浙江省杭州市大江东区2017-2018学年七年级数学上学期期中试卷
- 格式:doc
- 大小:1.11 MB
- 文档页数:6
2017-2018学年度第一学期七年级期中联考数学科试卷考试时间:90分钟 一、选择题(共12小题;共36分) 1. 下列用字母表示数的写法中,规范的是A.B. 315⨯⨯y xC. xy 35D.2. 有下列各数:,,,,,)4(2--,其中属于非负整数的共有 ( ) A. 个B. 个C. 个D. 个3. 在代数式 ,,,,中,整式共有个.A.B.C.D.4. 检验 个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是C.D.5. 火星和地球的距离约为34000000千米,用科学记数法表示34000000千米的结果是千米.A.B.C.D.6. 下列各组数中,互为相反数的是与B.与 C. 与与7. 用平面去截如图所示的三棱柱,截面形状不可能是A. 三角形B. 四边形C. 五边形D. 六边形8. 下列各式计算正确的是A. 12317315-=-- B.C. D.9. 下列说法中正确的是A. 不是单项式 的系数是C.的次数是D.的系数是10. 如果点 ,,, 所对应的数为 ,,,,则 ,,, 的大小关系是A.B. c a d b <<<C.D.11. 某企业去年 月份产值为 万元, 月份比 月份减少, 月份比 月份增加了 ,则 月份的产值是A.万元B. 万元C. %)15%10(+-a 万元D.万元12. 规定一种新的运算“”:对于任意实数 ,,满足.如 ,则A.B.C.D.二、填空题(共4小题;共12分) 13. 已知单项式 与是同类项,则.14. 如图1,将一刻度尺放在数轴上(数轴的单位长度是),刻度尺上“”和和,那么 的值为 .15. 如图2,数,, 在数轴上对应点的位置,化简得 .16. 用棋子摆出下列一组三角形,三角形每边有枚棋子,每个三角形的棋子总数为 ,如图按此规律推断,当三角形的边上有 枚棋子时,该三角形棋子总数 (用含 的式子表示).三、解答题(共7小题;共52分) 17. (各5分,共10分) 计算: (1; (2).18. (6分) 先化简,再求值:(其中图2图119. (6分)某中学七年级A 班有人,某次活动中分为四组,第一组有人,第二组比第一组的一半多人,第三组的人数等于前两组人数的和.求:(1)第二组的人数是;(1分)(2)第三组的人数是;(1分)(3)第四组的人数是;(2分)(4)找一个你喜欢的数作为的值,求出此时第四组的人数.(2分)20. (6分)某食品厂从生产的袋装食品中抽出样品袋,检测每袋的质量是否符合标准,超过标准质量的部分用正数表示,不足标准质量的部分用负数表示,检测结果如下表:若每袋食品的标准质量为克,求抽样检测的袋食品的平均质量是多少克?21. (6分)如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图).22. (8分) 张老师把某小组的小明等5名同学的成绩简记为:+10, —5 , 0 , +8 , —3,又知道小明同学实际考了90分,且在这 5名同学中排名第三,请写出这 5名同学各考了多少分,并计算这5名同学的平均分.23. (10分)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”.【提出问题】 三个有理数 ,, 满足 ,求的值.【解决问题】解:由题意得:,, 三个有理数都为正数或其中一个为正数,另两个为负数. ①当 ,, 都是正数,即 ,,时,;(备注:一个非零数除以它本身等于1,如:3÷3=1,则1,(0)aa a=≠) ②当 ,, 有一个为正数,另两个为负数时,设 ,,,的值为 或(备注:一个非零数除以它的相反数等于-1,如:-3÷3= -1,则1,(0)b b b-=-≠) 【探究】 请根据上面的解题思路解答下面的问题:(1)三个有理数 ,, 满足 ,求的值;(6分)(2)已知,,且,求的值.(4分)。
七年级(上)期中考试数学试题及答案一、选择题(每小题2分,共20分)1.2018年国庆节期间,我市接待旅游总人数总人数达到918600人次,比去年同期增长1.9%,将918600用科学计数法表示应为( )A. 2918610⨯B. 491.8610⨯C. 59.18610⨯D. 60.918610⨯2.若a b =,那么下列等式不一定成立的是( )A.55a b +=+B.55b a -=-C.m a m b -=-D.a b x x= 3.若a ,b 两数之积为负数,且a b >,则A.a 为正数,b 为正数 B .a 为正数,b 为负数C.a 为负数,b 为正数D.a 为负数,b 为负数4.下列结论中正确的是( ) A.27-比大13- B.132-的倒数是27 C.最小的负整数是-1 D.10.5||2>- 5.以下说法正确的是( )A.单项式ab π-的系数为-1B.2213x y -+-多项式的常数项为-1 C.多项式2324x y x +-是四次三项式 D.43.1410⨯精确到百位6.一个两位数,个位数字为x ,十位数字是个位数字的平方的2倍,则这两个位数表示为( )A.22x x +B.220x x +C.210x x +D.240x x +7.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是( )A.0ab >B. 0a b +>C.0a b -<D.0a b -<8.当1x =时,代数式31ax bx ++的值为5,当1x =-时,代数式31ax bx ++的值等于( )A.0B.-3C.-4D.39.如图①、②是两个形状、大小完全相同的两个大长方形,在每个大长方形内放入如图的小长方形,大长方形的长为a ,宽为b ,则图①阴影部分的周长与图②阴影部分的周长的差的绝对值是( )A.a b -B.2()a b -C.2aD.2b10.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②22()a b c =+;③关于x 的方程0ax b c ++=的解为1x =;④a b c abc a b c abc+++的值为0或2;⑤在数轴上点A 、B 、C 表示数a 、b 、c ,0b ≤,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论有( )个.A.2个B.3个C.4个D.5个二、填空题(每小题2分,共12分)11.若单项式53m a b 与22n a b -七年级(上)期中考试数学试题及答案一、选择题(每小题2分,共20分)1.2018年国庆节期间,我市接待旅游总人数总人数达到918600人次,比去年同期增长1.9%,将918600用科学计数法表示应为( )A. 2918610⨯B. 491.8610⨯C. 59.18610⨯D. 60.918610⨯2.若a b =,那么下列等式不一定成立的是( )A.55a b +=+B.55b a -=-C.m a m b -=-D.a b x x= 3.若a ,b 两数之积为负数,且a b >,则A.a 为正数,b 为正数 B .a 为正数,b 为负数C.a 为负数,b 为正数D.a 为负数,b 为负数4.下列结论中正确的是( ) A.27-比大13- B.132-的倒数是27 C.最小的负整数是-1 D.10.5||2>- 5.以下说法正确的是( )A.单项式ab π-的系数为-1B.2213x y -+-多项式的常数项为-1 C.多项式2324x y x +-是四次三项式 D.43.1410⨯精确到百位6.一个两位数,个位数字为x ,十位数字是个位数字的平方的2倍,则这两个位数表示为( )A.22x x +B.220x x +C.210x x +D.240x x +7.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是( )A.0ab >B. 0a b +>C.0a b -<D.0a b -<8.当1x =时,代数式31ax bx ++的值为5,当1x =-时,代数式31ax bx ++的值等于( )A.0B.-3C.-4D.39.如图①、②是两个形状、大小完全相同的两个大长方形,在每个大长方形内放入如图的小长方形,大长方形的长为a ,宽为b ,则图①阴影部分的周长与图②阴影部分的周长的差的绝对值是( )A.a b -B.2()a b -C.2aD.2b10.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②22()a b c =+;③关于x 的方程0ax b c ++=的解为1x =;④a b c abc a b c abc+++的值为0或2;⑤在数轴上点A 、B 、C 表示数a 、b 、c ,0b ≤,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论有( )个.A.2个B.3个C.4个D.5个二、填空题(每小题2分,共12分)11.若单项式53m a b 与22n a b -人教版七年级(上)期中模拟数学试卷【含答案】一、选择题(本题有10个小题,每小题3分,满分30分。
