第七章线性空间与线性变换2
- 格式:ppt
- 大小:1.58 MB
- 文档页数:50
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
第七章 习 题 课(一)一、复习内容1、线性空间的值域、核的概念及表示法;2、线性变换A 的秩(A)r 、A 的零度(A)nul 的概念;3、线性变换A 的秩、零度与线性空间的维数之间的关系;4、等式 1A A (0)V V -=⊕ 是否成立?5、若A 是线性空间V 的一个线性变换,12,,,n εεε是V 的一组基,则 A ?V =。
若A 在基12,,,n εεε的矩阵是A ,则A 的秩为?6、不变子空间( A -子空间)的概念;7、线性变换A 的值域与核的概念。
二、新课讲解1、设A 是n 维线性空间V 的线性变换,α是V 中一个非零向量。
证明:如果21,A ,A ,,A (1)k k αααα-≥线性无关,而21,A ,A ,,A ,A k k ααααα-线性相关,那么1)211(,A ,A ,,A )k V L αααα-=是A -子空间;2)211(,A ,A ,,A )k V L αααα-=是包含α的最小A -子空间。
证明:1)因为21,A ,A ,,A (1)k k αααα-≥线性无关,而21,A ,A ,,A ,A k k ααααα-线性相关,所以A kα可以由21,A ,A ,,A k αααα-线性表示。
因此21,A ,A ,,A k αααα-在A 下的象都在1V 中,故1V 是A -子空间。
2)如果A -子空间W 包含α,则W 包含α的象A α,A α的象2A α,…,2A k α-的象1A k α-,所以211(,A ,A ,,A )k W V L αααα-⊇=,即211(,A ,A ,,A )k V L αααα-=是包含α的最小A -子空间。
2、323 14P 设1234,,,εεεε是四维线性空间V 的一组基,已知线性变换A 这组基下的矩阵为1021121312552212A ⎛⎫⎪- ⎪= ⎪⎪--⎝⎭2)求A 的值域与核;解:设A 在基1234,,,εεεε的矩阵为A ,先求1A (0)-。
第七章 线性变换一. 内容概述1. 线性变换的概念设n V 是n 维线性空间,T 是n 维线性空间n V 中的变换,且满足1) 对任意向量n V ∈βα,,有 )()()(βαβαT T T +=+ 2) 对任意向量F k V n ∈∈,α,有)()(ααkT k T =则称为中的线性变换。
2. 线性变换的性质及运算1)0)0(=T )()(ααT T -=-2) )()()()(22112211n n n n T k T k T k k k k T αααααα+++=+++ΛΛ3)设向量组n ααα,,,21Λ线性相关,则向量组)(),(),(21n T T T αααΛ也线性相关。
线性变换的和:)()())((2121αααT T T T +=+ 线性变换的积:))(())((2121ααT T T T = 数乘变换:)())((αλαλT T = 线性变换T 可逆时,逆变换1-T都是线性变换。
线性变换的多项式:0111)(a a a a f m m m m ++++=--σσσσΛ 3. 线性变换的矩阵设σ是V 的一个线性变换,n εεε,,,21Λ是V 的一个基,且n n a a a εεεεσ12211111)(+++=Λn n a a a εεεεα22221122)(+++=ΛΛΛΛΛn nn n n n a a a εεεεσΛ++=2211)(记))(),(),((),,,(2121n n εσεσεσεεεσΛΛ=A n n n ),,,())(,),(),((),,,(212121εεεεσεσεσεεεσΛΛΛ== 则称A 为线性变换σ在基n εεε,,,21Λ下的矩阵。
4. 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,在这组基下,每个线性变换按公式)(*对应一个n n ⨯矩阵,这个对应具有以下性质:1) 线性变换的和对应与矩阵的和; 2) 线性变换的积对应与矩阵的积;3) 线性变换的数量乘积对应与矩阵的数量乘积;4) 可逆的线性变换与可逆矩阵对应,且逆变换对于与逆矩阵。