锂离子电池的使用寿命
- 格式:doc
- 大小:59.50 KB
- 文档页数:26
动力电池分类及使用情况一、铅酸电池它是目前电动汽车使用最为广泛的电池,据不完全统计,在已经生产的电动汽车上,使用铅酸蓄电池的比例占到90%,这主要得益于它的众多优点:发展历史悠久,技术较为成熟,比功率较大,循环寿命也可达800~1000次左右,且成本较低。
不过,铅酸电池比能量却很低,仅为40W·h/kg左右,快速充电技术也尚未成熟(一般慢充都在8小时以上),而且污染严重。
二、锂离子电池它的比能量和比功率都很高,可分别达150W·h/kg和1600W/kg,循环寿命长,约为1200次,而且充电时间较短,为2~4h,使用电压可达到4V,使用安全性也相对较好。
但是锂离子电池价格较高,快充放电性能差,存在过充、放电保护问题,影响了锂电池的进一步应用和发展。
三、镍氢电池镍氢电池目前主要应用于混合电动车,但性能不能满足目前纯电动汽车和插电式混合动力汽车的需求,此类电动车需200公里以上的行驶里程,是镍氢电池提供的纯电动里程的10倍。
虽然燃料电池的性能很好,但是技术难度大。
按工作性质和储存方式可将电池分为4类:(1)一次电池,一次电池也称原电池,是指放电后不能用充电方法使它恢复到放电前状态的一类电池。
即一次电池只能使用一次。
常见的一次电池有锌锰电池、锌银电池、锂二氧化锰电池等。
(2)二次电池,二次电池也称蓄电池,电池放电后可用充电方法使活性物质恢复到放电以前状态,从而能够再次放电,充放电过程能重复。
常见的二次电池有镍镉电池,铅酸电池、金属氰化物镍电池、锂离子电池等。
(3)储备电池,储备电池也称激活电池,在储存期间,电解质和电极活性物质分离或电解质处于惰性状态,使用前注入电解质或通过其他方式使电池激活,电池立即开始工作。
常见的储备电池有锌银电池、热电池、镁氯化铜电池等。
(4)燃料电池,燃料电池也称为连续电池,电池中的电极材料是惰性的,是活性物质进行电化学反应的场所,而正、负极活性物质分别储存在电池体外,当活性物质连续不断地注入电池时,电池就能不断地输出电能。
锂原电池简介锂--二氧化锰电池以金属锂为负极,经过处理的二氧化锰为正极,隔离膜与锂离子电池一样,电解液为高氯酸锂的有机溶液,圆柱式或扣式。
电池需要在超低露点的保护气体氛围下装配,一经注液,就有电,电压3V,自放电率很低,耐储存,可达3年以上。
一般在台式电脑的主板上,有一个扣式的锂电池,提供微弱的电流,可以正常使用3年左右,一些宾馆的门禁卡、仪器仪表等也使用锂--二氧化锰电池,近年来使用量逐年下降。
锂--亚硫酰氯电池以金属锂为负极,正极和电解液为亚硫酰氯(氯化亚砜),圆柱式电池,装配完成即有电,电压3.6V,是工作电压最平稳的电池种类之一,也是目前单位体积(质量)容量最高的电池。
适合在不能经常维护的电子仪器设备上使用,提供细微的电流。
其他锂电池还有锂--硫化亚铁电池、锂--二氧化硫电池等。
锂离子电池的结构锂电池通常有两种外型:圆柱型和方型。
电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。
正极包括由钴酸锂(或镍钴锰酸锂、锰酸锂、磷酸亚铁锂等)及铝箔组成的电流收集极。
负极由石墨化碳材料和铜箔组成的电流收集极组成。
电池内充有有机电解质溶液。
另外还装有安全阀和PTC元件(部分圆柱式使用),以便电池在不正常状态及输出短路时保护电池不受损坏。
单节锂电池的电压为3.7V(磷酸亚铁锂正极的为3.2V),电池容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。
锂电池的应用随着二十世纪微电子技术的发展,小型化的设备日益增多,对电源提出了很高的要求。
锂电池随之进入了大规模的实用阶段。
最早得以应用的是锂亚原电池,用于心脏起搏器中。
由于锂亚电池的自放电率极低,放电电压十分平缓。
使得起搏器植入人体长期使用成为可能。
锂锰电池一般有高于3.0伏的标称电压,更适合作集成电路电源,广泛用于计算机、计算器、手表中。
现在,锂离子电池大量应用在手机、笔记本电脑、电动工具、电动车、路灯备用电源、航灯、家用小电器上,可以说是最大的应用群体。
锂电池循环寿命知识详解锂离子电池由于其能量密度高、无记忆效应、自放电小且循环寿命长而在各个领域得到广泛使用,如电子产品、电动工具、电动汽车以及储能领域等。
电池的性能总体可分为电性能和可靠性两大类,寿命是衡量其电性能的重要指标之一。
对于能量型电池,一般认为电池的可用容量衰减到初始容量的80%时,即为寿命终止。
电池的寿命包括循环寿命和日历寿命,前者是指电池以一定的充放电制度进行循环至寿命终止时的循环次数,后者是指电池在某个状态下存储至寿命终止时所需的时间。
锂电池在充放电过程中会发生很多复杂的物理及化学反应,因此影响锂电池循环寿命的因素有很多。
另一方面,循环寿命测试往往耗时长且成本高,电池寿命的正确评估对锂电池的生产开发及电池健康管理系统有一定的指导作用。
一、循环寿命的影响因素1、电池材料的老化衰退锂电池内部的材料主要包含:正负极活性物质、粘结剂、导电剂、集流体、隔膜以及电解液。
