E ,连接BD ,DE ,求△BDE 的面积.周测(21.1~21.2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2,其中是一元二次方程的有(A)A .1个B .2个C .3个D .4个 2.方程x 2-x =0的解为(C)A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 3.一元二次方程3x 2-4x +1=0的根的情况为(D)A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.若1-3是方程x 2-2x +c =0的一个根,则c 的值为(A)A .-2B .43-2C .3- 3D .1+ 35.一元二次方程x 2-6x -6=0配方后可化为(A)A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=36.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是(D)A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.如果关于x 的一元二次方程x 2+3x -7=0的两根分别为α,β,那么α2+4α+β=(A)A .4B .10C .-4D .-108.解方程(x -1)2-5(x -1)+4=0时,我们可以将(x -1)看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为(D)A .x 1=1,x 2=3B .x 1=-2,x 2=3C .x 1=-3,x 2=-1D .x 1=-1,x 2=-2 二、填空题(每小题4分,共24分)9.若关于x 的方程(m +2)x |m|+2x -1=0是一元二次方程,则m =2.10.用适当的数填空:x 2-3x +94=(x -32)2;x 2+27x +7=(x 2.11.若关于x 的一元二次方程(p -1)x 2-x +p 2-1=0的一个根为0,则实数p 的值是-1.12.关于x 的一元二次方程x 2+bx +2=0有两个不相等的实数根,写出一个满足条件的实数b 的值:3(答案不唯一,满足b 2>8即可).。
周周测(第一周)一、单选题(共5道,每道2分)1.下列字词的注音,全部正确的一项是( )A.结庐(lú)——东篱(lí)——属(shǔ)国——候(hóu)骑B.都(dū)护——燕(yān)然——新燕(yàn)——啄(zhuó)春泥C.岱(dài)宗——造(zào)化——曾(zēng)云——决眦(zì)D.简朴(pǔ)——箫(xiāo)鼓——衣冠(guàn)——没(mò)马蹄答案:B解题思路:A项候应读hòu;B项无误;C项曾应读céng;D项冠应读guàn。
故选B。
试题难度:三颗星知识点:生字读音2.下列各组句子中,相同字的字义不同的一项是()A.见:悠然见南山/唯见长江天际流B.欲:乱花渐欲迷人眼/李白乘舟将欲行C.夫:岱宗夫如何/逝者如斯夫D.足:丰年留客足鸡豚/最爱湖东行不足答案:D解题思路:A项“见”都是看见的意思;B项“欲”都意为将要;C项“夫”都是语气助词,可不译;D项“丰年留客足鸡豚”的“足”是足够、丰盛的意思,“最爱湖东行不足”的“足”是满足的意思。
试题难度:三颗星知识点:字义理解3.山水田园诗是古代诗歌题材之一,以描写自然风光、农村景物以及安逸恬淡的隐居生活为主。
下列诗中,不属于这一题材的是( )A.绿树村边合,青山郭外斜。
B.明月松间照,清泉石上流。
C.泉眼无声惜细流,树阴照水爱晴柔。
D.征蓬出汉塞,归雁入胡天。
答案:D解题思路:A项出自孟浩然《过故人庄》,B项出自王维《山居秋暝》,C项出自杨万里《小池》,都属于田园诗。
D出自王维《使至塞上》,是一首边塞诗。
试题难度:三颗星知识点:文学常识4.下列诗人的描述,不正确的一项是( )A.杜甫是唐代伟大的现实主义诗人,有“诗圣”之称,他的诗被称为“诗史”。
2022-2023学年冀教版英语九年级全一册周周测(1)1.With this new lock, you _____ search for keys in your bag any more. Isn't it cool?A. needn'tB. can'tC. mustn'tD. shouldn't2.—_____ I didn't hear what you said.—I said where there is a will, there is a way.A. Follow me!B. Forget it.C. Pardon me?D. That's all right.3.He had milk and bread for breakfast, _____?A. was heB. didn't heC. wasn't heD. did he4.The boy _____ his carelessness in the exam, and decided to pay more attention to his study later.A. foundB. caughtC. regrettedD. prepared5.Mr. Black was afraid to _____ the tree, for he was afraid of _____ off the tree.A. climbing; fallingB. climb; fallC. climbing; fallD. climb; falling6.—I offered Sandy a helping hand. However, she _______ it.