2017-2018学年七年级(上)期中数学试卷一、选择题:(每小题只有一个答案是正确的,每小题2分,本大题有10小题共20分)1.- 3的倒数是()A . - 3 B. 3 C.-丄D. y2 •下列运算有错误的是()A . 8-(- 2)=10B . - 5+(-土)=10C . (- 5)+ (+3)=- 8D . - 1 X(-丄)=JL=33. 预计下届世博会将吸引约69 000 000人次参观.将69 000 000用科学记数法表示正确的是()A . 0.69X 108B . 6.9X 106C . 6.9X 107D . 69X 1064. 有理数a、b在数轴上的表示如图所示,那么()- •---------- «---- • --------- »b0 aA . - b> aB . - a v bC . b > aD . | a| > | b|5. 下面计算正确的是( )A . 3x2- X2=3B . 3a2+2a3=5a5C . 3+X=3XD . - 0.25ab丄ba=06. 下列式子:X2+2, - + 4, 越7,坐,-5X , 0中,整式的个数是( )3 7 CA . 6B . 5C . 4D . 37. 若原产量为n吨,增产30%后的产量为( )A . 30%n 吨B . (1 - 30%) n 吨C . (1+30%) n 吨D. (n+30%)吨&下列去括号错误的是( )A . 2X2-(X - 3y) =2X2- x+3y丄 2 2 J. 2 2B . — X + ( 3y - 2xy) =〔x - 3y +2xyC . a2+ (- a+1) =a2- a+1D. -( b - 2a)- (- a2+b2) = - b+2a+a2- b29.下列说法错误的是( )A . 2X2- 3xy - 1是二次三项式B . - X+1不是单项式2? 2C.—亍兀耳y的系数是-乓口D . - 22xab2的次数是610 .已知多项式X2+3X=3,可求得另一个多项式3X2+9X - 4的值为( )A . 3B . 4C . 5D . 6二、填空题:(本大题共8小题,每小题2分,共16分)11 .如果把收入30元记作+30元,那么支出20元可记作12•-丄的相反数是一;倒数是一13.比较大小:- 9 - 13 (填'”或号)14•用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是__________ .15. _______________________________________________ 若单项式-3a m b3与4a2b n是同类项,贝V m+n= _________________________________________ •16•若a与b互为相反数,c与d互为倒数,则(a+b) 3- 3(cd) 2015= _____________ .17.已知|a+1|=0, b2=4,贝U a+b= ______ .18•用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要三•解答题:(本大题共64分)19•在数轴上表示下列各数:0,- 4,专■,- 2, | - 5| , -(- 1),并用号连接.-5 -4 -3-2-10 1 2 3 4 5?20・耐心算一算(同学们,请你注意解题格式,一定要写出解题步骤哦!(1)- 20+ (- 14)-( - 18)- 13(3)- 24-〒X [5-( - 3) 2] •21.化简:(1)12x - 20x+10x(2) 2 (2a- 3b)- 3 (2b- 3a)(3)- 5m2n+2 - 2mn+6m2n+3mn - 3.22•某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月工作人数不一定相等,实际每月生产量与计划量相比情况如表(增加为正,减少为负)月份一二三四五六增减(辆) +3 - 2 - 1 +4 +2 - 5①生产量最多的一月比生产量最少的一月多生产多少辆?②半年内总产量是多少?比计划增加了还是减少了,增加或减少多少?23. 先化简,再求值:- 5ab+2[3ab-( 4ab2+丄ab) ] - 5ab2,其中(a+2) 2+| b -f-1 =0 .24. 已知A=2x 2- 9x - 11, B=3x2- 6x+4.求(1) A - B ;(2)±A+2B.25•某市有甲、乙两种出租车,他们的服务质量相同•甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费 1.8 元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x 千米.(1)用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;(2)假设此人乘坐的路程为13 千米多一点,请问他乘坐哪种车较合算?26.求1+2+22+23+・・+22°15的值,可令S=1+2+22+23+・・+22°15,则2S=2+22+23+24+・・+22°16,因此2S- S=22016- 1.仿照以上推理,计算出1+5+52+53+--+52015的值.2分,本大题有10小题共20分)2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题只有一个答案是正确的,每小题1 •- 3的倒数是()A • - 3B • 3 C.—丄D •寺【考点】倒数.【分析】根据倒数的定义可得-3的倒数是-丿-•3【解答】解:-3的倒数是-寺•故选:C •2 •下列运算有错误的是()A • 8 -( - 2)=10B • - 5+(-丄)=10C • (- 5)+ (+3)= - 8D . - 1 X(-丄)=JL =3【考点】有理数的混合运算•【分析】原式各项计算得到结果,即可做出判断•【解答】解:A、原式=8+2=10,正确;B、原式=-5X(- 2)=10,正确;C、原式=-5+3= - 2,错误;D、原式=丄,正确•故选C3•预计下届世博会将吸引约69 000 000人次参观•将69 000 000用科学记数法表示正确的是()A • 0.69X 108B • 6.9X 106C • 6.9x 107D . 69X 106【考点】科学记数法一表示较大的数•【分析】科学记数法的表示形式为a x 10n的形式,其中1 w|a v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:将69 000 000用科学记数法表示为: 6.9X 107•故选:C •4•有理数a、b在数轴上的表示如图所示,那么()- • ---------- «--- •--------- ►b0 aA • - b> aB • - a v bC . b> a D. | a| >| b|【考点】数轴.【分析】根据图中所给数轴,判断a、b之间的关系,分析所给选项是否正确.【解答】解:由图可知,b v O v a且|b| > | a| ,所以,—b> a, —a>b,A、- b> a,故本选项正确;B、正确表示应为:-a> b,故本选项错误;C、正确表示应为:b v a,故本选项错误;D、正确表示应为:| a| v | b|,故本选项错误.故选A .5. 下面计算正确的是()A . 3x2—X2=3B. 3a2+2a3=5a5C. 3+X=3X D . —0.25ab丄ba=O【考点】整式的加减.