材料力学课堂例题汇编1
- 格式:ppt
- 大小:1.06 MB
- 文档页数:47
材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。
刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。
(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。
外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。
当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。
材料力学习题及答案材料力学习题一一、计算题1.(12分)图示水平放置圆截面直角钢杆(2ABC π=∠),直径mm 100d =,m l 2=,m N k 1q =,[]MPa 160=σ,试校核该杆的强度。
2.(12分)悬臂梁受力如图,试作出其剪力图与弯矩图。
3.(10分)图示三角架受力P 作用,杆的截面积为A ,弹性模量为E ,试求杆的内力和A 点的铅垂位移Ay δ。
4.(15分)图示结构中CD 为刚性杆,C ,D 处为铰接,AB 与DE 梁的EI 相同,试求E 端约束反力。
5. (15分) 作用于图示矩形截面悬臂木梁上的载荷为:在水平平面内P 1=800N ,在垂直平面内P 2=1650N 。
木材的许用应力[σ]=10MPa 。
若矩形截面h/b=2,试确定其尺寸。
三.填空题(23分)1.(4分)设单元体的主应力为321σσσ、、,则单元体只有体积改变而无形状改变的条件是__________;单元体只有形状改变而无体积改变的条件是__________________________。
2.(6分)杆件的基本变形一般有______、________、_________、________四种;而应变只有________、________两种。
3.(6分)影响实际构件持久极限的因素通常有_________、_________、_________,它们分别用__________、_____________、______________来加以修正。
4.(5分)平面弯曲的定义为______________________________________。
5.(2分)低碳钢圆截面试件受扭时,沿____________截面破坏;铸铁圆截面试件受扭时,沿____________面破坏。
四、选择题(共2题,9分)2.(5分)图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:()材料力学习题二二、选择题:(每小题3分,共24分)1、危险截面是______所在的截面。
1轴向拉伸与压缩例1-1 如图所示的等截面直杆,受轴向力F 1=15kN ,F 2=10kN 的作用。
试分别求出杆件1-1、2-2截面的轴力,并画出轴力图。
F 2F 2C 22 22F 111 11B F 1AF RF RF N1F 1F N2F R F N10kN5kN图1-1解:(1)外力分析 先解除约束,画出杆件的受力图。
120,0xR FF F F = -+=∑得:()121510kN 5kN R F F F =-=-=(2)内力分析 外力F R 、F 1、F 2将杆件分为AB 段和BC 段,在AB 段,用1-1截面将杆件截分为两段,取左段为研究对象,右段对截面的作用力用F N1来代替。
假定内力F N1为正,列平衡方程10,0xN R FF F = +=∑得:15kN N R F F =-=-负号表示F N1的方向和假定方向相反,截面受压。
在BC 这一段,用任意2-2截面将杆件分为两段,取左段为研究对象,右段对左段截面的作用力用F N2来代替。
假定轴力F N2为正,有平衡方程2100xN R FF F F = +-=∑得: ()21515kN N R F F F =-+=-+=10kN (3)画轴力图由以上例题可以总结出求截面轴力的简捷方法:杆件任意截面的轴力F N (x )等于截面一侧所有外力的代数和。
即1nN i i F F ==∑,外力背离该截面的时取正,指向该截面时取负。
例1-2 如图所示为正方形截面阶梯杆,受力及尺寸如图所示。
试分析杆上1截面处和2截面处的正应力。
FF2hh12(a )FFF N 11122N hh σ==F F F N 1222244N h h σ==F F(b ) 图1-2解:先求出杆两截面处的轴力F N 1和F N 2,在用截面上的轴力除以相应的截面面积,如图(b )所示,不难求出σ1=F/h 2,σ2=F/(4h 2)。
例1-3 如图所示,斜杆AB 为直径d =20mm 的钢杆,载荷Q =15kN 。
作出图中AB杆的受力图。
A处固定铰支座B处可动铰支座作出图中AB、AC杆及整体的受力图。
B、C光滑面约束A处铰链约束DE柔性约束作图示物系中各物体及整体的受力图。
AB杆:二力杆E处固定端C处铰链约束(1)运动效应:力使物体的机械运动状态发生变化的效应。
(2)变形效应:力使物体的形状发生和尺寸改变的效应。
3、力的三要素:力的大小、方向、作用点。
4、力的表示方法:(1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!)(2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。
5、约束的概念:对物体的运动起限制作用的装置。
6、约束力(约束反力):约束作用于被约束物体上的力。
约束力的方向总是与约束所能限制的运动方向相反。
约束力的作用点,在约束与被约束物体的接处7、主动力:使物体产生运动或运动趋势的力。
作用于被约束物体上的除约束力以外的其它力。
8、柔性约束:如绳索、链条、胶带等。
(1)约束的特点:只能限制物体原柔索伸长方向的运动。
(2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。
()9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。
(1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。
被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。
(2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。