锂电池在使用过程中,这些材料会伴随着一定程度的衰退和老化。
唐致远等认为,锰酸锂电池容量衰减因素有:正极材料的溶解、电极材料的相变化、电解液分解、界面膜的形成和集流体腐蚀等。
Vetter等分别对电池的正极、负极及电解液在循环中的变化机理进行了系统深入的分析。
作者认为负极SEI膜的形成和后续生长会伴随着活性锂的不可逆损失,而且SEI膜并不具备真正的固体电解质功能,除了锂离子以外,其他物质的扩散和迁移会导致气体产生和颗粒破裂。
此外,循环过程中材料体积的变化和金属锂的析出也会导致容量损失。
对正极材料老化衰退的影响如图1所示。
图 1 正极材料老化衰退机制Aurbach等拆解了钴酸锂电池在25和40℃温度条件下循环后的正负极极片,SEM、XRD 和FTIR测试结果表明正负极活性材料均有损失。
李杨等对循环6000次的磷酸铁锂动力电池的电性能进行分析,其容量保持率为84.87%,交流内阻上升18.25%,直流内阻上升 66%。
作者将循环后的电池进行拆解,分别进行扣式电池性能测试和SEM分析,发现负极材料在循环后的性能衰减较快,并认为负极体积的膨胀、SEI膜的增厚是主要影响因素。
锂离子电池循环寿命名词解释随着智能手机、电动汽车和可穿戴设备的普及,锂离子电池已经成为了我们日常生活中不可或缺的能源储存设备。
在使用锂离子电池的过程中,循环寿命是一个重要的概念。
在本文中,我们将对锂离子电池循环寿命进行详细的解释,帮助读者更好地理解和应用锂离子电池。
一、锂离子电池简介锂离子电池是一种通过锂离子在正负极之间的移动来储存和释放能量的电池。
它由负极、正极、隔膜和电解质组成。
在充电过程中,锂离子从正极迁移到负极,而在放电过程中,锂离子则从负极回迁至正极。
这一循环过程使得锂离子电池能够不断地储存和释放能量,为我们的生活提供持久的动力支持。
二、循环寿命的定义循环寿命是指锂离子电池能够完成多少次完整的充放电循环,而仍能保持其额定容量的能力。
通俗地讲,循环寿命就是衡量锂离子电池使用寿命的一个重要参数。
一般来说,锂离子电池的循环寿命以完整的充放电循环次数来计算,通常以500次或1000次充放电循环作为一个衡量标准。
三、影响循环寿命的因素1. 充放电深度:充放电深度是指电池在每一次充放电中所释放或储存的能量占其额定容量的百分比。
充放电深度越大,电池的循环寿命就会越短。
2. 温度:温度是影响锂离子电池循环寿命的重要因素之一。
高温会加速电池的老化和损坏,降低其循环寿命。
3. 充电速度:过快的充电速度会导致电池内部产生过多的热量,从而影响电池的寿命。
适当控制充电速度可以延长电池的循环寿命。
四、延长循环寿命的方法1. 控制充放电深度:对于需要长期使用的锂离子电池设备,建议合理控制充放电深度,避免过度放电或充电。
2. 维护合适的温度:在使用锂离子电池设备时,尽量避免暴露在高温或特殊寒冷的环境下,以延长电池的循环寿命。
3. 合理控制充电速度:在充电时,尽量选择合适的充电器,控制充电速度,避免过快的充电导致电池过热。
五、结语循环寿命是评价锂离子电池性能和使用寿命的重要指标,而延长电池的循环寿命也是我们在日常使用电池设备时应该重视的问题。
锂离子电池的寿命与稳定性研究随着电动汽车、移动设备等电子产品的普及,锂离子电池作为一种高能量密度的可充电电池,其重要性日益凸显。
然而,锂离子电池的寿命和稳定性问题却一直是人们关注的焦点。
本文将从电池过程、电化学反应及电极材料等角度入手,探讨锂离子电池寿命与稳定性的研究现状和进展。
一、锂离子电池过程及电化学反应锂离子电池是通过离子在电解质中的运动产生电流的一种电池,其主要核心组件为正极、负极、电解液和隔膜。
电池充放电过程中,正负极之间的离子在电解液中运动,正极放电时,Li+ 离子从电解液中迁移到正极,同时正极中的电子流向负极,形成电路。
负极充电时,Li+ 离子从正极向负极迁移,同时负极中的电子流向正极,形成电路。
从理论上来说,锂离子电池是一种可逆反应电池,即可通过反向充电将电池的荷电状态还原,使电池设备可以重复使用。
然而,实际应用中,锂离子电池的反应速率和某些化学反应会影响其寿命和稳定性。
二、电极材料对锂离子电池稳定性的影响电极材料作为锂离子电池的核心组件之一,其理化特性、表面结构和电导率等因素都对电池的性能、寿命和安全性产生影响。
因此,电极材料的研究是锂离子电池寿命与稳定性研究的重要方向。
例如,正极材料中的锂离子嵌入和离开过程会损害材料结构,导致电极材料失活,从而降低电池容量和循环寿命。
相比之下,负极材料中的碳材料的嵌入和离开过程对电极材料的损伤更小,因此其循环寿命更长。
由此可见,电极材料对锂离子电池寿命和稳定性有着至关重要的影响。
三、寿命与稳定性研究现状和进展锂离子电池的寿命和稳定性是影响其应用范围和市场前景的关键因素,因此其研究领域日益扩大。
目前,学界和工业界在锂离子电池寿命与稳定性研究方面取得了诸多进展。
例如,对电池反应机理的研究使得人们可以更好地了解电池的寿命受限因素及其机制;电极材料的表面改性和结构优化可以增强电极材料的性能和耐用性;锂离子电池电解液方面,隔膜成为其重要组成部分,通过改进隔膜的结构和性能来提高电池的安全性和耐用性。