【分析】先判断是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3X2—X2=2X2M 3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与X不可相加,故C错误;1 “ &D、-0.25ab+—ba=0,故D 正确.故选:D.6. 下列式子:X2+2, - + 4, 越7,坐,-5X , 0中,整式的个数是()3 7 CA . 6 B. 5 C. 4 D. 3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.2【解答】解:式子X2+2,二—,-5X, 0,符合整式的定义,都是整式;-+4,二-这两个式子的分母中都含有字母,不是整式.a c故整式共有4个.故选:C.7. 若原产量为n吨,增产30%后的产量为()A . 30%n 吨B . (1 —30%)n 吨C. (1 +30%)n 吨D. (n+30%)吨【考点】代数式.【分析】根据增产量=原产量x(1+增长率)作答.【解答】解:原产量为n吨,增产30%后的产量为(1+30%)n吨,故选C.&下列去括号错误的是( )2 2A . 2X—( X—3y) =2X—x+3y--x 2 - 3y 2+2xyC. a 2+ (- a+1) =a 2- a+1D. -( b - 2a )- (- a 2+b 2) =- b+2a+a 2- b 2 【考点】去括号与添括号.【分析】利用去括号法则:如果括号外的因数是正数, 的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反, 进而判断得出即可.【解答】 解:A 、2x 2-( x - 3y ) =2x 2- x+3y ,正确,不合题意; 丄x 2+ (3y 2 - 2xy )」-x 2+3y 2 - 2xy ,故原式错误,符合题意; a 2+ (- a+1) =a 2- a+1,正确,不合题意;-(b - 2a )- (- a 2+b 2) =- b+2a+a 2- b 2,正确,不合题意; 故选:B . 9.下列说法错误的是( )A . 2x 2- 3xy - 1是二次三项式B . - x+1不是单项式 C.—寻兀K /的系数是 J 二rD .- 22xab 2的次数是6【考点】多项式;单项式.【分析】根据单项式和多项式的概念及性质判断各个选项即可. 【解答】 解:A 、2x 2- 3xy - 1是二次三项式,故本选项不符合题意; B 、- x+1不是单项式,故本选项不符合题意; 9 ? 7c 、一亍兀xy 的系数是-宁■飞,故本选项不符合题意; D 、 - 22xab 2的次数是4故本选项符合题意. 故选D . 10.已知多项式x 2+3x=3,可求得另一个多项式 3x 2+9x - 4的值为( )A . 3B . 4C . 5D . 6【考点】代数式求值.【分析】 先把3x 2+9x - 4变形为3 (x 2+3x )- 4,然后把x 2+3x=3整体代入计算即可. 【解答】解:I x 2+3x=3,3x 2+9x - 4=3 (x 2+3x ) - 4=3 X 3 - 4=9 - 4=5 . 故选:C .二、填空题:(本大题共8小题,每小题2分,共16分) 11 .如果把收入 30元记作+30元,那么支出20元可记作 -20元 .【考点】 正数和负数.【分析】答题时首先知道正负数的含义, 在用正负数表示向指定方向变化的量时, 通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数. 【解答】解:由收入为正数,则支出为负数,故收入 30元记作+30元,那么支出20元可记作-20元.x 2+ ( 3y 2- 2xy )=去括号后原括号内各项的符号与原来 B 、 C 、【解答】解:-5丄的相反数是罕倒数是一13•比较大小:-9 > - 13 (填、”或号) 【考点】有理数大小比较.【分析】有理数大小比较的法则: ①正数都大于0;②负数都小于0;③正数大于一切负 数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:根据有理数比较大小的方法,可得 -9 >- 13. 故答案为:〉.14•用四舍五入法将 1.893 5取近似数并精确到 0.001,得到的值是 1.894 .【考点】 近似数和有效数字.【分析】 精确到哪一位,即对下一位的数字进行四舍五入.【解答】 解:用四舍五入法将 1.893 5取近似数并精确到 0.001,得到的值是1.894 . 故答案为:1.894.15. 若单项式-3a m b 3与4a 2b n 是同类项,贝V m+n= 5 .【考点】同类项.【分析】根据同类项的定义解答.【解答】 解:•••单项式-3a m b 3与4a 2b n 是同类项, m=2 , n=3 , m+n=2+3=5. 故答案为5.16. 若a 与b 互为相反数,c 与d 互为倒数,则(a+b ) 3- 3 (cd ) 2015= - 3 . 【考点】代数式求值.【分析】 根据a 与b 互为相反数,c 与d 互为倒数,可以得到: a+b=0, cd=1 .代入求值即可求解.【解答】 解:••• a 与b 互为相反数,c 与d 互为倒数, .a+b=0, cd=1.•••( a+b ) 3 - 3 (cd ) 2015=0 - 3 x 仁-3.故答案是:-3.17. 已知 |a+1|=0, b 2=4,贝U a+b= 1 或- 3 .【考点】绝对值.1112.- 5丄的相反数是2 -【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数, 可得一个数的相反数;根据乘积为1的两个数互为倒数,可得一个数的倒数.一;倒数是II —'【分析】根据绝对值和平方根,即可解答.【解答】解:••• | a+1|=0, b 2=4, a= — 1, b= ± 2, a+b=—1+2=1 或 a+b= — 1 — 2=— 3, 1 或—3.18.用火柴棒按如图所示的方式摆图形, 按照这样的规律继续摆下去,第n 个图形需要 5n+1【分析】仔细观察发现每增加一个正六边形其火柴根数增加 5根,将此规律用代数式表示出来即可.【解答】解:由图可知: 图形标号(1 )的火柴棒根数为 6; 图形标号(2 )的火柴棒根数为11; 图形标号(3)的火柴棒根数为16;由该搭建方式可得出规律:图形标号每增加 1,火柴棒的个数增加 5,所以可以得出规律:搭第 n 个图形需要火柴根数为: 6+5 ( n — 1) =5n+1,故答案为:5n+1.三•解答题:(本大题共64分) 19.在数轴上表示下列各数: 0,- 4,「二,-2, | — 5| , — (— 1),并用号连接.-5 -4 -3 -2-16 1 1 3 4 5?【考点】 有理数大小比较;数轴;绝对值.【分析】根据数轴是表示数的一条直线, 可把数在数轴上表示出来, 根据数轴上的点表示的 数右边的总比左边的大,可得答案.【解答】解:20. 耐心算一算(同学们,请你注意解题格式, (1) — 20+ (— 14) — (— 18)— 13 (2) - 4雜寻匚乂(- 30) (3) - 24-卜[5-( - 3) 2].—4v — 2<0V — (— 1) <定要写出解题步骤哦!根火柴棒(用含n 的代数式表示)【考点】 有理数的混合运算.【分析】(1)首先对式子进行化简,然后正、负数分别相加,然后把所得结果相加即可;(2)首先计算乘法、除法,然后进行加减即可; (3) 首先计算乘方,然后计算括号里面的式子,最后进行加减即可.【解答】 解:(1)原式=-20 - 14+18 - 13= - 20 - 14- 13+18=- 47+18= - 29;(3)原式=-16-^^X( 5 - 9) = - 16- 21. 化简: (1) 12x - 20x+10x (2) 2 (2a- 3b )- 3 (2b - 3a ) (3) - 5m 2n+2 - 2mn+6m 2n+3mn - 3. 【考点】整式的加减. 【分析】(1)先去括号,然后合并同类项; (2 )先去括号,然后合并同类项; (3 )直接合并同类项即可. 