浙教版数学七年级上册一元一次方程应用题分类专题练习
- 格式:docx
- 大小:62.63 KB
- 文档页数:23
浙教版数学七年级上册第五章一元一次方程一、选择题1.下列方程是一元一次方程的是( )A .y =2x−1B .x−1=0C .x 2=9D .3x−52.下列利用等式的基本性质变形错误的是( )A .若x−2=7,则x =7+2B .若−5x =15,则x =−3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x−a =0的解,则a 的值是( )A .2B .1C .−1D .−24.由x 2−y3=1可以得到用x 表示y 的式子是( )A .y =3x−22B .y =32x−12C .y =3−32xD .y =32x−35.解方程x−13=1−3x +16,去分母后正确的是( )A .2x−1=1−(3x +1)B .2(x−1)=1−(3x +1)C .2(x−1)=6−(3x +1)D .(x−1)=6−3x +16.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100−x )=100B .3x +100−x3=100C .x3−3(100−x )=100D .3x−100−x3=1007.下列方程的变形中,正确的是( )A .方程3x−2=2x +1,移项,得3x−2x =−1+2;B .方程3−x =2−5(x−1),去括号,得3−x =2−5x−1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x−12−x5=1化成5(x−1)−2x =10.8. 将 6 块形状、大小完全相同的小长方形,放入长为 m ,宽为 n 的长方形中,当两块阴影部分A,B 的面积 相等时, 小长方形其较短一边长的值为( )A .m 6B .m 4C .n 6D .n 49.已知|a−1|+(ab−2)2=0,则关于x 的方程xab+x (a +1)(b +1)+x (a +2)(b +2)+⋅⋅⋅+x(a +2021)(b +2021)=2022的解是( )A .2021B .2022C .2023D .202410.我国古代的“九宫图”是由3×3的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是( )2025x 23A .2020B .−2020C .2019D .−2019二、填空题11.已知4x +2y =3,用含x 的式子表示y = .12.如图,在数轴上,点A,B 表示的数分别为a,b ,且a +b =0,若AB =2,则点A 表示的数为 .13.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了 道题.14.甲对乙说:“当我岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在岁数时,你61岁.”则乙现在为 岁.15.如图,数轴上A ,B 点对应的实数分别是1和3.若点A 关于点B 的对称点为点C (即2AB =BC ),则点C 所对应的实数为 .16.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定F (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之和,G (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果F (M )=60,那么M 各数位上的数字之和为 ;有一个四位正整数N =1101+1000x +10y +z (0≤x ≤4,0≤y ≤9,0≤z ≤8,且为整数)是一个“共进退数”,且F (N )是一个平方数,G (N )13是一个整数,则满足条件的数N 是 .三、解答题17.解方程:2x +13−6x−16=1.18.当m 为何值时,关于x 的方程x−m 2−1=2x +m3的解是非负数.19.一艘轮船从A 地顺水航行到B 地用了4小时,从B 地逆水航行返回A 地比顺水航行多用了2小时,已知轮船在静水中的速度是25千米/时.(1)求水流的速度和A ,B 两地之间的距离;(2)若在A ,B 两地之间的C 地建立新的码头,使该轮船从A 地顺水航行到C 码头的时间是它从B 地逆水航行到C 码头所用时间的一半,问A ,C 两地相距多少千米?20.关于x 的两个一元一次方程x−1=a ①,3x +1=2a ②,已知方程①的解比方程②的解大1,求a的值.21.我们规定,若关于x 的一元一次方程ax =b 的解为x =b−a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4−2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.22.甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.23. 某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D1001次列车从A 站始发,经停B 站后到达C 站,G1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①v1v=▲;2②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1−d2|=60,求t的值.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】A7.【答案】D8.【答案】A9.【答案】C10.【答案】D11.【答案】32−2x12.【答案】−113.【答案】1914.【答案】2315.【答案】33−216.【答案】15;310517.【答案】x=−3218.【答案】m≤−6519.【答案】(1)解:设水流的速度为x千米/时,A,B两地之间的距离为y千米,则轮船在顺水中的速度为(25+x)千米/时,在逆水中的速度为(25−x)千米/时.由题意,得{4(25+x)=y6(25−x)=y,解得{x=5 y=120.答:水流的速度为5千米/时,A,B两地之间的距离为120千米.(2)解:设A,C两地相距m千米.由题意,得m25+5=12×120−m25−5,解得m=3607.答:A,C两地相距3607千米.20.【答案】a=−121.【答案】(1)是(2)7322.【答案】(1)甲每天加工零件个数为20个,乙每天加工15个(2)两人合作的天数15天23.【答案】(1)90;60(2)解:①5 6;②解法示例:∵v1=4(千米/分钟),v1v2=56,∴v2=4.8(千米/分钟).∵4×90=360,∴A与B站之间的路程为360.∵360÷4.8=75,∴当t=100时,G1002次列车经过B站.由题意可如,当90≤t≤110时,D1001次列车在B站停车.∴G1002次列车经过B站时,D1001次列车正在B站停车.ⅰ.当25≤t<90时,d1>d2,∴|d1−d2|=d1−d2,∴4t−4.8(t−25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1−d2|=d1−d2,∴360−4.8(t−25)=60,t=87.5(分钟),不合题意,舍去;ⅲ.当100<t≤110时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−360=60,t=112.5(分钟),不合题意,舍去;ⅳ.当110<t≤150时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−[360+4(t−110)]=60,t=125(分钟).综上所述,当t=75或125时,|d1−d2|=60.。