锂电池的正确使用和保养方法锂电池的正确使用和保养方法锂电池寿命问题:循环充放电一次就是少一次寿命吗?回答这个问题前,我们先来说说锂电池循环寿命的测试条件。
循环就是使用,我们是在使用电池,关心的是使用的时间,为了衡量充电电池到底可以使用多长时间这样一个性能,就规定了循环次数的定义。
实际的用户使用千变万化,因为条件不同的试验是没有可比性的,要有比较就必须规范循环寿命的定义。
国标规定的锂电池循环寿命测试条件及要求:在环境温度20℃±5℃的条件下,以1C充电,当电池端电压达到充电限制电压4.2V时,改为恒压充电,直到充电电流小于或等于1/20C,停止充电,搁置0.5h~1h,然后以1C电流放电至终止电压2.75V,放电结束后,搁置0.5h~1h,再进行下一个充放电循环,直至连续两次放电时间小于36min,则认为寿命终止,循环次数必须大于300次。
国标规定的解释:A.这个定义规定了循环寿命的测试是以深充深放方式进行的B.规定了锂电池的循环寿命按照这个模式,经过≥300次循环后容量仍然有60%以上然而,不同的循环制度得到的循环次数是截然不同的,比如以上其它的条件不变,仅仅把4.2V的恒压电压改为4.1V的恒压电压对同一个型号的电池进行循环寿命测试,这样这个电池就已经不是深充方式了,最后测试得到循环寿命次数可以提高近60%。
那么如果把截止电压提高到 3.9V 进行测试,其循环次数应该可以增加数倍。
这个关于循环充放电一次就少一次寿命的说法,我们要注意的是,锂电池的充电周期的定义:一个充电周期指的是锂电池的所有电量由满用到空,再由空充电到满的过程。
而这并不等同于充电一次。
另外大家在谈论循环次数的时候不能忽视循环的条件,抛开规则谈论循环次数是没有任何意义的,因为循环次数是检测电池寿命的手段,而不是目的!▲误区:许多人喜欢把手机锂离子电池用到自动关机再充电,这个完全没有必要。
实际上,用户不可能按照国标测试模式对电池进行使用,没有一个手机会在2.75V才关机,而其放电模式也不是大电流恒流放电,而是GSM的脉冲放电和平时的小电流放电混合的方式。
磷酸铁锂电池真实寿命
磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。
长寿命铅酸电池的循环寿命在300次左右,最高也就500次
而磷酸铁锂动力电池,循环寿命达到2000次以上,标准充电(5小
时率)使用,可达到2000次。
同质量的铅酸电池是新半年、旧半年、维护维护又半年,最多也就1~1.5年时间,而磷酸铁锂电池在同样条件下使用,理
论寿命将达到7~8年。
综合考虑,性能价格比理论上为铅酸电池的4倍以上。
大电流放电可大电流2C快速充放电,在专用充电器下,1.5C充电40分钟内即可使电池充满,起动电流可达2C,而铅酸电池无此性能。
现在很多教学实验室都会使用碳酸铁锂电池。
由于碳酸铁锂电池在现在的生活当中应用是越来越广泛了,因此很多人都非常的关注它的发展。
那幺接下来小编就以碳酸铁锂电池的真实生命做一个简单的介绍,供大家了解。
锂离子电池的使用寿命锂离子电池是当今最常用的可充电电池之一,其优点在于高能量密度、长寿命以及无记忆效应。
然而,锂离子电池的使用寿命也是一个重要的考虑因素,因为它将直接影响电池的可靠性和使用成本。
在本文中,我们将探讨锂离子电池的使用寿命及其相关因素。
首先,锂离子电池的使用寿命可由以下几个方面来评估。
首先是循环寿命,即电池能够完成多少次完整的充放电循环。
这取决于电池的化学组成以及使用和充电条件。
一般来说,锂离子电池的循环寿命可以达到几百次到几千次,取决于电池的质量和设计。
其次是容量衰减,即电池在使用一定时间后所能存储的电荷量的减少。
由于电池内部的化学反应和结构变化,锂离子电池的容量会随着时间的推移而减少。
这种容量衰减通常以每年几个百分点的速率发生。
当电池的容量衰减到一定程度时,它将不能提供充足的电能,需要更频繁地进行充电,这就降低了电池的使用寿命。
另一个重要的因素是温度对锂离子电池寿命的影响。
锂离子电池在高温下会加速容量衰减和电化学反应,从而缩短电池寿命。
相反,在低温下,电池的性能可能会降低,导致电池的容量和输出电压下降。
因此,适当的温度管理对于延长锂离子电池的使用寿命至关重要。
此外,充电和放电速率也会对锂离子电池寿命产生影响。
高充电和放电速率会引起电池内部的热量积累和化学反应加剧,从而缩短电池的寿命。
因此,在设计锂离子电池时,需要平衡容量和功率要求,尽量避免过高的充电和放电速率。
另一个影响锂离子电池使用寿命的因素是过充和过放。
过充和过放都会引起电池内部的化学反应和结构破坏,从而降低电池的寿命。
因此,使用合适的充放电管理系统来避免过充和过放对锂离子电池的寿命至关重要。
最后,锂离子电池的使用寿命还受到使用环境和维护的影响。
例如,暴露在高湿度和有害气体等恶劣环境中会降低电池的寿命。
此外,正确的充电和储存方法(如避免长时间放电和过高的存储温度)也会对电池的寿命产生积极影响。
总的来说,锂离子电池的使用寿命是一个综合考虑多个因素的问题。
钛酸锂电池的使用寿命?如何保养?