—Maybe she can manage herself.A. receivedB. returnedC. refusedD. rewarded7.Mary can't leave her little son at home. She has no choice but _____ him with her.A. takeB. tookC. takingD. to take8.Jack has learned more about teamwork(团队合作) _______ he joined the soccer team.A.untilB.sinceC.whileD.thought9.Many teenagers don't like to talk with their parents. But I am _______ them. I love to share my joy and sorrow with my parents.A. the same asB. interested inC. different fromD. angry with10.Reading every day can make you _____.A. become a superstarB. getting cleverC. to have funD. become knowledgeable11.The book _____ 12 units, from Unit 1 to Unit 12.A. haveB. containC. isD. contains12.—What do you think of working as a doctor?—It's a good job to help people keep _____.A. busyB. strictC. healthyD. generous13.The toxic chemicals(有毒化学物质) in vegetables and fruit are bad _____ our health.A. fromB. withC. ofD. for14.The environment here becomes better and better. ______ birds are coming back.A.HundredB.HundredsC.ThousandD.Thousands of15.Polluted air and water _____ kill plants, animals, and even people.A. canB. can'tC. shouldD. shouldn't答案以及解析1.答案:A解析:句意:有了这个新锁,你不必在你的包里再找钥匙了。
1 九年级上学期周测(二)
一、 选择题(共15分)
1.下列方程中是一元二次方程的有( )
①x x 792
= ②832
=y ③ )13()1(3+=-y y y y ④0622=+-y x ⑤ 10)1(22=+x ⑥ 0142=--x x
A . ①②③ B. ①③⑤ C. ①②⑤ D. ⑥①⑤
2. 一元二次方程()()1532142+=-+x x x 化成一般形式)0(02≠=++a c bx ax 后c b a ,,的值为( )
A .3,-10,-4 B. 3,-12,-2
C. 8,-10,-2
D. 8,-12,4
3.一元二次方程2210x x --=的根的情况为( )
A.有两个相等的实数根
B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根
4.下列实数中,是关于x 的一元二次方程0232=--x x 的一个实数根.( )
A .3 B.-1 C.1 D.2
5.用配方法解一元二次方程542=-x x 的过程中,配方正确的是( )
A .(1)22=+x
B .1)2(2=-x
C .9)2(2=+x
D .9)2(2=-x
二、 填空(共27分)
6.如果方程2130m x -+=是一元二次方程,则m = .
7.方程()()012=-+x x 的解为 .
8.已知关于x 的方程0232=+-k x x 的一个根是1,则k = .
9.关于x 的一元二次方程02522=++x x 的根的判别式的值是____________.
10. 若92++mx x 为完全平方式,则m =___________.。
新江南中学九年级数学周测(一)
年级: 班级: 学号: 姓名:
一选择题(每题5分,共50分)
1.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情 况,统计如下表,关于这10户家庭的月用电量说法正确的是( )
A .极差是3
B .众数是4
C .中位数40
D .平均数是20.5
2.下列方程是一元二次方程的是( )
A .ax 2+bx +c =0
B .2x 2-3x =2(x 2-2)
C .x 3-2x +7=0
D .(x -2)2-4=0
3.关于x 的方程ax 2-3x +3=0是一元二次方程,则a 的取值范围是( ) A .a >0 B .a ≠0 C .a =1 D .a ≥0
4、方程3x 2-3x+3=0的二次项系数与一次项系数及常数项之积为( )
A .3
B .-3
C .3
D .-9
5、若x=1是方程x 2+nx+m=0的根,则m+n 的值是( )
A .1
B .-1
C .2
D .-2
6、下列说法正确的是( )
A .方程ax 2+bx+c=0是关于x 的一元二次方程
B .方程3x 2=4的常数项是4
C .若一元二次方程的常数项为0,则0必是它的一个根
D .当一次项系数为0时,一元二次方程总有非零解
7、关于x 的一元二次方程(a -1)x 2+x+a 2-1=0的一个根是0,则a 的值是( )
A .1
B .-1
C .1或-1
D .2
1 8、若ax 2-5x+3=0是一元二次方程,则不等式3a+6>0的解集为( )
A .a >-2
B .a <-2
C .a >-
21 D .a >-2且a≠0 9、若 a 为方程()100172=-x 的一个根,b 为方程()1742=-y 的一个根,且a,b 都是正数,
则b a -的值为 ( )
A.5
B. 6
C.83
D.1710-
10、若0102
2=++m x x 是一个完全平方式,则m 的值是 ( )
A.5
B.-5
C.5± D 以上都不对
.
二、填空题(每题5分,共10分)
11、方程()()11232-=-+x x x 化成一般式为 ,二项式系数为 , 一次项系数为 ,常数项为 。
12若关于x 的一元二次方程()()4324=-+--x m x x m 是一元二次方程,则m = 。
三、用适当的方法解方程:(每题5分,共20分)
()()()22329321+=-x x ()024222=--x x
()13232=+x x ()()()72134-=+-x x x
四、解答题(每题10分,共20分)
1、一直三角形个边长为13,另两边长是方程060172=+-x x 的两个实数根,请判断这个三角形的形状,并求出这个三角形的面积。
2、用配方法证明:无论x 取何值时,11822+-x x 的值总大于0。