七年级上册第五章一元一次方程一、选择题1.下列方程是一元一次方程的是( )A .y =2x ―1B .x ―1=0C .x 2=9D .3x ―52.下列利用等式的基本性质变形错误的是( )A .若x ―2=7,则x =7+2B .若―5x =15,则x =―3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x ―a =0的解,则a 的值是( )A .2B .1C .―1D .―24.由x 2―y3=1可以得到用x 表示y 的式子是( )A .y =3x ―22B .y =32x ―12C .y =3―32xD .y =32x ―35.解方程x ―13=1―3x +16,去分母后正确的是( )A .2x ―1=1―(3x +1)B .2(x ―1)=1―(3x +1)C .2(x ―1)=6―(3x +1)D .(x ―1)=6―3x +16.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100―x )=100B .3x +100―x 3=100C .x3―3(100―x )=100D .3x ―100―x 3=1007.下列方程的变形中,正确的是( )A .方程3x ―2=2x +1,移项,得3x ―2x =―1+2;B .方程3―x =2―5(x ―1),去括号,得3―x =2―5x ―1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x ―12―x5=1化成5(x ―1)―2x =10.8. 将 6 块形状、大小完全相同的小长方形,放入长为 m ,宽为 n 的长方形中,当两块阴影部分A,B 的面积 相等时, 小长方形其较短一边长的值为( )A .m 6B .m 4C .n 6D .n 49.已知|a ―1|+(ab ―2)2=0,则关于x 的方程xab +x (a +1)(b +1)+x (a +2)(b +2)+⋅⋅⋅+x(a +2021)(b +2021)=2022的解是( )A .2021B .2022C .2023D .202410.我国古代的“九宫图”是由3×3的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是( )2025x 23A .2020B .―2020C .2019D .―2019二、填空题11.已知4x +2y =3,用含x 的式子表示y = .12.如图,在数轴上,点A,B 表示的数分别为a,b ,且a +b =0,若AB =2,则点A 表示的数为 .13.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了 道题.14.甲对乙说:“当我岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在岁数时,你61岁.”则乙现在为 岁.15.如图,数轴上A ,B 点对应的实数分别是1和3.若点A 关于点B 的对称点为点C (即2AB =BC ),则点C 所对应的实数为 .16.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定F (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之和,G (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果F (M )=60,那么M 各数位上的数字之和为 ;有一个四位正整数N =1101+1000x +10y +z (0≤x ≤4,0≤y ≤9,0≤z ≤8,且为整数)是一个“共进退数”,且F (N )是一个平方数,G (N )13是一个整数,则满足条件的数N 是 .三、解答题17.解方程:2x +13―6x ―16=1.18.当m 为何值时,关于x 的方程x ―m 2―1=2x +m 3的解是非负数.19.一艘轮船从A 地顺水航行到B 地用了4小时,从B 地逆水航行返回A 地比顺水航行多用了2小时,已知轮船在静水中的速度是25千米/时.(1)求水流的速度和A ,B 两地之间的距离;(2)若在A ,B 两地之间的C 地建立新的码头,使该轮船从A 地顺水航行到C 码头的时间是它从B 地逆水航行到C 码头所用时间的一半,问A ,C 两地相距多少千米?20.关于x 的两个一元一次方程x ―1=a ①,3x +1=2a ②,已知方程①的解比方程②的解大1,求a的值.21.我们规定,若关于x 的一元一次方程ax =b 的解为x =b ―a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4―2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.22.甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.23.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A站B站C站车次发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①v1v=▲;2②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1―d2|=60,求t的值.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】A7.【答案】D8.【答案】A9.【答案】C10.【答案】D11.【答案】32―2x12.【答案】―113.【答案】1914.【答案】2315.【答案】33―216.【答案】15;310517.【答案】x=―3218.【答案】m≤―6519.【答案】(1)解:设水流的速度为x千米/时,A,B两地之间的距离为y千米,则轮船在顺水中的速度为(25+x)千米/时,在逆水中的速度为(25―x)千米/时.由题意,得{4(25+x)=y6(25―x)=y,解得{x=5 y=120.答:水流的速度为5千米/时,A,B两地之间的距离为120千米.(2)解:设A,C两地相距m千米.由题意,得m25+5=12×120―m25―5,解得m=3607.答:A,C两地相距3607千米.20.【答案】a=―121.【答案】(1)是(2)7322.【答案】(1)甲每天加工零件个数为20个,乙每天加工15个(2)两人合作的天数15天23.【答案】(1)90;60(2)解:①56;②解法示例:∵v1=4(千米/分钟),v1v2=56,∴v2=4.8(千米/分钟).∵4×90=360,∴A与B站之间的路程为360.∵360÷4.8=75,∴当t=100时,G1002次列车经过B站.由题意可如,当90≤t≤110时,D1001次列车在B站停车.∴G1002次列车经过B站时,D1001次列车正在B站停车.ⅰ.当25≤t<90时,d1>d2,∴|d1―d2|=d1―d2,∴4t―4.8(t―25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1―d2|=d1―d2,∴360―4.8(t―25)=60,t=87.5(分钟),不合题意,舍去;ⅲ.当100<t≤110时,d1<d2,∴|d1―d2|=d2―d1,∴4.8(t―25)―360=60,t=112.5(分钟),不合题意,舍去;ⅳ.当110<t≤150时,d1<d2,∴|d1―d2|=d2―d1,∴4.8(t―25)―[360+4(t―110)]=60,t=125(分钟).综上所述,当t=75或125时,|d1―d2|=60.。