钛酸锂电池
钛酸锂电池是一种用作锂离子电池负极材料-钛酸锂,可和锰酸锂、三元材料或磷酸铁锂等正极材料组成2.4V或1.9V的锂离子二次电池。
此外,它还可以用作正极,与金属锂或锂合金负极组成1.5V的锂二次电池。
由于钛酸锂的高安全性、高稳定性、长寿命和绿色环保的特点。
可以预见:钛酸锂材料在2-3年后,一定会成为新一代锂离子电池的负极材料而被广泛应用在新能源汽车、电动摩托车和要求高安全性、高稳定性和长周期的应用领域。
钛酸锂电池工作电压2.4V,最高电压3.0V,充电电流大于2C(即电池容量值的2倍的电流)。
钛酸锂电池的使用寿命
电动车的出现,在无形中解决了城市环境污染严重的问题。
为了满足电动车对电池的要求,研制安全性高、倍率性能好、循环充放次数多,使用寿命长的的电池既是热点也是难点。
在电池的选择上面,欧里路经过综合对比分析,摒弃仅有300次循环充放次数的铅酸电池,800-1000次循环充放次数的普通锂电池,最终选择循环充放次数高达2万5千次的钛酸锂电池。
电池的好坏直接影响电动车的行驶距离以及使用寿命。
钛酸锂电池如何保养
1、避免暴晒
温度过高会直接导致蓄电池内部压力增加,从而使电池限压阀被迫自动开。
锂离子电池的使用这部分是本文的重点,我们分三点来谈。
1、如何为新电池充电在使用锂电池中应注意的是,电池放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。
但锂电池很容易激活,只要经过3—5次正常的充放电循环就可激活电池,恢复正常容量。
由于锂电池本身的特性,决定了它几乎没有记忆效应。
因此用户手机中的新锂电池在激活过程中,是不需要特别的方法和设备的。
不仅理论上是如此,从我自己的实践来看,从一开始就采用标准方法充电这种“自然激活”方式是最好的。
对于锂电池的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便激活电池。
这种“前三次充电要充12小时以上”的说法,明显是从镍电池(如镍镉和镍氢)延续下来的说法。
所以这种说法,可以说一开始就是误传。
锂电池和镍电池的充放电特性有非常大的区别,而且可以非常明确的告诉大家,我所查阅过的所有严肃的正式技术资料都强调过充和过放电会对锂电池、特别是液体锂离子电池造成巨大的伤害。
因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。
通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。
此外,锂电池的手机或充电器在电池充满后都会自动停充,并不存在镍电充电器所谓的持续10几小时的“涓流”充电。
也就是说,如果你的锂电池在充满后,放在充电器上也是白充。
而我们谁都无法保证电池的充放电保护电路的特性永不变化和质量的万无一失,所以你的电池将长期处在危险的边缘徘徊。
这也是我们反对长充电的另一个理由。
此外在对某些手机上,充电超过一定的时间后,如果不去取下充电器,这时系统不仅不停止充电,还将开始放电-充电循环。
也许这种做法的厂商自有其目的,但显然对电池和手机/充电器的寿命而言是不利的。
同时,长充电需要很长的时间,往往需要在夜间进行,而以我国电网的情况看,许多地方夜间的电压都比较高,而且波动较大。
前面已经说过,锂电池是很娇贵的,它比镍电在充放电方面耐波动的能力差得多,于是这又带来附加的危险。
锂离子软包电池的技术参数全文共四篇示例,供读者参考第一篇示例:锂离子软包电池是一种目前应用较为广泛的电池类型,在移动电子设备、电动车辆、储能系统等领域都有着重要的地位。
下面就来介绍一下锂离子软包电池的技术参数。
需要了解的是锂离子软包电池的容量。
容量是指电池所储存的电能量大小,常用单位是安时(Ah),它反映了电池能够提供的电能量大小。
通常情况下,锂离子软包电池的容量会直接决定其使用时间和续航里程等参数。
在实际应用中,容量大小会根据具体的需求进行选择。
锂离子软包电池的额定电压也是重要的技术参数之一。
锂离子电池的额定电压一般为3.7V,而多数移动电子设备会采用3.7V或7.4V 的锂电池。
在使用过程中需要注意,不能超过锂电池的额定电压,否则会影响电池的寿命和安全性。
锂离子软包电池的充电和放电性能也是关键的技术指标。
充电性能主要包括充电速度、充放电效率和循环寿命等。
而放电性能则包括放电平台稳定性、过放电能力和放电结束电压等。
这些性能直接影响到电池的使用效果和寿命,因此在选择锂离子软包电池时需要综合考虑这些因素。
锂离子软包电池的安全性能也是不可忽视的技术参数。
由于锂离子电池在使用过程中存在一定的安全风险,如过充、过放、短路等,因此电池需要具备一定的安全保护机制。
