高中数学 1.1 集合 集合的概念 康托尔-集合论的创造者素材 新人教版必修1
- 格式:doc
- 大小:37.00 KB
- 文档页数:3
康托尔-集合论的创造者康托尔·G(Cantor,Georg Ferdinand Ludwig Philipp,1845.3.3~1918.1.6 )德国数学家,集合论的创始人。
生于俄国圣彼得堡。
父亲是犹太血统的丹麦商人,母亲出身艺术世家。
1856年全家迁居德国的法兰克福。
先在一所中学,后在威斯巴登的一所大学预科学校学习。
1862年入苏黎世大学学工,翌年转入柏林大学攻读数学和神学,受教于库默尔(Kummer,Ernst Eduard,1810.1.29~1893.5.14)、魏尔斯特拉斯(Weierstrass,Karl Theodor Wilhelm,1815.10.31~1897.2.19)和克罗内克(Kronecker,Leopold,1823.12.7~1891.12.29)。
1866年曾去格丁根学习一学期。
1867年在库默尔指导下以解决一般整系数不定方程ax2+by2+cz2=0求解问题的论文获博士学位。
毕业后受魏尔斯特拉斯的直接影响,由数论转向严格的分析理论的研究,不久崭露头角。
他在哈雷大学任教(1869~1913)的初期证明了复合变量函数三角级数展开的唯一性,继而用有理数列极限定义无理数。
1872年成为该校副教授,1879年任教授。
由于学术观点上受到的沉重打击,使康托尔曾一度患精神分裂症,虽在1887年恢复了健康,继续工作,但晚年一直被病魔缠身。
1918年1月6日在德国哈雷(Halle)-维滕贝格大学附属精神病院去世。
康托尔爱好广泛,极有个性,终身信奉宗教。
早期在数学方面的兴趣是数论,1870年开始研究三角级数并由此导致19世纪末、20世纪初最伟大的数学成就——集合论和超穷数理论的建立。
除此之外,他还努力探讨在新理论创立过程中所涉及的数理哲学问题.1888~1893年康托尔任柏林数学会第一任会长,1890年领导创立德国数学家联合会并任首届主席。
主要贡献康托尔对数学的贡献是集合论和超穷数理论。
1.1.1集合的概念教学目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念教学过程:1.引入(1)章头导言(2)集合论与集合论的创始者-----康托尔(有关介绍可引用附录中的内容)2.讲授新课阅读教材,并思考下列问题:(1)有那些概念?(2)有那些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?(一)有关概念:1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈Aa∉(2)不属于:如果a不是集合A的元素,就说a不属于A,记作A要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集{Φ,}0{,0等符号的含义注:应区分Φ,}5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N*或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*课堂练习:教材第5页练习A、B小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质课后作业:第十页习题1-1B第3题附录:集合论的诞生韩雪涛集合论是德国著名数学家康托尔于19世纪末创立的.十七世纪数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔的不朽功绩前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”.因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来.数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱.因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念.但试图把握无限的康托尔却勇敢地踏上了这条充满陷阱的不归路.他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.下面就让我们来看一下盒子打开后他释放出的是什么.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合那一章后,同学们应该对这句话不会感到陌生.但同学们在接受这句话时根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在.