章节测试题1.【答题】甲、乙两人同时从相距27km的两地相向而行,2h后相遇,已知乙骑车的速度比甲步行的速度快5.5km/h.如果设乙的速度为xkm/h,那么可列出方程为:______.【答案】2x+2(x-5.5)=27【分析】【解答】2.【答题】甲、乙两人练习赛跑,甲的速度为7m/s,乙的速度为6.5m/s.(1)如果甲让乙先跑5m,设xs后甲追上乙,则所列方程为______;(2)如果甲让乙先跑1s,设甲ys后追上乙,则所列方程为______.【答案】5+6.5x=7x,6.5(y+1)=7y【分析】【解答】3.【题文】部队正在以10km/h的速度急行军,通讯员从队尾以20km/h的速度赶到队首传达命令后立即返回队尾,共用10min(传达命令的时间忽略不计),求队伍的长度.【答案】解:设队伍的长度为xkm.,.因此,队伍的长度为.【分析】【解答】4.【题文】一艘轮船航行于两地之间,顺水要用3h,逆水要用4h,已知船在静水中的速度是35km/h,求水流的速度.【答案】解:设水流的速度为xkm/h.3(x+35)=4(35-x),x=5.因此,水流的速度为5km/h.【分析】【解答】5.【题文】某地为了打造风光带,将一段长为360m的河道整治任务交给甲、乙两个工程队先后接力完成,共用时20天.已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.【答案】解:设甲工程队整治了x天,乙工程队整治了(20-x)天.24x+16(20-x)=360,x=5.所以乙工程队整治了20-x=15(天).所以甲工程队整治的河道长为24×5=120(m).乙工程队整治的河道长为16×15=240(m).【分析】【解答】6.【题文】某中学师生到距学校28km的地方春游,开始的一段路是步行,步行速度是4km/h,余下的路程乘汽车,汽车的速度是36km/h,全程共用1h,则步行和乘车分别用多少时间?【答案】解:设步行用了xh.4x+36(1-x)=28,,.因此,步行用了,乘车用了.【分析】【解答】7.【题文】外卖员要在规定的时间内把外卖送到.他骑摩托车的速度若是每小时36km,就早到20分钟;若是每小时30km,就迟到12分钟,规定时间是多少?这段路程是多少?【答案】解:设规定的时间为x小时..解得x=3,.因此,规定时间是3h,路程为96km.【分析】【解答】8.【答题】将2000元按一年期的定期储蓄存入银行,若一年期的年利率为3.5%,则到期后的利息为______元.【答案】70【解答】9.【答题】已知某储户存入1年期90000元(此时1年期定期储蓄年利率为2.25%),到期得到利息______元.【答案】2025【分析】【解答】10.【答题】若1年定期存款利率为3.5%.某人存入人民币5000元,定期为1年.设到期后银行应向储户支付现金x元,则所列方程正确的是()A. x-5000=5000×3.5%B. x+5000=5000×(1+3.5%)C. x+5000×3.5%=5000×(1+3.5%)D. x+5000×3.5%=5000×3.5%【答案】A【分析】【解答】11.【答题】爸爸为小明存了4000元的教育储蓄(月利率为0.25%),1年后能取______元.【答案】4120【解答】12.【答题】若把2000元钱存在银行,年利率为5.5%,到期后得利息为550元,则存期为()A. 3年B. 4年C. 5年D. 6年【答案】C【分析】【解答】13.【答题】一个图书馆为馆藏图书买了一种防火保险,如果每年的保险费是图书价值的0.4%,参加保险6年,一共交付保险费7.8万元,那么图书馆的图书价值为()A. 300万元B. 305万元C. 320万元D. 325万元【答案】D【分析】【解答】14.【答题】李阿姨买了25000元1年期的债券,1年后得到本息和为26000元,这种债券的年利率是()A. 4%B. 5%C. 6%D. 8%【答案】A【分析】15.【答题】把10000元按三年期的定期储蓄存入银行,若三年期的年利率为5%,则三年期满后,本息和为______元.【答案】11500【分析】【解答】16.【答题】小王1年前存入银行一笔钱,已知此时年利率为2.25%,到期后获得利息,共获得本息合计16360元,则小王1年前的本金是______元.【答案】16000【分析】【解答】17.【题文】一笔钱存了两年期的定期储蓄.已知年利率为4.4%,到期后的本息和为21760元,两年前储蓄的本金是多少元?【答案】解:设两年前存入了x元.x(1+4.4%×2)=21760,x=20000.因此,两年前储蓄的本金为20000元.【分析】【解答】18.【题文】某电子公司向银行申请了甲、乙两种贷款,共计68万元,每年须付利息8.42万元,甲种贷款每年的利率是12%,乙种贷款每年的利率是13%,求甲、乙两种贷款的数额.【答案】解:设甲种贷款x万元.12%x+13%(68-x)=8.42,x=42,68-x=26.因此,甲种贷款42万元,乙种贷款26万元.【分析】【解答】19.【题文】李阿姨购买了25000元某公司4年期的债券,4年后得到本息和为26250元,这种债券的年利率是多少?【答案】解:设该债券的年利率为x.25000+25000×4x=26250,x=1.25%.【分析】【解答】20.【题文】某企业存入甲、乙两家银行的资金共20万元,存入甲银行的资金的年利率为5.5%,存入乙银行的资金的年利率为4.5%,一年共获得利息10200元,企业存入甲、乙两家银行的资金各为多少元?【答案】解:设存入甲银行x元.5.5%x+4.5%(200000-x)=10200,x=120000,200000-x=80000.因此,该企业存入甲银行120000元,存入乙银行80000元.【分析】【解答】。
5.4一元一次方程的应用(二)基础训练一、选择题1.笼子里有x只鸡和(13-x)只兔,则鸡兔同笼共有脚()A.13只B.(26-x)只C.(52-x)只D.(52-2x)只.2.一张试卷有25道选择题,满分100分,若做对一题得4分,做错或不做一题倒扣1分,某同学得了85分,那么他做对的题数是()A.23B.22C.21D.20.3.一个两位数,十位上的数字比个位上的数字小2,设十位的数为x,则这个两位数可表示为()A.x+x-2B.x+x+2C.10x+x-2D.10x+x+2.4.七年级有甲、乙两个班,甲班有43人,乙班有49人,要使两班人数相等,应从乙班调()人到甲班.A.6人B.5人C.4人D.3人.5.爷爷与孙子下棋,爷爷赢1盘记2分,孙子赢1盘记3分,若下了m盘后,两人得分相等,则m的值可能为()A.5B.6C.7D.8二、填空题.6两根竹竿,长度分别为2米和3米,若要把它们绑接成长度为4.2米的竹竿,则重叠部分的长度是____________.7.将长为20cm的铁丝做成一个长比宽多2cm的长方形,则此长方形的长是________________.三、解答题8.要锻造一个直径为10cm,高为8cm的圆柱形毛坯,应截取直径为8cm的圆钢多少长?综合提高:一、选择题9.兄弟两人今年分别是17岁和7岁,什么时候,哥哥的年龄是弟弟年龄的3倍,正确答案应该是()A.3年后B.3年前C.2年后D.2年前.10.某仓库原有小麦和大米共126吨,现在又运进小麦61吨和大米34吨,这样小麦就比大米多47吨,则原有小麦()吨.A.73B.63C.53D.43.11.从一内径为12CM的圆柱形大茶壶向一内径为6CM,内高为16CM的圆柱形小空茶杯倒满水,大茶壶中水的高度下降()A.6CMB.4CMC.3CMD.2CM.12.如图,已知小圆面积为X,大圆面积为2X+1,两圆公共部分面积为3,阴影部分面积为40,则X等于( )A.383B.413C.15D.443.二、填空题13.甲仓库有粮食120吨,乙仓库有粮食90吨,从甲仓库调运__________吨到乙仓库,调剂后甲仓库的存粮是乙仓库存粮的1.214.小明从邮局买了面值为50分和80分的邮票共9枚,花了6.3元,小明买了50分的邮票_________________枚三、解答题15.