常见的安全保护措施包括短路保护、过充保护、过放保护和温度保护等,这些保护机制能够有效地提高电池的安全性。
锂离子软包电池的工作温度范围也是重要的技术指标之一。
电池的工作温度范围会直接影响其性能和寿命,一般情况下,锂离子电池的工作温度范围为-20℃~60℃。
在超出这个范围的温度条件下使用电池,会导致电池性能下降甚至损坏,因此在实际使用中需要严格控制电池的工作温度。
锂离子软包电池的技术参数涵盖了容量、额定电压、充放电性能、安全性能和工作温度范围等多个方面。
在选择和使用电池时,需要综合考虑这些技术参数,以确保电池能够满足需求并具有良好的性能和安全性。
希望以上介绍能够帮助大家更好地了解和应用锂离子软包电池。
锂离子电池材料的循环寿命锂离子电池作为现代电子设备中最常用的电池类型之一,其循环寿命一直是人们关注的焦点。
循环寿命的提升将直接影响电池的稳定性、可靠性和使用寿命等方面。
在这篇文章中,笔者将探讨锂离子电池材料的循环寿命以及相关的研究进展。
首先,我们来了解一下锂离子电池的基本工作原理。
锂离子电池由正极、负极、电解质和隔膜组成。
在充电过程中,锂离子从正极释放出来,穿过电解质和隔膜,进入负极嵌入。
而在放电过程中,锂离子从负极嵌入位移回到正极。
这个过程反复进行,就是电池的循环充放电过程。
循环寿命即电池在经过多次循环充放电后能保持其容量的能力。
随着充放电次数的增加,锂离子电池的循环寿命逐渐衰减,并最终无法正常工作。
导致循环寿命衰减的因素很多,包括电极材料的退化、电解液的挥发、电池内部的反应和堆积等。
首先,电极材料的退化是导致循环寿命衰减的主要原因之一。
目前,常用的正极材料有锰酸锂、钴酸锂和镍酸锂等,而常用的负极材料是石墨。
随着循环充放电的进行,电极材料的晶体结构会受到损伤,导致容量的下降。
此外,正极材料的氧化和脱嵌反应也会引起电极材料的膨胀和收缩,从而导致循环寿命的减少。
其次,电解液的挥发也会影响循环寿命。
锂离子电池中使用的电解液通常是有机碳酸盐溶液,其中包含锂盐、溶剂和添加剂等。
由于溶剂和添加剂的挥发,电解液的成分会发生变化,导致电池内部反应的失衡。
因此,降低电解液的挥发性能,提高锂离子电池的循环寿命具有重要意义。
此外,电池内部的反应和堆积也是导致循环寿命衰减的因素之一。
随着循环充放电的进行,电池内部会发生氧化、还原和电解液降解等反应,这些反应会导致电池内部产生气体和固体堆积物。
堆积物的生成会增加电池内阻,降低循环寿命。
为了提高锂离子电池的循环寿命,研究人员一直在开展相关工作。
他们通过调控电极材料的结构、改进电解液的成分、优化电池的组装工艺等方法来改善电池的循环性能。
例如,研究表明,采用涂层技术可以提高电极材料的稳定性和电化学性能,从而延长电池的循环寿命。
6大锂电池类型及性能参数汇总!锂电池是目前应用最广泛的电池之一,被广泛用于移动设备、电动车辆、储能系统等领域。
目前市场上主要有六种类型的锂电池,它们分别是锂离子电池(Li-ion)、锂聚合物电池(Li-polymer)、磷酸铁锂电池(LiFePO4)、锰酸锂电池(LiMn2O4)、钴酸锂电池(LiCoO2)和钴酸锂锰酸锂电池(LNMC)。
下面将对这六种锂电池的性能参数进行汇总。
1. 锂离子电池(Li-ion)性能参数:-标称电压:3.7V- 比能量:150-250Wh/kg- 比功率:150-300W/kg-充电效率:90-95%-电池寿命:500-1000次循环锂离子电池具有高能量密度、高电池电压和较长的循环寿命的优点,是目前市场上应用最广泛的锂电池类型。
2. 锂聚合物电池(Li-polymer)性能参数:-标称电压:3.7V- 比能量:300-500Wh/kg- 比功率:150-300W/kg-充电效率:90-95%-电池寿命:500-1000次循环锂聚合物电池采用了聚合物电解质,相较于锂离子电池具有更高的能量密度和更薄的灵活设计,但循环寿命相对较短。
3.磷酸铁锂电池(LiFePO4)性能参数:-标称电压:3.2V- 比能量:90-120Wh/kg- 比功率:30-60W/kg-充电效率:99%-电池寿命:2000次以上循环磷酸铁锂电池具有高安全性、较长的循环寿命和较低的自放电率,在电动车辆和储能领域有较大应用。
4.锰酸锂电池(LiMn2O4)性能参数:-标称电压:3.7V- 比功率:100-150W/kg-充电效率:90-95%-电池寿命:500-700次循环锰酸锂电池具有相对较低的成本、较高的比功率和循环稳定性,广泛应用于动力电池。
5.钴酸锂电池(LiCoO2)性能参数:-标称电压:3.7V- 比能量:150-200Wh/kg- 比功率:200-250W/kg-充电效率:90-95%-电池寿命:300-500次循环钴酸锂电池具有较高的比能量和比功率,但成本较高,同时也存在安全性问题。