【解答】 解:(1)原式=(12 -20+10) x=2x ; (2) 原式=4a — 6b — 6b+9a =12a - 12b ; (3) 原式=(-5+6) m 2n+ (- 2+3) mn - 3+2 2 =m n+mn — 1. 22. 某汽车厂计划半年内每月生产汽车 20辆,由于另有任务,每月工作人数不一定相等, 实际每月生产量与计划量相比情况如表(增加为正,减少为负) 月份 一二 三 四 五 六 增减(辆) +3 - 2 - 1 +4 +2 - 5 ① 生产量最多的一月比生产量最少的一月多生产多少辆? ② 半年内总产量是多少?比计划增加了还是减少了,增加或减少多少? 【考点】 正数和负数. 【分析】①利用表中的最大数减去最小的数即可; ② 半年内的计划总产量是 20X 6=120辆,然后求得六个月中的增减的总和即可判断. 【解答】 解:①生产量最多的一月比生产量最少的一月多生产 4 -( - 5) =9 (辆); ② 总产量是:20 X 6+ (3 - 2 - 1+4+2 - 5) =121 (辆), 3 - 2 - 1+4+2 - 5=1 (辆). 答:半年内总产量是 121辆,比计划增加了 1辆. 23. 先化简,再求值:- 5ab+2[3ab -( 4ab 2+丄 ab ) ] - 5ab 2,其中(a+2) 2+| b -f _ | =0 . 【考点】整式的加减一化简求值;非负数的性质:绝对值;非负数的性质:偶次方. 【分析】原式去括号合并得到最简结果, 利用非负数的性质求出 a 与b 的值,代入计算即可(2)原式=-4X -^ —X 30= - 6 - 20=- 26; 3(—4) = - 16+2= - 14.求出值.【解答】解:•••(a+2)2+|b-二|=0,“a= - 2, r则原式=-5ab+6ab- 8ab2- ab- 5ab2= - 13ab2亠二2 •2 224. 已知A=2x - 9x - 11, B=3x - 6x+4.求(1) A - B ;(2)」-A+2B.【考点】整式的加减.【分析】(1)根据A=2x 2- 9x - 11, B=3x2- 6x+4,可以求得 A - B的值;(2)根据A=2x2- 9x - 11, B=3x2- 6x+4,可以求得|".|A+2B的值.【解答】解:(1)T A=2x 2- 9x - 11, B=3x 2- 6x+4,••• A - B=2x2- 9x - 11 - 3x2+6x - 4=-x2- 3x - 15;(2 )T A=2x 2- 9x- 11, B=3x 2- 6x+4,1 十•二 +=二(2x2- 9x - 11) +2 (3x2- 6x+4)=x2- 4.5x - 5.5+6x2- 12x+8=7x2- 16.5x+2.5.25•某市有甲、乙两种出租车,他们的服务质量相同•甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.8元(不足1 千米按1千米收费)•某人到该市出差,需要乘坐的路程为x千米.(1 )用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;(2)假设此人乘坐的路程为13千米多一点,请问他乘坐哪种车较合算?【考点】列代数式;代数式求值.【分析】(1)分0v x w 3和x >3两种情况分别写出对应的代数式;(2)分别求得x=13时,各自的费用,然后进行比较即可.【解答】解:(1)甲:①当O v x w 3时10元;②当x > 3 时10+1.2 ( x - 3)乙:①当O v x w 3时8元②当x > 3 时8+1.8 ( x - 3)(2)当乘坐的路程为13千米多一点,即x =14时甲的费用23.2元,乙的费用27.8元,应乘甲种车.26.求1+2+22+23+・・+22°15的值,可令S=1+2+22+23+・・+22°15,则2S=2+22+23+24+・・+22°16,因此2S- S=22016- 1.仿照以上推理,计算出1+5+52+53+-+52015的值.【考点】规律型:数字的变化类.【分析】仔细阅读题目中示例,找出其中规律,求解本题.【解答】解:令S=1+5+52+53+-+52015,贝廿5S=5+52+53+54+ - +52016,••• 5S - S=52016- 1,2016 年9 月15 日。
2017-2018学年七年级上学期数学期中考试试卷班级________ 姓名_______________ 座号_______ 考试号_______________ 一、选择题:(每题4分,共40分) 1.2017的倒数是( ).A .2017-B .2017C .12017-D .120172.下列各数中负数是( ).A .()2-- B. 2-- C. ()22- D. ()32-- 3.1光年大约是9500 000 000 000㎞,这个数据用科学记数法表示是( ). A .131095.0⨯ ㎞ B .12105.9⨯ ㎞ C .111095⨯ ㎞ D .1010950⨯ ㎞ 4.在数轴上与表示数4的点距离5个单位长度的点表示的数是( ). A .5 B .-1 C .9 D .-1或9 5.近似数53.2010⨯的精确度说法正确的是( ).A .精确到百分位B .精确到十分位C .精确到千位D .精确到万位6.在代数式2335,,,,0,,732 x ya b a b x m a a b -++--中,单项式的个数是( ).A .6B .5C .4D .3 7.下列各式运算正确的是( ).A .235x x +=B .2358a a a += C .22321a b a b -= D .220ab b a -= 8.下列去括号正确的是( ).A .22(3)3x x y x x y --=--B .22223(2)32x y xy x y xy --=-+C .224(1)44m m m m --=-+ D .222(3)26a a a a --=+-9x 值为-2,则输出的结果为( ).A.6B.-6C.14D. -1410.化简()()201922-+-结果是( ).A .2B .-2C .202D .192 二、填空题:(每4分,共24分)11.比较大小:11________32--.12.若236x =,则x =_________.13.已知3>x ,化简:3x -= ______________.14.单项式2435a b π-的系数是______, 次数是______. 15.已知33a b -=,则代数式395a b -+-=__________.16.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是____________________________.三、解答题:(共86分)17.计算:(每小题5分,共20分)(1)121252344343⎛⎫⎛⎫⎛⎫--+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)359(24)4812⎛⎫--+⨯- ⎪⎝⎭(3)()()3431543-÷⨯⨯- (4)()()34201712103(1)-+----÷-18.合并同类项(每小题5分,共10分)(1)22235m m m -- (2)3(25)4(35)5x y x y ---+ 19.(8分)先化简,再求值:()()222211124a b ab ab a b----,其中3,2 b a =-=.20.(6分)如果关于x 的多项式()()21225231n x y mx x +---+的值与x 的取值无关,且该多项式的次数是三次.求, m n 的值21.(6分)若“*”是一种新的运算符号,并且规定2a b a b b +*=.例如:2358355+*==,求()()223*-*-⎡⎤⎣⎦的值. 22.(9分)股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(1)星期四收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?23.(6分)如图,已知数轴上的点A 表示的数为6,点B 表示的数为﹣4,点C 到点A 、点B 的距离相等,动点P 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x (x 大于0)秒.(1)点C 表示的数是________;(2)当x =________秒时,点P 到达点A 处?(3)运动过程中点P 表示的数是________(用含字母x 的式子表示); (4)当P ,C 之间的距离为2个单位长度时,求x 的值.24.(7分)某校七年级三位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。