甲乙两个圆柱体容器,底面积比为5:3,甲容器水深20cm,乙容器水深10cm,再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?16.育才实验中学七年级某班48名同学去西湖划船,一共乘坐10条船,已知大船坐5人,小船坐3人,正好全部坐满,问大船、小船个各有几条?17.在一个底面半径为20cm的圆柱体水桶里,有一个底面半径为10cm的圆柱体钢材完全浸没在水中,当钢材从桶里取出后,桶里的水面下降了3cm,求这段钢材的长是多少厘米?18.某市收取水费按以下规定:若每月每户不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分按每立方米2元收费,如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这户居民这个月共用了多少立方米的水?探究创新:19.若给你一条长为48cm的铁丝,用它围成一个长宽都为整数的长方形,你能用这条铁丝设计出多少种不同的长方形呢?它们的面积各是多少?通过对上述问题的探索,你能发现什么?与你的同伴进行交流.20.12时整,时针和分针重合,当时针与分针再次重合是几时几分?第一次构成直角是几时几分?第一次构成平角是几时几分?§5.4一元一次方程的应用(二)基础训练:1.D;2.B;3.D;4.D;5.A;6.0.4米;7.6cm;8.12.5cm;综合提高:9.D; 10.A; 11.B; 12.C;13.50; 14.3; 15.35cm; 16.大船9条,小船1条; 17.12cm; 18.32立方米;探究创新:19.有12种; 面积分别是23cm, 44cm, 63cm ,80cm ,95cm ,108cm ,119cm ,128cm , 135cm , 140cm , 143cm , 144cm; 发现的结论很多;例如周长相等的长方形中,面积最大的是正方形; 20. 1时5511分; 12时16411分; 12时32811分.。
章节测试题1.【题文】用一根绳子测量井的深度,第一种方案:将绳子折成三折(相当于绳子全长的三分之一)测量,绳子在井外余2m;第二种方案:将绳子折成四折(相当于绳子全长的四分之一)测量,绳子在井外余1m.试求出绳子的长度和井深.(1)解法一:设绳子长xm,根据题意填写下表:可列方程:______.(2)解法二:设井深为ym,根据题意填写下表:可列方程:______.解得:绳长______m,井深______m.【答案】(1)可列方程:.(2)可列方程:3(y+2)=4(y+1).解得:绳长12m,井深2m.【分析】【解答】2.【答题】某车间28名工人生产螺栓或螺母,每人平均每天生产12个螺栓或18个螺母,现有x名工人生产螺栓,其他人生产螺母,恰好每天生产的螺栓和螺母按1:2配成套,为求x所列方程为()A. 12=18(28-x)B. 2×12x=18(28-x)C. 2×18x=12(28-x)D. 12x=2×18(28-x)【答案】B【分析】【解答】3.【答题】小文同学买了1元邮票和2元邮票共12枚,花了20元钱,求该同学买的1元邮票和2元邮票各多少枚?在解决这个问题时,若设小文同学买了1元邮票x 枚,列出下列方程,其中错误的是()A. x+2(12-x)=20B. 2(12-x)-20=xC. 2(12-x)=20-xD. x=20-2(12-x)【答案】B【分析】【解答】4.【答题】某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5m栽1棵,则树苗缺21棵;如果每隔6m栽1棵,则树苗正好用完,设原有树苗x棵,则根据题意列出方程正确的是()A. 5(x+21-1)=6(x-1)B. 5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x【答案】A【分析】【解答】5.【答题】某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲.使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为()A. 54+x=80%×108B. 54+x=80%(108-x)C. 54-x=80%(108+x)D. 108-x=80%(54+x)【答案】B【分析】【解答】6.【答题】小亮用129元买了甲种书和乙种书共10本,单价分别为15元、8元,则小亮买了甲种书本,乙种书______本.【答案】73【分析】【解答】7.【答题】湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完,设敬老院有x位老人,依题意可列方程为______.【答案】2x+16=3x【分析】【解答】8.【题文】学校要把1800元发给在市科技创新比赛活动中获奖的8名学生,其中一等奖每人300元,二等奖每人200元,这次比赛共有多少人获得一等奖,多少人获得二等奖?【答案】解:设获得一等奖的有x人.300x+(8-x)×200=1800,x=2,8-x=6.因此,2人获得一等奖,6人获得二等奖.【分析】【解答】9.【题文】某公司计划向甲、乙两学校捐赠电脑42台,已知甲校现有电脑98台,乙校现有电脑76台,怎样分配,才能使甲、乙两校的电脑数相等?【答案】解:设该公司向甲校捐赠电脑x台.98+x=76+(42-x),x=10,42-x=32.因此,赠给甲校10台电脑,乙校32台电脑.【分析】【解答】10.【题文】果汁店中的A种果汁比B种果汁贵1元,小彬和同学要了3杯B种果汁、2杯A种果汁,一共花了16元.A种果汁、B种果汁的单价分别是多少元?【答案】解:设A种果汁的单价为x元.2x+3(x-1)=16,x=3.8,x-1=2.8.因此,A种果汁单价3.8元,B种果汁单价2.8元.【分析】【解答】11.【题文】甲、乙两个课外兴趣小组共有学生63人,若从乙组抽调6人到甲组,则甲组的人数是乙组人数的2倍,求甲、乙两组的人数.【答案】解:设甲组有x人.2(63-x-6)=x+6,x=36,63-x=27.因此,甲组有36人,乙组有27人.【分析】【解答】12.【题文】某商场计划拨款9万元从厂家购进50台电视机.已知该厂生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进两种不同型号的电视机50台,恰好用去9万元,请你写出商场的进货方案;(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在同时购进两种不同型号电视机的方案中,为使获利最多,你将选择哪种进货方案?【答案】解:(1)方案一:设甲型号购进x台.1500x+(50-x)×2100=90000,x=25,50-x=25,即购进甲型号25台,乙型号25台.方案二:设购进甲型号x台,丙型号(50-x)台.1500x+2500(50-x)=90000,x=35,50-x=15,即购进甲型号35台,丙型号15台.方案三:设购进乙型号x台,丙型号(50-x)台.2100x+2500(50-x)=90000,x=87.5,不合题意.(2)方案一获利:150×25+200×25=8750(元).方案二获利:150×35+250×15=9000(元).因此,为获利最多,应选择方案二.【分析】【解答】13.【答题】甲、乙二人分别从相距700m的东西两村出发,相向而行.已知甲每分钟走70m,乙每分钟走50m.若乙出发2min后甲才出发,求甲出发后多少分钟二人相遇.解:设甲出发x分钟后二人相遇,列方程,得______,解得x=______.【答案】70x+50(x+2)=700,5【分析】【解答】14.【答题】甲、乙两人由相距60km的两地同时出发相向而行,甲步行每小时走5km,乙骑自行车,3h后两人相遇,则乙的速度为每小时()A. 5kmB. 10kmC. 15kmD. 20km【答案】C【分析】【解答】15.