这种关于无穷的观念在数学上被称为潜无限.十八世纪数学王子高斯就持这种观点.用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的.所谓无穷,只是一种说话的方式……”而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为实无限思想.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的.然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷.他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论.这一理论使人们真正进入了一个难以捉摸的奇特的无限世界.最能显示出他独创性的是他对无穷集元素个数问题的研究.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应――例如同学们很容易发现自然数集与正偶数集之间存在着一一对应关系――也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了代数数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.这不但意味着无理数远远多于有理数,而且显然庞大的代数数与超越数相比而言也只成了沧海一粟,如同有人描述的那样:“点缀在平面上的代数数犹如夜空中的繁星;而沉沉的夜空则由超越数构成.”而当他得出这一结论时,人们所能找到的超越数尚仅有一两个而已.这是何等令人震惊的结果!然而,事情并未终结.魔盒一经打开就无法再合上,盒中所释放出的也不再限于可数集这一个无穷数的怪物.从上述结论中康托尔意识到无穷集之间存在着差别,有着不同的数量级,可分为不同的层次.他所要做的下一步工作是证明在所有的无穷集之间还存在着无穷多个层次.他取得了成功,并且根据无穷性有无穷种的学说,对各种不同的无穷大建立了一个完整的序列,他称为“超限数”.他用希伯莱字母表中第一个字母“阿列夫”来表示超限数的精灵,最终他建立了关于无限的所谓阿列夫谱系它可以无限延长下去.就这样他创造了一种新的超限数理论,描绘出一幅无限王国的完整图景.可以想见这种至今让我们还感到有些异想天开的结论在当时会如何震动数学家们的心灵了.毫不夸张地讲,康托尔的关于无穷的这些理论,引起了反对派的不绝于耳的喧嚣.他们大叫大喊地反对他的理论.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.作为对传统观念的一次大革新,由于他开创了一片全新的领域,提出又回答了前人不曾想到的问题,他的理论受到激烈地批驳是正常的.当回头看这段历史时,或许我们可以把对他的反对看作是对他真正具有独创性成果的一种褒扬吧.公理化集合论的建立集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界.这就是1902年罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R.现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R.这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中.这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现.这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论.公理化集合论是对朴素集合论的严格处理.它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.超限算术是数学思想的最惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一.这个成就可能是这个时代所能夸耀的最伟大的工作.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一.注:整系数一元n次方程的根,叫代数数.如一切有理数是代数数.大量无理数也是代数数.如根号2.因为它是方程x2-2=0的根.实数中不是代数数的数称为超越数.相比之下,超越数很难得到.第一个超越数是刘维尔于1844年给出的.关于π是超越数的证明在康托尔的研究后十年才问世.。