………………绝密★启用前2017-2018浙教版七年级上册第数学期中试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.做题仔细,不要漏题 一、选择题1.(本题3分)若a <0,b >0,则b 、b+a 、b -a 中最大的一个数是 ( ) A. a B. b+a C. b -a D. 不能确定2.(本题3分)若(a+1)2+|b ﹣2|=0,化简a (x 2y+xy 2)﹣b (x 2y ﹣xy 2)的结果为( )A .3x 2yB .﹣3x 2y+xy 2C .﹣3x 2y+3xy 2D .3x 2y ﹣xy 23.(本题3分)如果一个数的平方与这个数的差等于0,那么这个数只能是( ) A .0 B .-1 C .1 D .0或1 4.(本题3分)任何一个有理数的4次幂都是( ) A .正数 B .负数 C .非负数 D .任何有理数5.(本题3,m 的取值为( )。A.m ≤4B.m ≥ 4C.0≤m ≤4D.一切实数 6.(本题3分)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27809平方公里.将27809用科学记数法表示应为 A .51027809.0⨯ B .310809.27⨯ C .3107809.2⨯ D .4107809.2⨯ 7.(本题3 )A .5--6之间B .6--7之间C .7--8之间D .8--9之间 8.(本题3分)如右图,数轴上点N 表示的数可能是( )A 9.(本题3分)2的倒数是( ) A.12 B. ﹣12 C. ±12D. 2 10.(本题3-π,3.14,0.1010010001…(每两个1之间,逐次多一个0)中,无理数的个数是( )试卷第2页,总4页A .2B .3C .4D .5 11.(本题3分)数轴上的点A 到原点的距离是4,则点A 表示的数为 ( ) A. 4 B. -4 C. 4或-4 D. 2或-2 二、填空题12.(本题3分)当x_________ 13.(本题3分)观察下列图形:它们是按一定规律排列的,依照此规律,第5个图形共有 个★,第n 个图形共有 个★。
2018七年级上册数学期中检测试题(浙教版含答案和解释)为了更好的迎接考试,在考试中取得好的成绩,编辑老师为同学们整理了七年级上册数学期中检测试题,具体内容请看下文。
一、选择题(每小题3分,共30分)1. (2018浙江温州中考)给出四个数0,,,-1,其中最小的是( )A. 0B.C.D. -12. (2018山东菏泽中考)如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点MB.点NC.点PD.点Q3.已知甲、乙、丙三数,甲=5+ ,乙=3+ ,丙=1+ ,则甲、乙、丙的大小关系为()A.丙甲B.乙丙C.甲丙D.甲=乙=丙4.下列四种说法:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3) 的平方根是 ;(4) .其中共有( )个是错误的.A.1B.2C.3D.45.观察下列算式:,,,,.根据上述算式中的规律,请你猜想的末位数字是()A.2B.4C.8D.66. (2018杭州中考)若 (k是整数),则k=( )A. 6B. 7C.8D. 97. 下列算式中,积为负分数的是( )A. B. C. D.8.有下列各数:0.01,10,-6.67,,0,-90,-(-3),,- ,其中属于非负整数的共有()A.1个B.2个C.3个D.4个9.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量记录的部分数据(用A-C表示观测点A相对观测点C的高度),根据这次测量的数据,可得观测点A相对观测点B的高度是()A-CC-DE-DF-EG-FB-G90米80米-60米50米-70米40米A.210米B.130米C.390米D.-210米10.如图,数轴上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点位置,判断|a-c|之值与下列选项中哪个不同()A.|a|+|b|+|c|B.|a-b|+|c-b|C.|a-d|-|d-c|D.|a|+|d|-|c-d|二、填空题(每小题3分,共30分)11.如果a-3与a+1互为相反数,那么a= .12.比大而比小的所有整数的和为 ___ .13. (2018陕西中考)将实数由小到大用号连起来,可表示为________.14. 已知,则 ________.15.(杭州中考)把7的平方根和立方根按从小到大的顺序排列为__________.16. (2018山东烟台中考) 如图,数轴上点A,B所表示的两个数的和的绝对值是______.17.若某数的立方等于-0.027,则这个数的倒数是____________.18. 一个正方体的体积变为原来的64倍,则它的棱长变为原来的倍.19. 数轴上两点A、B分别表示数-2和3,则A、B两点间的距离是 .20.已知0.122=0.014 4,1.22=1.44,122=144,则0.0122= ,1202= .三、解答题(共60分)21.(12分)计算:(1) ;(2) ;(3) ;(4) ;(5)(6) .22.(12分)计算:(1) ;(3) ; (4) ;(5) ; (6) .23.(4分)将-2.5,12,2,,,0在数轴上表示出来,并用把它们连接起来.24.(6分)小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:cm):问:(1)小虫是否回到原点O ?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1 cm奖励一粒芝麻,则小虫共可得到多少粒芝麻?25.(5分)飞出地球遨游太空,长期以来就是人类的一种理想.可是地球的引力毕竟是太大了,飞机飞得再快也得回到地面.只有当物体速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度叫第一宇宙速度,计算公式是:(km/s),其中g=0.009 8 km/ ,是重力加速度,R=6 370 km,是地球半径.请你求出第一宇宙速度,看看有多大.(精确到0.1 km/s) 26.(5分)某同学把错抄为,如果正确答案是m,错抄后的答案为n,求m-n的值.27.(8分)某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米):第一次第二次第三次第四次第五次第六次第七次-3+8-9+10+4-6-2(1)在第________次行驶时距A地最远.(2)收工时距A地多远?(3)若每千米耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?28.(8分) 中国移动杯中美篮球对抗赛在吉首举行.为组织该活动,中国移动吉首公司已经在此前花费了费用120万元.对抗赛的门票价格分别为80元、 200元和400元.已知2 000张80元的门票和1 800张200元的门票已经全部售出.那么,如果要不亏本,400元的门票最少要卖出多少张?期中检测题参考答案一、选择题1. D 解析:根据正数大于0,0大于负数进行判断.在这四个数中只有-1是负数,所以它最小,故D选项正确.2.C 解析:若点M,N表示的有理数互为相反数,则原点是线段MN的中点,观察数轴,发现M,P,N,Q四个点中,点P 到原点的距离最小,所以图中表示绝对值最小的数的点是点P.3.A 解析:∵ 3= =4, 89,即89;∵ 4= =5, 78,即78;∵ 4= =5, 56,即56.丙甲,故选A.4.C 解析:负数有立方根,(1)错误;1的立方根是1,平方根是,(2)错误; 的平方根是,(3)正确; ,(4)错误.故错误的有3个.5.B 解析:因为,,,,,,,可以看出末位数字每四个一循环,所以的末位数字是4.