【答题】一队学生去校外郊游,他们以5km/h的速度行进,经过一段时间后,学校要将一紧急通知传给队长.通讯员骑自行车从学校出发,以14km/h的速度按原路追上去,用了10min追上学生队伍,求通讯员出发前,学生队伍走了多长时间.解:设通讯员出发前学生队伍走了xh,根据下图列方程:______.解得x=______.【答案】,【分析】【解答】16.【答题】甲、乙两人练习赛跑,甲每秒钟跑7m,乙每秒钟跑6.5m,甲让乙先跑5m,设xs后,甲可追上乙,则下列方程中不正确的是()A. 7x=6.5x+5B. 7x-5=6.5C. (7-6.5)x=5D. 6.5x=7x-5【答案】B【分析】【解答】17.【题文】甲、乙两人在400m环形跑道上练习跑步,甲每秒跑5.5m,乙每秒跑4.5m.甲与乙同地、同向出发,要多长时间两人再次相遇?【答案】见解答【分析】环形跑道上的行程问题与直路上的问题类似,这个问题中甲、乙两人再次相遇时,甲比乙多跑了一圈(相当于乙在甲前面400m).【解答】设x秒后两人再次相遇,画线段图如下:根据题意,得5.5x-4.5x=400.解得x=400.因此,再过400s,甲、乙两人再次相遇.18.【答题】某人上山的速度是v1,后又沿原路线下山,速度是v2,那么这个人上山和下山的平均速度是()A. B.C. D.【答案】D【分析】【解答】19.【答题】甲、乙两人完成一项工作,甲独做需4h完成,乙独做需6h完成,甲、乙合作,完成这项工作需()A. 5hB. 10hC. 2.4hD. 3.2h【答案】C【分析】【解答】20.【答题】甲、乙两人骑着自行车同时从相距65km的两地相向而行,2h后相遇,若甲比乙每小时多骑2.5km,则乙每小时骑()A. 12.5kmB. 15kmC. 17.5kmD. 20km【答案】B【分析】【解答】。
章节测试题1.【题文】为了准备小颖6年后上大学的费用5000元,她的父母现在就参加了教育储蓄.下面有两种储蓄方式:(1)直接存入一个6年期;(2)先存一个3年期的,3年后将本息和自动转存一个3年期.你认为哪种储蓄方式开始存入的本金少?(6年期利率:2.88%,3年期利率:2.70%)【答案】解:设第一种方式存入本金x元.x(1+2.88%×6)=5000,x≈4263.3.设第二种方式存入本金y元.y(1+2.70%×3)×(1+2.70%×3)=5000,y≈4278.8.因此,第一种方式开始存入的本金少.【分析】【解答】2.【答题】(2019山东滨州无棣期中)B种饮料比A种饮料贵1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设A种饮料的单价为x元,那么下面所列方程正确的是()A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=13【答案】C【分析】【解答】因为A种饮料的单价为x元,所以B种饮料的单价为(x+1)元,根据小峰买了2瓶4种饮料和3瓶B种饮料,一共花了13元,可得方程为2x+3(x+1)=13.选C.3.【答题】(2019江苏南通中考)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设有x个人共同出钱买鸡,根据题意,可列出的一元一次方程为______.【答案】9x-11=6x+16【分析】【解答】根据买鸡需要的总钱数不变,可列出的关于x的一元一次方程为9x-11=6x+16.4.【答题】(2020独家原创试题)传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售珐琅书签和中国风贺卡,若中国风贺卡的销量比珐琅书签销量的3倍少100件,二者销量之和为9000件,用x表示珐琅书签的销量,则可列出的一元一次方程为______.【答案】(3x-100)+x=9000【分析】【解答】因为珐琅书签的销量为x件,所以中国风贺卡的销量为(3x-100)件,根据题意得,(3x-100)+x=9000.5.【答题】在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图4-3-1-1所示.设AE=x,则下列方程正确的是()A. 6+2x=14-3xB. 6+2x=x+(14-3x)C. 14-3x=6D. 6+2x=14-x【答案】B【分析】【解答】由题图可知,AB=2x+6=小长方形的长+x,又小长方形的长=14-3x,故2x+6=(14-3x)+x.6.【答题】如图4-3-1-2所示,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲容器中的水全部倒入乙容器中,则乙容器中的水位高度比原先甲容器的水位高度低了8cm,则甲容器的容积为()A. 2800cm3B. 3000cm3C. 3200cm3D. 3600cm3【答案】C【分析】【解答】设甲容器的髙为xcm,根据题意得80x=100(x-8),解得x=40,故甲容器的容积为80×40=3200cm3.选C.7.【答题】(2020独家原创试题)一个长方形的周长是50cm,若将长减少8cm,宽增加3cm,长方形就变成了正方形,则正方形的边长为______ cm.【答案】10【分析】【解答】设正方形的边长为xcm,则长方形的长为(x+8)cm,宽为(x-3)cm,依题意得,2[(x+8)+(x-3)]=50,解得x=10,即正方形的边长为10cm.故答案为10cm.8.【题文】如图4-3-1-3,一个盛有水的圆柱形玻璃容器的底面半径为10cm,容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中后,问容器内的水将升高多少?【答案】见解答【分析】【解答】设容器内的水将升高xcm,则π·102×12+π·22(12+x)=π·102(12+x),解得x=0.5.答:容器内的水将升高0.5cm.9.【答题】(2020山东淄博张店七中月考,10,★☆☆)王磊老师用两根等长的铁丝分别围成了等边三角形和正方形,已知正方形的边长比等边三角形的边长短10cm,则用其中一根铁丝围成的一个一边长为20cm的长方形的面积为()A. 800cm2B. 900cm2C. 1000cm2D. 1200cm2【答案】A【分析】【解答】设围成的正方形的边长为xcm,则围成的等边三角形的边长为(x+10)cm,根据题意得,4x=3(x+10),解得x=30,所以这两根等长的铁丝的长为4×30=120cm,所以用其中一根铁丝围成的一个一边长为20cm的长方形的面积为](120-20×2)÷2]×20=800cm2.10.【答题】(2020安徽合肥庐阳期末,10,★★☆)如图4-3-1-4,小刚将一个正方形纸片剪去一个宽为5cm的长方形纸条后,再从剩下的长方形纸片上剪去一个宽为6cm的长方形纸条,如果两次剪下的长方形纸条的面积正好相等,则所剪下的两个长方形纸条的面积之和为()A. 215cm2B. 250cm2C. 300cm2D. 320cm2【答案】C【分析】【解答】设原来正方形纸片的边长是xcm,则第一次剪下的长方形纸条的长是xcm,宽是5cm,第二次剪下的长方形纸条的长是(x-5)cm,宽是6cm,根据第一次剪下的长方形纸条的面积=第二次剪下的长方形纸条的面积,得5x=6(x-5),解得x=30,所以所剪下的两个长方形纸条的面积之和为30×5×2=300cm2.选C.11.【答题】(2020山东临沂河东期末,14,★☆☆)兰山某初中学校七年级举行“数学知识应用能力”竞赛,测试卷由20道题组成,答对一题得5分,不答或答错一题扣1分,某考生的成绩为76分,则他答对了______道题.【答案】16【分析】【解答】设该考生答对了x道题,则答错或不答(20-x)道题,根据题意得,5x-(20-x)=76,解得x=16.故答案为16.12.