锂离子电池与锂聚合物电池的比较分析锂离子电池与锂聚合物电池是目前应用最广泛的两种充电式电池,它们在能量密度、循环寿命、安全性等方面有所不同。
本文将从这些方面对两种电池进行比较分析。
首先,我们来看两种电池的能量密度。
锂离子电池是目前市场上最常见的电池,其能量密度在150-200 Wh/kg之间,具有较高的能量密度,可以提供较长的使用时间。
而锂聚合物电池的能量密度一般在130-180 Wh/kg之间,稍低于锂离子电池。
这意味着锂离子电池可以在相同的体积下提供更多的能量,适用于那些对能量密度要求较高的应用,如移动设备、电动汽车等。
其次,循环寿命也是两种电池的重要比较指标之一。
锂离子电池的循环寿命通常在500-1000次左右,正常使用情况下可以满足一般用户的需求。
而锂聚合物电池的循环寿命要稍长一些,一般可以达到1000-1500次左右,这是因为锂聚合物电池使用了更稳定的电解质材料。
因此,对于那些需要频繁进行充电和放电的应用,如电动工具、电动车等,锂聚合物电池更加适合。
此外,安全性也是使用电池时要考虑的重要因素。
锂离子电池的安全性相对较低,因为其内部使用的液体电解质可能会发生泄漏、燃烧等事故。
而锂聚合物电池在安全性方面表现更好,因为它使用的是固态电解质,不易泄漏和燃烧。
因此,对于一些对安全性要求较高的应用,如航空航天、医疗器械等,锂聚合物电池更加适合使用。
此外,锂聚合物电池还有更轻薄的特点。
由于锂聚合物电池使用了柔性包装材料,相比锂离子电池更加薄型,可以对电子设备进行更精细的设计。
这使得锂聚合物电池广泛应用于移动设备领域,如智能手机、平板电脑等。
然而,锂聚合物电池也存在一些问题。
首先,锂聚合物电池的成本较高,制造工艺也较为复杂,这使得其价格相对较高。
其次,锂聚合物电池的充放电效率较低,相较锂离子电池而言,能量转化效率更低。
此外,锂聚合物电池的寿命受温度的影响较大,高温会加速其衰减,因此在使用锂聚合物电池时需要注意温度控制。
锂离子电池的使用这部分是本文的重点,我们分三点来谈。
1、如何为新电池充电在使用锂电池中应注意的是,电池放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。
但锂电池很容易激活,只要经过3—5次正常的充放电循环就可激活电池,恢复正常容量。
由于锂电池本身的特性,决定了它几乎没有记忆效应。
因此用户手机中的新锂电池在激活过程中,是不需要特别的方法和设备的。
不仅理论上是如此,从我自己的实践来看,从一开始就采用标准方法充电这种“自然激活”方式是最好的。
对于锂电池的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便激活电池。
这种“前三次充电要充12小时以上”的说法,明显是从镍电池(如镍镉和镍氢)延续下来的说法。
所以这种说法,可以说一开始就是误传。
锂电池和镍电池的充放电特性有非常大的区别,而且可以非常明确的告诉大家,我所查阅过的所有严肃的正式技术资料都强调过充和过放电会对锂电池、特别是液体锂离子电池造成巨大的伤害。
因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。
通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。
此外,锂电池的手机或充电器在电池充满后都会自动停充,并不存在镍电充电器所谓的持续10几小时的“涓流”充电。
也就是说,如果你的锂电池在充满后,放在充电器上也是白充。
而我们谁都无法保证电池的充放电保护电路的特性永不变化和质量的万无一失,所以你的电池将长期处在危险的边缘徘徊。
这也是我们反对长充电的另一个理由。
此外在对某些手机上,充电超过一定的时间后,如果不去取下充电器,这时系统不仅不停止充电,还将开始放电-充电循环。
也许这种做法的厂商自有其目的,但显然对电池和手机/充电器的寿命而言是不利的。
同时,长充电需要很长的时间,往往需要在夜间进行,而以我国电网的情况看,许多地方夜间的电压都比较高,而且波动较大。
前面已经说过,锂电池是很娇贵的,它比镍电在充放电方面耐波动的能力差得多,于是这又带来附加的危险。
此外,不可忽视的另外一个方面就是锂电池同样也不适合过放电,过放电对锂电池同样也很不利。
这就引出下面的问题。
2、正常使用中应该何时开始充电在我们的论坛上,经常可以见到这种说法,因为充放电的次数是有限的,所以应该将手机电池的电尽可能用光再充电。
但是我找到一个关于锂离子电池充放电循环的实验表,关于循环寿命的数据列出如下:循环寿命(10%DOD): >1000次循环寿命(100%DOD): >200次其中DOD是放电深度的英文缩写。