故选B.6. D解析:∵ 81100,,即9 10, k=9.7. D 解析:A中算式乘积为0;B中算式乘积为-20;C中算式乘积为-3;D中算式乘积为 .故选D.8.D 解析:非负整数有10,0,-(-3),- ,共4个.9.A 解析:由表中数据可知:A-C=90①,C-D=80②,D-E=60③,E-F=-50④,F-G=70⑤,G-B=-40⑥,①+②+③++⑥,得A-B=90+80+60-50+70-40=210(米).观测点A相对观测点B的高度是210米.10.A 解析:可知|a-c|=AC.由于 |a|+|b|+|c|=AO+BO+COAC,故A正确;由于|a-b|+|c-b|=AB+BC=AC,故B错误;由于|a-d|-|d-c|=AD-CD=AC,故C错误;由于|a|+|d|-|c-d|=AO+DO-CD=AC,故D错误.故选A.二、填空题11.1 解析:若a-3与a+1互为相反数,则a-3+a+1=0,解得a=1.12.-3 解析:满足条件的整数有-3,-2,-1,0,1,2,它们的和为-3.13. -6 解析:根据正数大于0,0大于负数得,在这四个数中只有-6是负数,它最小,而23,3,所以-6 .14. 解析:由,得,所以15. 解析:因为7的平方根是和,7的立方根是,而,所以 .16. 1 解析:A点表示的数是-3,B点表示的数是2,则17. 解析:立方等于-0.027的数为-0.3,其倒数是 .18.4 解析:因为正方体的体积是棱长的立方,当体积变为原来的64倍时,则棱长变为原来的4倍.19.5 解析:根据数轴上两点对应的数是-2,3,可知两点间的距离是3-(-2)=5.20.0.000 144 14 400 解析:观察数据可以看出,当小数点向左移动一位时,其相应的平方数的小数点向左移动两位;当小数点向右移动一位时,其相应的平方数的小数点向右移动两位.三、解答题21.解:(1)原式(2)原式 .(3)原式(4)原式 .(5)原式(6)原式22.解: (1) .(2) .(3) .(4) .(5) .(6) .23.解:,,在数轴上的位置如图.故它们的大小顺序为 .24. 分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到原点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数.解:(1)∵ ,小虫最后回到原点O.(2)12㎝.(3) + + + + + + =54,小虫可得到54粒芝麻.25.解:把g=0.009 8 km/ ,R=6 370 km代入公式,得(km/s).答:第一宇宙速度约为7.9 km/s.27.解:(1)由题意得:第一次距A地|-3|=3(千米);第二次距A地-3+8=5(千米);第三次距A地|-3+8-9|=4(千米);第四次距A地|-3+8-9+10|=6(千米);第五次距A地|-3+8-9+10+4|=10(千米).而第六次、第七次是向相反的方向又行驶了共8千米,所以在第五次行驶时距A地最远.(2)根据题意列式:-3+8-9+10+4-6-2=2,故收工时距A地2千米.(3)根据题意得检修小组走的路程为:|-3|+|+8|+|-9|+|+10|+|+4|+|-6|+|-2|=42(千米),420.37.2=90.72(元).故检修小组工作一天需汽油费90.72元.28.解:2 000张80元的门票收入为2 00080=160 000(元),1 800张200元的门票收入为1 800200=360 000(元),1 200 000-160 000-360 000=680 000(元),故400元的门票至少要卖出680 000400=1 700(张).答:400元的门票最少要卖出1 700张.希望为大家提供的七年级上册数学期中检测试题的内容,能够对大家有用,更多相关内容,请及时关注!。
2017/2018学年度上学期七年级上册数学期中检测卷时间:120分钟一、选择题(每小题3分,共30分) 1.a 的相反数是( )A.|a |B.1a C.-a D.以上都不对2.计算-3+(-1)的结果是( ) A.2 B.-2 C.4 D.-43.在1,-2,0,53这四个数中,最大的数是( )A.-2B.0C.53D.14.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的22号染色体也长达30000000个核苷酸.30000000用科学记数法表示为( )A.3×107B.30×106C.0.3×107D.0.3×1085.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A.0 B.1 C.7 D.-16.设有理数a ,b 在数轴上对应的位置如图所示,化简|a -b |-|a |的结果是( )A.-2a +bB.2a +bC.-bD.b7.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A.2a 2-πb 2B.2a 2-π2b 2C.2ab -πb 2D.2ab -π2b 28.已知|a |=5,|b |=2,且|a -b |=b -a ,则a +b 的值为( ) A.3或7 B.-3或-7 C.-3 D.-79.在数学活动课上,同学们利用如图所示的程序进行计算,发现无论x 取任何整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1第9题图第10题图10.如图,将一张等边三角形纸片剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A.25B.33C.34D.50二、填空题(每小题3分,共24分)11.12的倒数是 . 12.计算:(-2)3+|-6|= .13. 已知多项式x |m |+(m -2)x -10是二次三项式,m 为常数,则m 的值为 . 14.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是 .15.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m = .16.某音像社出租光盘的收费方法如下:每张光盘在租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金 元;那么第10天应收租金 元.17.用符号(a ,b )表示a 、b 两数中较小的一个数,用符号[a ,b ]表示a 、b 两数中较大的一个数,计算:⎣⎡⎦⎤-1,-12-(-2,0)= . 18.如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.它的面积S 可用公式S =a +12b -1(a 是多边形内的格点数,b 是多边形边界上的格点数)计算.这个公式称为“皮克定理”.现有一张方格纸共有200个格点,画有一个格点多边形,它的面积S =40.(1)这个格点多边形边界上的格点数b = (用含a 的代数式表示); (2)设该格点多边形外的格点数为c ,则c -a = .三、解答题(共66分) 19.(12分)计算:(1)35-3.7-⎝⎛⎭⎫-25-1.3; (2)(-3)÷⎣⎡⎦⎤⎝⎛⎭⎫-25÷⎝⎛⎭⎫-14+34;(3)⎝⎛⎭⎫-34-59+712÷⎝⎛⎭⎫-136; (4)[(-1)2016+⎝⎛⎭⎫1-12×13]÷(-32+2).20.(6分)化简:(1)3a 2+2a -4a 2-7a ; (2)13(9x -3)+2(x +1).21.(8分)先化简,再求值:(1)2m 2-4m +1-2(m 2+2m -12),其中m =-1;(2)5xy 2-[2x 2y -(2x 2y -3xy 2)],其中(x -2)2+|y +1|=0.22.(8分)如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a 、b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.23.(10分)邮递员骑车从邮局O 出发,先向西骑行2km 到达A 村,继续向西骑行3km 到达B 村,然后向东骑行8km ,到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置;(2)C 村距离A 村有多远? (3)邮递员共骑行了多少km ?24.