1.1.1 集合的含义与表示备课资料1.无限集在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架.他创立的这个学科一直是我们数学发展的根植地.这个学科就叫做集合论.它的概念和方法已经有效地渗透到所有的现代数学.尽管我们生存的世界是有限的,但是,为了研究它,我们却总是要涉及无限,所有自然数的集合就是一个无限集,圆周率的精确值表示需要无限多位小数,等等.对于无限集,可以得到一些意想不到的结论.例如,设集合A 是所有正整数的集合,集合B 是所有正偶数的集合.直观地,B 中的元素个数恰好是A 中元素个数的一半.但是,根据集合论的观点,它们的个数是一样的.这可以用“配对”的方法来验证:这里没有矛盾,如果有的话,也只是出于我们的成见.对此的阐释最好莫过于“希尔伯特旅馆”,这个理想化的建筑物有无限多个房间,以所有正整数1,2,3……来编号.一天晚上,碰巧所有房间都住满了(在这个故事中人数也是无限多).这时新来了一个客人,正在老板无法安置的时候,一个聪明的服务员想出了一个办法,她提出将1号房的客人安排到2号房,2号房的客人安排到3号房,3号房的客人安排到4号房,由此类推……这样就腾出了1号房供新客人使用.而且即使来了不止一个客人,也可以同样妥善安置,比如说来了新客人10个,她说:“只需将1号房的客人安排到11号房,2号房的客人安排到12号房,3号房的客人安排到13号房,由此类推……这样就腾出了前十个空房供新客人使用.”这时,有人提出新的问题,如果后来的客人有无数人怎么办呢?这难不到我们的这位服务生,她提出将1号房的客人安排到2号房,2号房的客人安排到4号房,3号房的客人安排到6号房,由此类推……这样不就腾出了1号,3号,5号……无数个房间吗!2.设a 、b ∈R ,ab ≠0,集合A ={t |t =||a a +b b ||+||ab ab },则card (a )(card (a )表示有限集A 的元素个数)的值为A.1B.2C.3D.43.集合M ={(x ,y )|y =2x 2+x +6,x ∈R ,x ≠0},点P (x ,y )∈M ,则点Q (|x |,-y )是第几象限的点?4.设集合P ={x |x 为有长为1的边及40°为内角的等腰三角形},试问P 中有多少个元素?5.设M ={a |a =x 2-y 2,x ,y ∈Z },求证:(1)一切奇数属于M ;(2)偶数4k -2(k ∈Z )不属于M ;(3)属于M 的两个整数,其积仍属于M .答案:2.B3.四(点拨:y =2x 2+x +6=2(x +41)2+847>0,|x |>0,-y <0) 4.4(点拨:腰长为1且顶角为40°的三角形、腰长为1且底角为40°的三角形、底边长为1且顶角为40°的三角形及底边长为1且底角为40°的三角形)5.(1)设a 为任意的奇数,即a =2k -1(k ∈Z ).因2k -1=k 2-(k -1)2(k ,k -1∈Z ),故a ∈M .由a 的任意性知,一切奇数属于M .(2)假设4k -2∈M ,则存在x 、y ∈Z ,使4k -2=x 2-y 2 (x +y )(x -y )=2(2k -1).①①式说明x+y和x-y必有一个是偶数,另一个是奇数,但是x+y和x-y具有相同的奇偶性,这是一对矛盾.故①式不成立,所以4k-2 M.(3)设α、β∈M,则α=x12-y12,β=x22-y22(x1、x2、y1、y2∈Z).进而αβ=(x12-y12)(x22-y22)=x12x22+y12y22-x12y22-x22y12=(x1x2-y1y2)2-(x1y2-x2y1)2.而x1x2-y1y2∈Z,x1y2-x2y1∈Z,所以αβ∈M.。
康托尔-集合论的创造者康托尔·G(Cantor,Georg Ferdinand Ludwig Philipp,1845.3.3~1918.1.6 )德国数学家,集合论的创始人。
生于俄国圣彼得堡。
父亲是犹太血统的丹麦商人,母亲出身艺术世家。
1856年全家迁居德国的法兰克福。
先在一所中学,后在威斯巴登的一所大学预科学校学习。
1862年入苏黎世大学学工,翌年转入柏林大学攻读数学和神学,受教于库默尔(Kummer,Ernst Eduard,1810.1.29~1893.5.14)、魏尔斯特拉斯(Weierstrass,Karl Theodor Wilhelm,1815.10.31~1897.2.19)和克罗内克(Kronecker,Leopold,1823.12.7~1891.12.29)。
1866年曾去格丁根学习一学期。
1867年在库默尔指导下以解决一般整系数不定方程ax2+by2+cz2=0求解问题的论文获博士学位。
毕业后受魏尔斯特拉斯的直接影响,由数论转向严格的分析理论的研究,不久崭露头角。
他在哈雷大学任教(1869~1913)的初期证明了复合变量函数三角级数展开的唯一性,继而用有理数列极限定义无理数。