从表中可见,可充电次数和放电深度有关,10%DOD时的循环寿命要比100%DOD的要长很多。
当然如果折合到实际充电的相对总容量:10%*1000=100,100%*200=200,后者的完全充放电还是要比较好一些,但前面网友的那个说法要做一些修正:在正常情况下,你应该有保留地按照电池剩余电量用完再充的原则充电,但假如你的电池在你预计第2天不可能坚持整个白天的时候,就应该及时开始充电,当然你如果愿意背着充电器到办公室又当别论。
而你需要充电以应付预计即将到来的会导致通讯繁忙的重要事件的时候,即使在电池尚有很多余电时,那么你也只管提前充电,因为你并没有真正损失“1”次充电循环寿命,也就是“0.x”次而已,而且往往这个x会很小。
电池剩余电量用完再充的原则并不是要你走向极端。
和长充电一样流传甚广的一个说法,就是“尽量把手机电池的电量用完,最好用到自动关机”。
这种做法其实只是镍电池上的做法,目的是避免记忆效应发生,不幸的是它也在锂电池上流传之今。
曾经有人因为手机电池电量过低的警告出现后,仍然不充电继续使用一直用到自动关机的例子。
结果这个例子中的手机在后来的充电及开机中均无反应,不得不送客服检修。
这其实就是由于电池因过度放电而导致电压过低,以至于不具备正常的充电和开机条件造成的。
3、对锂电池手机的正确做法归结起来,我对锂电池手机在使用中的充放电问题最重要的提示是:1、按照标准的时间和程序充电,即使是前三次也要如此进行;2、当出现手机电量过低提示时,应该尽量及时开始充电;3、锂电池的激活并不需要特别的方法,在手机正常使用中锂电池会自然激活。
如果你执意要用流传的“前三次12小时长充电激活”方法,实际上也不会有效果。
因此,所有追求12小时超长充电和把锂电池手机用到自动关机的做法,都是错误的。
如果你以前是按照错误的说法做的,请你及时改正,也许为时还不晚。
当然,在手机及充电器自身保护和控制电路质量良好的情况下,对锂电池的保护还是有相当保证的。
所以对充电规则的理解才是重点,在某些情况下也是可以做出某种让步的。
比如你发现手机在你夜晚睡觉前必须充电的话,你也可以在睡前开始充电。
问题的关键在于,你应该知道正确的做法是什么,并且不要刻意按照错误的说法去做。
为了便于阅读,小标题列举如下:1.认识记忆效应2.电池需要激活吗3.前三次要充12小时吗4.充电电池有最佳状态吗5.真的是充电电流越大,充电越快吗〓〓〓〓〓〓〓〓〓〓〓1.认识记忆效应电池记忆效应是指电池的可逆失效,即电池失效后可重新回复的性能.记忆效应是指电池长时间经受特定的工作循环后,自动保持这一特定的倾向.这个最早定义在镍镉电池,镍镉的袋式电池不存在记忆效应,烧结式电池有记忆效应.而现在的镍金属氢(俗称镍氢)电池不受这个记忆效应定义的约束.因为现代镍镉电池工艺的改进,上述的记忆效应已经大幅度的降低,而另外一种现象替换了这个定义,就是镍基电池的"晶格化",通常情况,镍镉电池受这两种效应的综合影响,而镍氢电池则只受"晶格化"记忆效应的影响,而且影响较镍镉电池的为小.在实际应用中,消除记忆效应的方法有严格的规范和一个操作流程.操作不当会适得其反.对于镍镉电池,正常的维护是定期深放电:平均每使用一个月(或30次循环)进行一次深放电(放电到1.0V/每节,老外称之为exercise),平常使用是尽量用光电池或用到关机等手段可以缓解记忆效应的形成,但这个不是exercise,因为仪器(如手机)是不会用到1.0V/每节才关机的,必须要专门的设备或线路来完成这项工作,幸好许多镍氢电池的充电器都带有这个功能.对于长期没有进行exercise的镍镉电池,会因为记忆效应的累计,无法用exercise进行容量回复,这时则需要更深的放电(老外称recondition),这是一种用很小的电流长时间对电池放电到0.4V每节的一个过程,需要专业的设备进行.对于镍氢电池,exercise进行的频率大概每三个月一次即可有效的缓解记忆效应.因为镍氢电池的循环寿命远远低于镍镉电池,几乎用不到recondition这个方法.▲建议1:每次充电以前对电池放电是没有必要,而且是有害的,因为电池的使用寿命无谓的减短了.▲建议2:用一个电阻接电池的正负极进行放电是不可取的,电流没法控制,容易过放到0V,甚至导致串联电池组的电池极性反转.〓〓〓〓〓〓〓〓〓〓〓2.电池需要激活吗回答是电池需要激活,但这不是用户的要做的事.我参观过锂离子电池的生产厂,锂离子电池在出厂以前要经过如下过程:锂离子电池壳灌输电解液---封口----化成,就是恒压充电,然后放电,如此进行几个循环,使电极充分浸润电解液,充分活化,以容量达到要求为止,这个就是激活过程---分容,就是测试电池的容量选取不同性能(容量)的电池进行归类,划分电池的等级,进行容量匹配等.