(12分)“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?25.(10分)探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19= ;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)= ; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.A 5.B 6.D 7.D 8.B 9.D10.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.11.2 12.-2 13.-2 14.-8、815.-6 16.(0.6+0.5n ) 5.6 17.3218.(1)82-2a (2)11819.解:(1)原式=-4.(3分)(2)原式=-98.(6分)(3)原式=26.(9分)(4)原式=-16.(12分)20.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)21.解:(1)原式=2m 2-4m +1-2m 2-4m +1=-8m +2.(2分)当m =-1时,原式=8+2=10.(4分)(2)原式=5xy 2-2x 2y +2x 2y -3xy 2=2xy 2,(6分)∵(x -2)2+|y +1|=0,∴x =2,y =-1,则原式=4.(8分)22.解:(1)阴影部分的面积为12b 2+12a 2+12ab .(4分)(2)当a =3,b =5时,12b 2+12a 2+12ab =12×25+12×9+12×3×5=492,即阴影部分的面积为492.(8分) 23.解:(1)如图所示.(4分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(7分)(3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(10分)24.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(6分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.当a =2时,(7×2+13.2)×10=272(万元).答:黄金周期间淮安动物园门票收入是272万元.(12分) 25.解:(1)102(2分) (2)(n +2)2(5分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(10分)。
期中检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.(2017·宜昌)有理数-15的倒数为( D ) A .5 B.15 C .-15D .-5 2.(-2)2的算术平方根是( A )A .2B .±2C .-2 D. 23.下列每对数中,不相等的一对是( C )A .(-2)3和-23B .(-2)2和22C .(-2)4和-24D .|-24|和(-2)44.下列说法中,错误的是( D )A .绝对值最小的实数是0B .最小的完全平方数是0C .算术平方根最小的数是0D .立方根最小的实数是05.(2017·安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计贷款超过1 600亿美元,其中1 600亿用科学记数法表示为( C )A .16×1010B .1.6×1010C .1.6×1011D .0.16×10126.如图,数轴上有M ,N ,P ,Q 四个点,其中点P 所表示的数为a ,则数-3a 所对应的点可能是( A )A .MB .NC .PD .Q7.下列运算正确的是( D )A .-22÷(-2)2=1B .(-213)3=-8127C .-5÷13×35=-25D .314×(-3.14)-634×3.14=-31.4 8.在数轴上标注了四段范围,如图所示,则表示8的点落在( C )A .①B .②C .③D .④9.观察下面一组数:-1,2,-3,4,-5,6,-7,…,将这组数排成如图的形式,按照如图规律排下去,则第10行中从左边数第9个数是( B )A.-90 B .90 C 10.四个各不相等的整数a ,b ,c ,d ,它们的积abcd =49,那么a +b +c +d 的值为( D )A .14B .-14C .13D .0二、填空题(每小题4分,共24分)11.如果规定向西为正,那么向东即为负.汽车向西行驶6千米记做+6千米,则向东行驶2千米应记做__-2__千米.12.将32,(-2)3,0,|-12|,-110这五个数按从大到小的顺序排列为:__32>|-12|>0>-110>(-2)3__. 13.(2017·无锡)如图是我市某地连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是__11__℃.14.已知一个正方体的棱长是5 cm ,再做一个体积是它的体积的2倍的正方体,则所做正方体的棱长是__6.3_cm __(精确到0.1 cm).15.如果a ,b 是任意两个不等于零的数,定义新运算如下:a ⊕b =a 2b ,那么1⊕(2⊕3)的值是__34__. 16.请你观察并思考下列计算过程:因为112=121,所以121=11.同样,因为1112=12 321,所以12 321=111.…… 由此猜想12 345 678 987 654 321=__111_111_111__.三、解答题(共66分)17.(6分)把下列各数分别填入相应的括号里:-|-5|,-3.141 6,-227,9,-3-127,π,0,32,0.303 003 000 3…(两个“3”之间依次多一个“0”), 5(1)无理数:{}π,0.303 003 000 3…(两个“3”之间依次多一个“0”),5….(2)整数:{}-|-5|,9,0,32….(3)非负数:⎩⎨⎧⎭⎬⎫9,-3-127,π,0,32,0.303 003 000 3…(两个“3”之间依次多一个“0”),5…. 18.(12分)计算:(1)|(-9)+(-6)|-|0-8|-|-7-3+10|.解:7.(2)-32÷1.52+(-13)2×(-3)2÷(-1)2 017. 解:-5.(3)144+3-8+|1-3|- 3.解:9.(4)-32-(-5)3×(-25)2-5÷(23-32)-3-216.解:23.19.(6分)若|a|=3,b2=4,且a+b>0,求a-2b的值.解:-1或7.20.(7分)全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长,每一个苔藓会长成近似圆形,苔藓的直径和其生长年限,近似地满足如下关系式:d=7×t-12 (t≥12),其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径.(2)如果测得一些苔藓的直径是35厘米,那么冰川大约在多少年前消失的?解;(1)当t=16时,d=7×16-12=14(厘米).(2)当d=35时,7×t-12=35,即t-12=25或t-12=-25(舍去),解得t=37,即冰川大约在37年前消失的.21.(8分)有一个数值转换器,原理如图.(1)当输入的x为16时,输出的y是多少?(2)是否存在输入有效的x值后,始终输不出y值?若存在,请写出满足要求的x的值;若不存在,请说明理由.(3)小明输入数据,在数值转换器运行程序时,屏幕显示“该操作无法运行”,请你推算输入的数据可能是什么情况.(4)若输出的y是3,试判断输入的x值是否唯一;若不唯一,请写出其中的两个.解:(1)当x=16时,16=4,4=2,则y= 2.(2)存在.当x=0.1时,始终输不出y值.(x的值符合要求即可)(3)x<0.(4)x的值不唯一,x=3或x=9.22.(8分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,-10,-3,+6,-5,-2,-7,+4,+6,-9,-11.