【答题】(2019四川乐山中考,7,★☆☆)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1人、11钱B. 7人、53钱C. 7人、61钱D. 6人、50钱【答案】B【分析】【解答】设人数为x,则8x-3=7x+4,解得x=7,所以物价为7x+4=7×7+4=53(钱).13.【答题】(2016山东聊城中考,8,★★☆)在如图4-3-1-5所示的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A. 27B. 51C. 69D. 72【答案】D【分析】【解答】设所框岀的竖列上三个相邻的数分别为x-7,x,x+7,其中7<x<24且为正整数,则这三个数的和为(x-7)+x+(x+7)=3x.当3x=27时,x=9,可能;当3x=51时,x=17,可能;当3x=69时,x=23,可能;当3x=72时,x=24,不可能.选D.14.【答题】(2019湖南岳阳中考,15,★★☆)我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,从第二天开始每天织布的长度都是前一天的2倍,5日共织布5尺,问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布______尺.【答案】【分析】【解答】设该女子第一天织布x尺,根据题意得x+2x+4x+8x+16x=5,解得,因此该女子第一天织布尺.15.【答题】(2018湖北仙桃中考,14,★☆☆)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的生活物资比发往B区的生活物资的1.5倍少1000件,则发往A区的生活物资为______件.【答案】3200【分析】【解答】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x-1000)件,根据题意列方程得x+(1.5x-1000)=6000,解得x=2800,所以发往A区的生活物资为1.5×2800-1000=3200(件).16.【题文】(2019安徽中考,17,★★☆)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲、乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲、乙两个工程队还需联合工作多少天?【答案】见解答【分析】【解答】设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,由题意,得2x+(x+x-2)=26,解得x=7,所以乙工程队每天掘进5米,所以(天).答:甲、乙两个工程队还需联合工作10天.17.【答题】(2017浙江宁波模拟)有一玻璃密封器皿如图4-3-1-6①,测得其底面直径为20cm,高为20cm,现内装蓝色溶液若干.如图4-3-1-6②放置时,测得液面高为10cm;如图4-3-1-6③放置时,测得液面高为16cm,则该玻璃密封器皿的总容量为______cm3(结果保留π)【答案】1400π【分析】【解答】设该玻璃密封器皿的总容量为xcm3,根据题意得,解得x=1400π.18.【题文】根据图4-3-1-7中给出的信息,解答下列问题:(1)放入一个小球水面升高______cm,放入一个大球水面升高______cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【答案】见解答【分析】【解答】(1)设放入一个小球水面升高mcm,由题意可得3m=32-26,解得m=2;设放入一个大球水面升高ncm,由题意可得2n=32-26,解得n=3.所以放入一个小球水面升高2cm,放入一个大球水面升高3cm.(2)设放入小球x个,则放入大球(10-x)个,根据题意得50-26=2x+3(10-x),解得x=6,∴10-x=10-6=4.答:如果要使水面上升到50cm,应放入大球4个,小球6个.19.【题文】(2019山东青岛期末联考)图4-3-1-8①是一个长为20cm,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体盒子(如图4-3-1-8②),请回答下列问题:(1)折成的无盖长方体盒子的容积V=______cm3;(用含x的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x取什么正整数时,长方体盒子的容积最大.(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果可能是正方形,求出x的值;如果不可能是正方形,请说明理由.【答案】见解答【分析】【解答】(1)x(20-2x)(12-2x).(2)从左到右依次填256;100.当x取2时,长方体盒子的容积最大.(3)从正面看折成的长方体盒子,它的形状不可能是正方形.理由:从正面看折成的长方体盒子,若它的形状是正方形,则20-2x=x,解得.当时,,所以不可能是正方形.20.【答题】(2018山东临沂平邑期末)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A. x·30%×80%=312B. x·30%=312×80%C. 312×30%×80%=xD. x(1+30%)×80%=312【答案】D【分析】【解答】根据题意可列方程为x(1+30%)×80%=312.。
新浙教版七年级上册数学第五章《一元一次方程》知识点及典型例题关于一元一次方程概念的拓展教材中的概念:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程是一元一次方程,那么 x+2=x+3是一元一次方程吗?从概念上来看,是一元一次方程,但稍作变形,就是2=3,是不是觉得很可笑?因此,一元一次方程的概念应该是:方程两边都是整式,只含有一个未知数,未知数的指数是一次,并且能变形为ax=b (a ≠0,a 、b 均为常数)的方程是一元一次方程,也就是说,一元一次方程一定只有一个解。
关于用方程解应用题的秘诀:相关条件设未知数,剩余条件列方程将考点与相应习题联系起来考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 1、下列等式中是一元一次方程的是( )A .3x=y-1B .2(1)21x x -=+C .3(x-1)= -2x-3D .3x 2-2=3E .11x x=+ 2、在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个 3、如果06312=+--a x是一元一次方程,那么=a ,方程的解为 。
(特别注意)考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现 1、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a (C );523+=bc ac (D ).3532+=b a 2、解方程2631xx =+-,去分母,得( ) (A )133x x --= (B )633x x --= (C )633x x -+= (D )133x x -+=3、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x (C )方程2332=t ,未知数系数化为1,得;1=t (D )方程110.20.5x x --=化成101010125x x --= 考点三、解一元一次方程(1)x x 3.15.67.05.0-=-; (2)错误!未找到引用源。