这样出来的锂离子电池到用户手上已经是激活过的了.我们大家常用的镍镉电池和镍氢电池也是如此化成激活以后才出厂的.其中有些电池的激活过程需要电池处于开口状态,激活以后再封口,这个工序也只可能有电芯生产厂家来完成了.这里存在一个问题,就是电池厂出厂的电池到用户手上,这个时间有时会很长,短则1个月,长则半年,这个时候,因为电池电极材料会钝化,所以厂家建议初次使用的电池最好进行3~5次完全充放过程,以便消除电极材料的钝化,达到最大容量.在2001年颁布的三个关于镍氢.镍镉和锂离子电池的国标中,其初始容量的检测均有明确规定,对电池可以进行5次深充深放,当有一次符合规定时,试验即可停止.这很好的解释了我说的这个现象.★那么称之为"第二次激活"也是可以的,用户初次使用的"新"电池尽量进行几次深充放循环.●然而据我的测试(针对锂离子电池),存储期在1~3个月之内的锂离子电池, 对它进行深充深放的循环处理,其容量提高现象几乎不存在.(我在专题讨论区有关于电池激活的测试报告)〓〓〓〓〓〓〓〓〓〓〓3.前三次要充12小时吗这个问题是紧扣上面的电池激活问题的,姑且设出厂的电池到用户手上有电极钝化现象,为了激活电池进行深充深放电循环3次.其实这个问题转化为深充是不是就是要充12个小时的问题.那么我的另一片文章"论手机电池的充电时间"已经回答了这个问题.★★★答案是不需要充12小时.早期的手机镍氢电池因为需要补充和涓流充电过程,要达到最完美的充饱状态,可能需要5个小时左右,但是也是不需要12个小时的.而锂离子电池的恒流恒压充电特性更是决定了它的深充电时间无需12个小时.对于锂离子电池有人会问,既然恒压阶段锂离子电池的电流逐渐减小,是不是当电流小到无穷小的时候才是真正的深充.我曾经画出恒压阶段电流减小对时间的曲线,对它进行多次曲线拟合,发现这个曲线可以用1/x的函数方式接近与零电流,实际测试时因为锂离子电池本身存在的自放电现象,这个零电流是永远不可能到达的.以600mAh的电池为例,设置截至电流为0.01C(即6mA),它的1C充电时间不超过150分钟,那么设置截至电流为0.001C(即0.6mA),它的充电时间可能为10小时---这个因为仪器精度的问题,已经无法精确获得,但是从0.01C到0.001C获的容量经计算仅为1.7mAh,以多用的7个多小时来换取这仅仅的千分之三不到的容量是没有任何实际意义的.何况,还有其它的充电方式,比如脉冲充电方式使锂离子电池来达到4.2V的限制电压,它根本没有截止最小电流判断阶段,一般150分钟后它就是100%充饱了.许多手机都是用脉冲充电方式的.有人曾经用手机显示充饱后,再用座充进行充电来确认手机的充饱程度,这个测试方法欠严谨.首先座充显示绿灯不是检测真正充饱与否的一个依据.★★检测锂离子电池充饱与否的唯一最终的方法就是测试在不充电(也不放电)状态时的锂离子电池的电压.所谓恒压阶段电流减小其真正的目的就是逐渐减小在电池内阻上因充电电流而产生的附加电压,当电流小到0.01C,比如6mA,这个电流乘与电池内阻(一般在200毫欧之内)仅为1mV,可以认为这时的电压就是无电流状态的电池电压.其次,手机的基准电压不一定等于座充的基准电压,手机认为充饱的电池到了座充上,座充却不认为已经充饱,却继续进行充电.〓〓〓〓〓〓〓〓〓〓〓4.充电电池有最佳状态吗有一种说法就是,充电电池使用得当,会在某一段循环范围出现最佳的状态,就是容量最大.这个要分情况,密封的镍氢电池和镍镉电池,如果使用得当(比如定期的维护,防止记忆效应的产生和累计),一般会在100~200个循环处达到其容量的最大值,比如出厂容量为1000mAh的镍氢电池用了120次循环后,其容量有可能达到1100mAh.几乎所有的日本镍氢电池生产商的技术规格书中描述镍基电池的循环特性的图上我都能看到这样的描述.★镍基电池有最佳状态,一般在100~200循环次数之间达到其最大容量对于液态锂离子电池,却根本不存在这样一个循环容量的驼峰现象,从锂离子电池出厂到最终电池报废为止,其容量的表现就是用一次少一次.我在对锂离子电池做循环性能的时候也从来没有看到过有容量回升的迹象.★锂离子电池没有最佳状态.值得一提的是,锂离子电池更容易受环境温度的变化而表现不同的性能,在25~40度的环境温度会表现其最好性能,而低温或高温状态,他的性能就大打折扣了.要使你的锂离子电池充分展现它的容量,一定要细心的注意使用环境,防止高低温现象,比如手机放在汽车的前台上,中午的太阳直射很容易就可以使其超过60度,北方的用户的电池待机时间,同等网络情况下,就没有南方的用户长了.〓〓〓〓〓〓〓〓〓〓〓5.真的是充电电流越大,充电越快吗对于恒流充电的镍基电池,可以这么说,而对应锂离子电池,这个是不完全正确的。