1872年成为该校副教授,1879年任教授。
由于学术观点上受到的沉重打击,使康托尔曾一度患精神分裂症,虽在1887年恢复了健康,继续工作,但晚年一直被病魔缠身。
1918年1月6日在德国哈雷(Halle)-维滕贝格大学附属精神病院去世。
康托尔爱好广泛,极有个性,终身信奉宗教。
早期在数学方面的兴趣是数论,1870年开始研究三角级数并由此导致19世纪末、20世纪初最伟大的数学成就——集合论和超穷数理论的建立。
除此之外,他还努力探讨在新理论创立过程中所涉及的数理哲学问题.1888~1893年康托尔任柏林数学会第一任会长,1890年领导创立德国数学家联合会并任首届主席。
主要贡献康托尔对数学的贡献是集合论和超穷数理论。
两千多年来,科学家们接触到无穷,却又无力去把握和认识它,这的确是向人类提出的尖锐挑战。
康托尔以其思维之独特,想象力之丰富,方法之新颖绘制了一幅人类智慧的精品——集合论和超穷数理论,令19、20世纪之交的整个数学界、甚至哲学界感到震惊。
可以毫不夸张地讲,“关于数学无穷的革命几乎是由他一个人独立完成的。
”(一)集合论的建立19世纪由于分析的严格化和函数论的发展,数学家们提出了一系列重要问题,并对无理数理论、不连续函数理论进行认真考察,这方面的研究成果为康托尔后来的工作奠定了必要的思想基础。
康托尔是在寻找函数展开为三角级数表示的唯一性判别准则的工作中,认识到无穷集合的重要性,并开始从事无穷集合的一般理论研究。
早在1870年和1871年,康托尔两次在《数学杂志》上发表论文,证明了函数f(x)的三角级数表示的唯一性定理,而且证明了即使在有限个间断点处不收敛,定理仍然成立。
1872年他在《数学年鉴》上发表了一篇题为《三角级数中一个定理的推广》的论文,把唯一性的结果推广到允许例外值是某种无穷的集合情形。
为了描述这种集合,他首先定义了点集的极限点,然后引进了点集的导集和导集的导集等有关重要概念。
这是从唯一性问题的探索向点集论研究的开端,并为点集论奠定了理论基础。
以后,他又在《数学年鉴》和《数学杂志》两刊上发表了许多文章。
他称集合为一些确定的、不同的东西的总体,这些东西人们能意识到并且能判断一个给定的东西是否属于这个总体。
他还指出,如果一个集合能够和它的一部分构成一一对应,它就是无穷的。
他又给出了开集、闭集和完全集等重要概念,并定义了集合的并与交两种运算。
为了将有穷集合的元素个数的概念推广到无穷集合,他以一一对应为原则,提出了集合等价的概念。
两个集合只有它们的元素间可以建立一一对应才称为是等价的。
这样就第一次对各种无穷集合按它们元素的“多少”进行了分类。
他还引进了“可列”这个概念,把凡是能和正整数构成一一对应的任何一个集合都称为可列集合。
1874年他在《数学杂志》上发表的论文中,证明了有理数集合是可列的,后来他还证明了所有的代数数的全体构成的集合也是可列的。
至于实数集合是否可列的问题,1873年康托尔给戴德金(Dedkind,Julins Wilhelm Richard,1831.10.6~1916.2.12)的一封信中提出过,但不久他自己得到回答:实数集合是不可列的。
由于实数集合是不可列的,而代数数集合是可列的,于是他得到了必定有超越数存在的结论,而且超越数“大大多于”代数数。
同年又构造了实变函数论中著名的“康托尔集”,给出测度为零的不可数集的一个例子。
他还巧妙地将一条直线上的点与整个平面的点一一对应起来,甚至可以将直线与整个n维空间进行点的一一对应。
从1879年到1883年,康托尔写了六篇系列论文,论文总题目是“论无穷线形点流形”,其中前四篇同以前的论文类似,讨论了集合论的一些数学成果,特别是涉及集合论在分析上的一些有趣的应用。
第五篇论文后来以单行本出版,单行本的书名为《一般集合论基础》。
第六篇论文是第五篇的补充。
康托尔的信条是:“数学在它自身的发展中完全是自由的,对它的概念限制只在于:必须是无矛盾的,并且与由确切定义引进的概念相协调。
……数学的本质就在于它的自由。
”(二)超穷数理论的建立《一般集合论基础》在数学上的主要成果是引进超穷数,在具体展开这一理论的过程中,康托尔应用了以下几条原则:第一生成原则:从任给一点的数出发,通过相继加1(个单位)可得到它的后继数。
第二生成原则:任给一个其中无最大数的序列,可产生一个作为该序列极限的新数,它定义为大于此序列中所有数的后继数。
第三(限制)原则:保证在上述超穷序列中产生一种自然中断,使第二数类有一个确定极限,从而形成更大数类。
反复应用三个原则,得到超穷数的序列ω,ω1,ω2,…利用先前引入的集合的势的概念,康托尔指出,第一数类(Ⅰ)和第二数类(Ⅱ)的重要区别在于(Ⅱ)的势大于(Ⅰ)的势。