浙教版七年级数学上册第5章一元一次方程分层训练(共8套含答案)5.1 一元一次方程1.方程含有____________的等式叫做方程.2.一元一次方程方程的两边都是____________,只含有一个____________,并且未知数的指数是____________,这样的方程叫做一元一次方程.3.方程的解使方程____________相等的未知数的值叫做方程的解.A组基础训练1.下列四个方程中,是一元一次方程的是( )A.x2-1=0 B.x+=0 cx3=2 D3x=22.(株州中考)一元一次方程2x=4的解是( )A.x=1 B.x=2 c.x=3 D.x=43.下列结论中,正确的是( )A.=-3是方程2-1-=-2的解B.x=1是方程-34x=43的解c.-12x+2=0的解是x=-4D.x=2是方程2x+1=5的解4.设某数为x,则”比某数的12大3的数等于5的相反数”所列方程为( )A.-12x+3=-5 B12x+3=-5c.-12(x+3)=5 D12x-3=-55.(绩溪中考)已知关于x的方程3a-x=x2+3的解是x=4,则a2-2a=____________6.(1)如果方程5x=-3x+的解为x=-1,那么=____________(2)当x=____________时,代数式1-2x5的值为0(3)已知方程x2-1+=0是关于x的一元一次方程,则方程的解为____________.(4)已知(-3)x||-2=18是关于x的一元一次方程,则=____________7.甲、乙两班学生共105人,甲班比乙班多3人.设甲班有x 人,则可列方程____________.8.检验下列x的值是不是方程-3x+5=11-x的解.(1)x=3;(2)x=-39.(1)设某数为x,根据下列条列方程.①某数的5倍比这个数大3;②某数的相反数比这个数大6(2)列出方程,不必求解.①一旅客携带了30g的行李从杭州乘飞机去天津,按民航规定,旅客最多可免费携带20g的行李,超重部分每千克按飞机票价格的15%购买行李票.该旅客购买了150元的行李票,则他的飞机票价格是多少?②某次考试出了25道选择题,答对一题给4分,不答或答错一题扣5分,如果小李得了82分,那么他答对了多少道题?③为支持亚太地区国家基础设施建设由中国倡议设立亚投行,截止2018年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求欧洲的意向创始成员国有多少个.10.(1)请填写下表,然后说出方程13x+1=x的解.x…-10132252…13x+1……(2)已知关于x的方程2x-a-5=0的解是x=2,求a的值.B组自主提高11.甲、乙两人同时由A地骑摩托车去B地,甲骑车每小时行35,乙骑车每小时行30,当甲到达B地时,乙距B地还有6,设A,B两地的距离为x,则可列方程为( )Ax35=x-630 Bx30=x-635 cx+635=x30 Dx+630=x3512.有6个班的同学在大会议室里听报告,如果每条长凳坐5人,还缺8条长凳;如果每条长凳坐6人,就多出2条长凳.设听报告的同学有x人,会议室里有条长凳,则下列方程①x5-8=x6+2;②5(-8)=6(+2);③5(+8)=6(-2);④x5+8=x6-2其中正确的是( )A.①③ B.②④ c.①② D.③④13.(1)已知3个连续偶数的和为90,设中间的偶数为x,则可列出方程为____________.(2)已知x=1是关于x的方程2a+x=-1的解,则a2-2a+4a 的值是____________.14.已知(-1)x||+5=0是关于x的一元一次方程.(1)求的值;(2)请写出这个方程;(3)判断x=1,x=25,x=3是否是该方程的解.c组综合运用15.(1)已知关于x的方程ax+b=0,当方程的解是x=0时,a,b应满足的条是( )A.a=0,b=0 B.a=0,b≠0c.a≠0,b=0 D.a≠0,b≠0(2)小明和爸爸下象棋,爸爸赢1盘得1分,小明赢一盘得3分,下了8盘后,两人得分相等,如果没有和棋,那么他们各赢了多少盘?对于这个问题,请你设未知数,列出方程,并估计问题的解.参考答案5.1 一元一次方程【堂笔记】1.未知数 2整式未知数一次 3左右两边的值【分层训练】1.c 2B 3D 4B 536.(1)-8 (2)12 (3)x=-1 (4)-37.x+x-3=1058.(1)x=3不是方程的解(2)x=-3是方程的解9.(1)①5x=x+3 ②-x=x+6(2)①设飞机票的价格为x元/张,则15%×(30-20)x=150②设小李答对了x道题,则4x-5(25-x)=82③设欧洲的意向创始成员国有x个,则亚洲的意向创始成员国有(2x-2)个.根据题意,得(2x-2)+x+5=5710.(1)23 1 43 32 53 116 方程的解为x=32 (2)a=-111.A 12A13.(1)(x-2)+x+(x+2)=90 (2)-114.(1)=-1; (2)-2x+5=0;(3)x=1,x=3不是方程的解,x=25是方程的解.15.c16.设小明赢了x盘,则爸爸赢了(8-x)盘,根据题意得3x=8-x,解得x=2,小明赢了2盘,爸爸赢了6盘.5.2 等式的基本性质1.等式的性质1等式的两边都加上(或都减去)同一个____________,所得结果仍是等式.用字母表示为如果a=b,那么____________.2.等式的性质2等式的两边都乘或都除以同一个____________(除数不能为零),所得结果仍是等式.用字母表示为如果a=b,那么____________或____________.A组基础训练1.下列变形不正确的是( )A.若2x-1=3,则2x=4B.若3x=-6,则x=2c.若x+3=2,则x=-1D.若-12x=3,则x=-62.已知a=b,有下列各式a-3=b-3,a+5=b+5,a-8=b +8,2a=a+b其中正确的有( )A.1个 B.2个 c.3个 D.4个3.由03=6得到=20,这是由于( )A.等式两边都加上03B.等式两边都减去03c.等式两边都乘以03D.等式两边都除以034.下列判断错误的是( )A.若a=b,则a-3=b-3B.若a=b,则a-3=b-3c.若ax=bx,则a=bD.若x=2,则x2=2x5.若代数式x+4的值是2,则x等于( )A.2 B.-2 c.6 D.-66.等式s2=t5,两边都乘以10得到的等式为____________.7.由4x=-12,得x=____________8.用适当的数或式子填空,使所得结果仍是等式,并在括号内说明是根据等式的哪一条性质变形的(1)如果x+8=10,那么x=____________(____________);(2)如果4x=3x+15,那么4x____________=15(____________);(3)如果-3x=7,那么x=____________(____________);(4)如果12x=-2,那么x=____________(____________).9.利用等式性质解方程,并写出检验过程.(1)8x=6+7x;(2)x=13x-2(3)3-6x=17+x10.(1)已知代数式3x+7的值为-2,求x的值.(2)对于任意实数a,b,c,d,我们规定abcd=ad-bc,如1234=1×4-2×3若x-23-4=-2,试求x的值.11.已知a,b,c三个物体的质量如图所示.第11题图回答下列问题(1)a,b,c三个物体中哪个最重?(2)若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平两边至少应该分别放几个物体a和物体c?B组自主提高12.请欣赏一首诗太阳下晚霞红,我把鸭子赶回笼.一半在外闹哄哄,一半的一半进笼中.剩下十五围着我,共有多少请算清.你能用方程解决这个问题吗?13.已知等式2a-3=2b+1,你能比较出a和b的大小吗?14.解方程5(x+2)=2(x+2).解两边同除以(x+2)得5=2,而5≠2,你知道问题出在哪儿吗?你能求出x的值吗?c组综合运用15.(1)能不能由(a+3)x=b-1,变形成x=b-1a+3?为什么?