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.08 L/km,这天上午老王的出租车耗油多少升?解:(1)因为+8+4-10-3+6-5=0,所以将第6名乘客送到目的地时,老王刚好回到出发点.(2)+8+4-10-3+6-5-2-7+4+6-9-11=-19,所以老王距上午出发点19 km.(3)|+8|+|+4|+|-10|+|-3|+|+6|+|-5|+|-2|+|-7|+|+4|+|+6|+|-9|+|-11|=75,75×0.08=6(L),所以这天上午老王的出租车油耗为6 L.23.(9分)某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(1)(2)若每袋奶粉的标准质量为450克,则抽样检测的总质量是多少克?解:(1)[(-10)×1+(-5)×5+0×5+5×6+10×2+15×1]÷20=1.5(克),所以这批样品每袋的平均质量比每袋的标准质量多1.5克.(2)450×20+1.5×20=9 030(克),即抽样检测的总质量是9 030克.24.(10分)现用篱笆材料在空地上围成一个绿化场地,使面积为48 m2,现有两种设计方案:一种是围成正方形场地;另一种是围成圆形场地,试问选用哪一种方案围成的场地所需的材料少,并说明理由.(π取3)解:方案1:设正方形的边长为x m,则x2=48,解得x=±48,x=-48不符合题意,舍去.∴正方形周长为448 m.方案2:设圆的半径为r m,则πr2=48,解得r=±4,r=-4不符合题意,舍去.∴圆周长为8π≈24(m),又∵24<448,故选用方案2围成圆形场地所需的篱笆材料较少.。
2017~2018学年第一学期考试七年级数学试卷一、选择题(每小题3分,共30分)1在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( ) A 、3个 B 、4个 C 、5个 D 、6个2、我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为( )A 、5.4 ×102人B 、0.54×104 人C 、5.4 ×106人D 、5.4×107人 3、一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔( )A 、-60米B 、-80米C 、-40米D 、40米 4、原产量n 吨,增产30%之后的产量应为( )A 、(1-30%)n 吨B 、(1+30%)n 吨C 、(n+30%)吨D 、30%n 吨 5、下列说法正确的是( )①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 A 、①② B 、①③ C 、①②③ D 、①②③④ 6、如果10<<a ,那么aa a 1,,2之间的大小关系是A 、a a a 12<<B 、 a a a 12<<C 、 21a a a <<D 、 a a a<<21 7、下列说法正确的是( ) A 、0.5ab 是二次单项式B 、1x 和2x 是同类项C 、259abc -的系数是5- D 、()23a b+是一次单项式8、已知:A 和B 都在同一条数轴上,点A 表示2-,又知点B 和点A 相距5个单位长度,则点B 表示的数一定是( )A 、 3B 、-7C 、 7或-3D 、-7或39、一个多项式与x 2-2x +1的和是3x -2,则这个多项式为( ) A 、x 2-5x +3 B 、-x 2+x -1 C 、-x 2+5x -3 D 、x 2-5x -1310、观察下列算式:31=3,32=9, 33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32016的个位数字是( )A 、3B 、9C 、7D 、1 二、填空题(每题3分,共15分)11、单项式225xy π-的系数是____________。
浙江省杭州市大江东区2017-2018学年七年级数学上学期期中试卷一、选择题(每题3分)
1.据统计,2016年中国粮食总产量达到546400000吨,用科学记数法表示为()
A.5.464×107B.5.464×108C.5.464×109D.5.464×1010
2.下列各对数中,是互为相反数的是()
A.3与B.与﹣1.5 C.﹣3与D.4与﹣5
3.数轴上表示﹣的点到原点的距离是()
A.﹣ B.C.﹣2 D.2
4.下列各式正确的是()
A.B.C. D.
5.整式﹣0.3x2y,0,,﹣22abc2,x2,﹣y,﹣ab2+中,单项式的个数有()A.3个 B.4个C.5个D.6个
6.有下列说法:
①任何实数都可以用分数表示;
②实数与数轴上的点一一对应;
③在1和3之间的无理数有且只有,,,这4个;
④是分数,它是有理数.其中正确的个数是()
A.1 B.2 C.3 D.4
7.在,0.3,,,π中,无理数有()
A.1个B.2个C.3个D.4个
8.下面的说法正确的是()
A.单项式﹣πmn的次数是3次B.﹣a表示负数
C.的系数是3 D.x++3不是多项式
9.定义一种运算☆,其规则为a☆b=+,根据这个规则,计算2☆3的值是()A.B.C.5 D.6
10.如图是一个数值运算程序,当输入值为﹣2时,则输出的数值为()
A.3 B.8 C.64 D.63
二、填空题(每题4分)
11.(﹣9)2的算术平方根是.
12.按要求取近似值:37.49≈(精确到0.1),这个近似数表示大于或等于,而小于的数.
13.(1)请你写出一个同时符合下列条件的代数式,①同时含有字母a,b;②是一个4次3项式,你写出的一个代数式是
(2)“x的相反数与y平方的差”用代数式可以表示为.
14.比较大小:23;﹣﹣.
15.如果数轴上原点右边8厘米处的点表示的有理数是32,那么数轴上原点左边12厘米处的点表示的有理数是.
16.如图,长方形内有两个相邻的正方形,面积分别为4和3,那么阴影部分的面积为.
三、解答题
17.(6分)把下列各数填在相应的表示集合的大括号内:
﹣2,π,﹣,﹣|﹣3|,,﹣0.3,1.7,,0,1.1010010001…(每两个1之间依次多一个0),﹣
整数{ …}
负分数{ …}
无理数{ …}.
18.(12分)计算
(1)(﹣12)﹣5+(﹣14)﹣(﹣39)
(2)()×(﹣24)(3)(﹣1.5)
(4).
19.(8分)|a|=5,b=﹣2,且ab>0,则a+b等于
.
20.(8分)(1)写出两个负数,使它们的差为﹣4,并写出具体算式.
(2)说说“一个无理数与一个有理数的积一定是无理数”是否正确,请举例说明.
21.(10分)同学们都知道,|5﹣(﹣2)|表示5与﹣2的差的绝对值,实际上也理解为5与﹣2两数在数轴上对应的两点之间的距离,回答下列问题:
(1)|5﹣(﹣2)|=
(2)若|x+2|=3,则x=
(3)找出所有符合条件的整数x,使|x+4|+|x﹣1|=5.
22.(10分)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连结起来.
3.5,﹣3.5,0,2,﹣2,﹣,0.5
23.(12分)某经销商去水产批发市场采购湖蟹,他看中了A,B两家的某种品质相近的湖蟹.零售价都为60元/千克,批发价各不相同.
A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.
B家的规定如下表:
数量范围(千克)0~50部分50以上~150的部
分150以上~250的
部分
250以上的部
分
价格(元)零售价的95% 零售价的85% 零售价的75% 零售价的70%
(1)如果他批发80千克湖蟹,则他在A、B两家批发分别需要多少元?
(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B两家批发所需的费用.
2017-2018学年浙江省杭州市大江东区七年级(上)期中数学试卷
参考答案
一、选择题(每题3分)
1.B;2.B;3.B;4.B;5.C;6.A;7.B;8.D;9.A;10.D;
二、填空题(每题4分)
11.9;
12.37.5;37.45;37.55;
13.ab3+ab2﹣2;﹣x﹣y2;
14.<;>;
15.﹣48;
16.2﹣3;
三、解答题
17.
18.
19.
20.
21.
22.
23.。