()10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。
约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。
()11、固定铰支座(1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。
(2)约束反力的特点:固定铰支座的约束反力同中间铰的一样,也是方向未定的一个力;用一对正交的力来表示,指向假定。
()12、可动铰支座(1)约束的构造特点把固定铰支座的底部安放若干滚子,并与支撑连接则构成活动铰链支座约束,又称锟轴支座。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学请在以下五组题目中任选一组作答,满分100分。
第一组:计算题(每小题25分,共100分)1. 梁的受力情况如下图,材料的a。
若截面为圆柱形,试设计此圆截面直径。
10kNq/m2. 求图示单元体的:(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。
60x解:(1)、斜截面上的正应力和切应力:MPa MPa o 95.34,5.6403030=-=--τσ(2)、主方向及主应力:最大主应力在第一象限中,对应的角度为0067.70=α,则主应力为:MPa MPa 0.71),(0.12131-==σσ(3)、主切应力作用面的法线方向:0/20/167.115,67.25==αα 主切应力为:/2/104.96ααττ-=-=MPa此两截面上的正应力为:)(0.25/2/1MPa ==αασσ,主单元体如图3-2所示。
x图3-10.MPa0.25图3-23. 图中所示传动轴的转速n=400rpm,主动轮2输入功率P2=60kW,从动轮1,3,4和5的输出功率分别为P1=18kW,P3=12kW,P4=22kW,P5=8kW。
试绘制该轴的扭矩图。
4. 用积分法求图所示梁的挠曲线方程和转角方程,并求最大挠度和转角。
各梁EI均为常数。
第二组:计算题(每小题25分,共100分)1. 简支梁受力如图所示。
采用普通热轧工字型钢,且已知= 160MPa。
试确定工字型钢型号,并按最大切应力准则对梁的强度作全面校核。
(已知选工字钢No.32a:W = 692.2 cm3,Iz = 11075.5 cm4)解:1.FRA = FRB= 180kN(↑)kN·mkN·mkNm3由题设条件知:W = 692.2 cm2,Iz = 11075.5 cm4cmE截面:MPaMPa2. A+、B-截面:MPaMPa3.C-、D+截面:MPaMPa∴选No.32a工字钢安全。
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
实用文档第一章绪论【例 1-1 】钻床如图1-6a 所示,在载荷P 作用下,试确定截面m-m上的内力。
【解】( 1)沿 m-m 截面假想地将钻床分成两部分。
取m-m 截面以上部分进行研究(图1-6b ),并以截面的形心O为原点。
选取坐标系如图所示。
( 2)为保持上部的平衡,m-m 截面上必然有通过点O的内力 N 和绕点 O的力偶矩M。
( 3)由平衡条件∴【例 1-2 】图 1-9a 所示为一矩形截面薄板受均布力p 作用,已知边长=400mm,受力后沿 x 方向均匀伸长=0.05mm。
试求板中 a 点沿 x 方向的正应变。
【解】由于矩形截面薄板沿x 方向均匀受力,可认为板内各点沿x 方向具有正应力与正实用文档应变,且处处相同,所以平均应变即 a 点沿 x 方向的正应变。
x 方向【例 1-3 】图 1-9b 所示为一嵌于四连杆机构内的薄方板,b=250mm。
若在 p 力作用下CD杆下移b=0.025,试求薄板中 a 点的剪应变。
【解】由于薄方板变形受四连杆机构的制约,可认为板中各点均产生剪应变,且处处相同。
第二章拉伸、压缩与剪切【例题 2.1 】一等直杆所受外力如图 2. 1 (a)所示,试求各段截面上的轴力,并作杆的轴力图。
解:在 AB段范围内任一横截面处将杆截开,取左段为脱离体( 如图 2. 1 (b)所示),假定轴力 F N1为拉力 ( 以后轴力都按拉力假设) ,由平衡方程F x0 , F N1300得F N130kN结果为正值,故 F N1为拉力。
同理,可求得BC段内任一横截面上的轴力( 如图 2. 1 (c)所示)为F N230 4070(kN)在求 CD段内的轴力时,将杆截开后取右段为脱离体( 如图 2. 1 (d)所示),因为右段杆上包含的外力较少。
由平衡方程F x0 ,F N330 200.得F N330 20 10(kN)结果为负值,说明 F N3 为压力。
同理,可得段内任一横截面上的轴力F N4 为DEF N4 20kN30kN 40kN80kN30kN 20kN(a)40kN 80kN 30kN 20kN30kNA (a)CDEB20kN30kN40kN80kN30kN(b) 30kN (a)A (a)BC DE40kN 80kN F30kN20kN30kN40kN 80kN 30kN 30kN20kNCDE(a)B30kN30kN(b) 40kN A F N1(a)(c)BD F N2EA30kN C(b)40kN(b)FABC D30kN20kN30kN80kNE30kN30kN(c)40kNF N2(b)F N330kN 20kN30kN(a)F(d)F 30kN40kN(b)F N2(c) BCDE30kN20kN30kNA(d)F N340kNF N2(c)30kN(c)30kN (b)e)F N420kN40kN(d)20kN(c)F N2 FF N330kN(d)30kN (e)F N370kN 30kN 20kN F N420kN(d) (c)F N3 40kN 30kN F N2 20kN(e) 30kN70kN20kN(f)(d)20kN F N4 (e)FN420kNN3 70kN30kN(e)(d)(f)F20kN 30kN20kN20kNF N470kN10kN30kN(f)20kN70kN(f) (e) 30kN(e) 20kN FN410kN20kN(f)30kN70kN20kN10kN10kN(f)30kN 10kN20kN10kN(f)图 2.1 例题 2.1 图【例题 2.2 】 一正方形截面的阶梯形砖柱,其受力情况、各段长度及横截面尺寸如图 2.8(a) 所示。