在《一般集合论基础》的第十三章,康托尔第一次指出,数类(Ⅱ)的势是紧跟在数类(Ⅰ)的势之后的势。
在《一般集合论基础》中,康托尔还给出了良序集和无穷良序集编号的概念,指出整个超穷数的集合是良序的,而且任何无穷良序集,都存在唯一的一个第二数类中的数作为表示它的顺序特性的编号。
康托尔还借助良序集定义了超穷数的加法、乘法及其逆运算。
《对超穷数论基础的献文》是康托尔最后一部重要的数学著作,经历了20年之久的艰苦探索,康托尓希望系统地总结一下超穷数理论严格的数学基础。
《对超穷数论基础的献文》分两部分,第一部分是“全序集合的研究”,于1895年5月在《数学年鉴》上发表。
第二部分于1897年5月在《数学年鉴》上发表,是关于“良序集的研究”。
《对超穷数论基础的献文》的发表标志着集合论从点集论过渡到抽象集合论。
但是,由于它还不是公理化的,而且它的某些逻辑前提和某些证明方法如不给予适当的限制便会导出悖论,所以康托尔的集合论通常称为古典集合论或朴素集合论。
康托尔的遭遇由康托尔首创的全新且具有划时代意义的集合论,是自古希腊时代的两千多年以来,人类认识史上第一次给无穷建立起抽象的形式符号系统和确定的运算,它从本质上揭示了无穷的特性,使无穷的概念发生了一次革命性的变化,并渗透到所有的数学分支,从根本上改造了数学的结构,促进了数学的其他许多新的分支的建立和发展,成为实变函数论、代数拓扑、群论和泛函分析等理论的基础,还给逻辑和哲学带来了深远的影响。
不过康托尔的集合论并不是完美无缺的,一方面,康托尔对“连续统假设”和“良序性定理”始终束手无策;另一方面,19和20世纪之交发现的布拉利-福蒂悖论、康托尔悖论和罗素悖论,使人们对集合论的可靠性产生了严重的怀疑。
加之集合论的出现确实冲击了传统的观念,颠倒了许多前人的想法,很难为当时的数学家所接受,遭到了许多人的反对,其中反对最激烈的是柏林学派的代表人物之一、构造主义者克罗内克。
克罗内克认为,数学的对象必须是可构造出来的,不可用有限步骤构造出来的都是可疑的,不应作为数学的对象。
他反对无理数和连续函数的理论,同样严厉批评和恶毒攻击康托尔的无穷集合和超限数理论不是数学而是神秘主义。
他说康托尔的集合论空洞毫无内容。
除了克罗内克之外,还有一些著名数学家也对集合论发表了反对意见。
法国数学家庞加莱(Poincare,J ulesHenri,1854.4.29~1912.7.17)说:“我个人,而且还不止我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西。
”他把集合论当作一个有趣的“病理学的情形”来谈,并且预测说:“后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了”。
德国数学家魏尔(Wey1,Claude Hugo Hermann,1885.11.9~1955.12.8)认为,康托尔关于基数的等级观点是“雾上之雾”。
克莱因(Klein,Christian Felix,1849.4.25~1925.6.22)也不赞成集合论的思想。
数学家H.A.施瓦兹原来是康托尔的好友,但他由于反对集合论而同康托尔断交。
集合论的悖论出现之后,他们开始认为集合论根本是一种病态,他们以不同的方式发展为经验主义、半经验主义、直觉主义、构造主义等学派,在基础大战中,构成反康托尔的阵营。
1884年,由于连续统假设长期得不到证明,再加上与克罗内克的尖锐对立,康托尔精神上屡遭打击,5月底,他支持不住了,第一次精神崩溃。
他的精神沮丧,不能很好地集中精力研究集合论,从此深深地卷入神学、哲学及文学的争论而不能自拔。
不过每当他恢复常态时,他的思想总变得超乎寻常地清晰,继续他的集合论的工作。
康托尔的集合论得到公开的承认和热情的称赞应该说首先在瑞士苏黎世召开的第一届国际数学家大会上表现出来。
瑞士苏黎世理工大学教授胡尔维茨(Hurwitz,Adolf,1859.3.26~1919.11.18)在他的综合报告中,明确地阐述康托尔集合论对函数论的进展所起的巨大推动作用,这破天荒的第一次向国际数学界显示康托尔的集合论不是可有可无的哲学,而是真正对数学发展起作用的理论工具。
在分组会上,法国数学家阿达玛(Hadamard Jacques,1865.12.8~1963.10.17)也报告了康托尔对他的工作的重要作用。
随着时间的推移,人们逐渐认识到集合论的重要性。
希尔伯特(Hilbert David,1862.1.23~1943.2.14)高度赞誉康托尔的集合论“是数学天才最优秀的作品”“是人类纯粹智力活动的最高成就之一”“是这个时代所能夸耀的最巨大的工作”。
在1900年第二届国际数学家大会上,希尔伯特高度评价了康托尔工作的重要性,并把康托尔的连续统假设列入20世纪初有待解决的23个重要数学问题之首。