(2)反之,能不能由x=b-1a+3,变形成(a+3)x=b-1?为什么?参考答案5.2 等式的基本性质【堂笔记】1.数或式a±c=b±c 2数或式 ac=bc ac=bc(c≠0)【分层训练】1.B 2c 3D 4c 5B 6.5s=2t 7-38.(1)2 等式的性质1 (2)-3x 等式的性质1 (3)-73 等式的性质2(4)-4 等式的性质29.(1)x=6 检验过程略 (2)x=-3 检验过程略 (3)x=-2 检验过程略10.(1)x=-3 (2)x×(-4)-3×(-2)=-2,解得x=211.(1)∵2a=3b,2b=3c,∴a=32b,b=32c,∴a=94c,∴a 物体最重.(2)∵a=94c,∴天平两边至少应该分别放4个物体a和9个物体c12.设共有鸭子x只,则12x+14x+15=x,34x-x=-15,-14x=-15,∴x=60答共有鸭子60只.13.能.理由如下已知2a-3=2b+1,两边都加上3,得2a=2b+4两边都除以2,得a=b+2∴a b14.问题出在两边同除以(x+2)刚好为0,0不能作除数.解5x+10=2x+4两边同减去10,得5x=2x-6两边同减去2x,得3x=-6,两边同除以3,得x=-215.(1)不能,因为a+3不能确定不等于0;(2)能,因为a+3放在分母中可以确定a+3不等于0。
《一元一次方程》实际应用题综合提优训练1.某水果零售商店分两批次从批发市场共购进“红富士”苹果100箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款400元.(1)求第一、二次分别购进“红富士”苹果各多少箱?(2)商店对这100箱“红富士”苹果先按每箱60元销售了75箱后出现滞销,于是决定其余的每箱靠打折销售完.要使商店销售完全部“红富士”苹果所获得的利润不低于1300元,问其余的每箱至少应打几折销售?(注:按整箱出售,利润=销售总收入﹣进货总成本)2.某服装厂生产一款T恤和帽子,T恤每件定价200元,每顶帽子定价40元,厂方在开展促销活动期间,向客户提供两种优惠方案.①买一件T恤送一顶帽子②T恤和帽子都按定价的九折付款现某客户要到该服装厂购买T恤40件,帽子x顶(x>40),(1)请用含x的代数式表示:若该客户拨方案①购买,需付款元;若该客户按方案②购买,需付款元;(2)当x为多少时,方案①和方案②需支付的费用一样?3.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟.求:(1)一个月内通话多少分钟,两种通话方式的费用相同?(2)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?4.小红:昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?5.某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗的数量应满足怎样的条件?6.某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12m地面未铺瓷砖;同样时间内6名二级技工铺4个宿2舍刚好完成,已知每名一级技工比二级技工一天多铺3m瓷砖.2(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36m的走廊需要铺瓷砖,某工程队有4名一级技工2和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求3天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要安排多少名二级技工才能按时完成任务?7.为方便市民出行,减轻城市中心交通压力,我市正在修建贯穿城市东西、南北的地铁1号线、地铁2号线一期工程.已知修建地铁1号线23千米和2号线一期18千米共需投资310.6亿;若2号线一期每千米的平均造价比1号线每千米的平均造价多0.4亿元.(1)求1号线,2号线一期每千米的平均造价分别是多少亿元?(2)除1号线,2号线一期外,我市政府规划到2020年后还将再建2号线2期,3号线和4号线,从而形成102km的地铁线网.据预算,这61千米的地铁网每千米的平均造价将比1号线每千米的平均造价多20%,则还需投资多少亿元?8.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地,A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?9.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额不超过380元优惠措施不优惠超过380元,但不超过500元按售价打九折超过500元按售价打八折按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二天只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?10.甲、乙两个班到集市上购买苹果,苹果的价格如下:所购苹果数量每千克价格不超过30kg3元30kg以上但不超过50kg2.5元50kg以上2元甲班两次共购买48kg(第二次多于第一次),乙班一次购买苹果48kg,丙班两次共购买苹果90kg.(1)若甲班第一次购买16kg,第二次购买32kg,则乙班比甲班少付多少元?(2)若甲班两次共付费126元,则甲班第一次、第二次分别购买苹果多少千克?(3)若丙班两次共付费196元,则丙班第一次、第二次分别购买苹果多少千克?参考答案1.解:(1)设第一次购进“红富士”苹果x箱,则第二次购进“红富士”苹果(100﹣x)箱,根据题意得:40(100﹣x)﹣50x=400,解得:x=40,∴100﹣x=60.答:第一次购进“红富士”苹果40箱,第二次购进“红富士”苹果60箱.(2)设其余的每箱应打y折销售,×25﹣40×60﹣50×40≥1300,根据题意得:60×75+60×解得:y≥8.答:其余的每箱至少应打8折销售.2.解:(1)该客户按方案①购买,需付款200×40+40(x﹣40)=(40x+6400)元;该客户按方案②购买,需付款0.9×(200×40+40x)=(36x+7200)元.故答案为:(40x+6400);(36x+7200).(2)根据题意得:40x+6400=36x+7200,解得:x=200.答:购买T恤200件时,两种方案付款金额相同.3.解:(1)设一个月内通话x分钟时,两种通话方式的费用相同,根据题意得:0.2x+50=0.4x,解得:x=250.答:一个月内通话250分钟时,两种通话方式的费用相同.(2)使用“全球通”通话方式可使用时间为(120﹣50)÷0.2=350(分钟),使用“神州行”通话方式可使用时间为120÷0.4=300(分钟),∵350>300,∴选择“全球通”通话方式比较合算.4.解:设去了x名学生,(60﹣x)名老师,依题意得:30(60﹣x)+20x=1240解之得:x=56所以老师:60﹣56=4(名),答:共去了4位老师,56位学生.5.(1)解:设甲购买x株,则乙购买(800﹣x)株由题意可列方程为:24x+30(800﹣x)=2100解方程可得:x=500则800﹣x=800﹣500=300答:甲购买500株,乙购买300株;(2)设购买甲y株,则乙购买(800﹣y)株.由题意可列不等式为:85%y+90%(800﹣y)≥800×88%解得:y≤320∴购买甲的数量应大于等于0株且小于等于320株.6.解:(1)设每个宿舍需要铺瓷砖的地板面积为x m,则依题意列出方程:2﹣=3,解方程得:x=18.答:每个宿舍需要铺瓷砖的地板面积为18m.2(2)设需要再安排y名二级技工才能按时完成任务,∵每名一级技工每天可铺砖面积:=15m,2每名二级技工每天可铺砖面积:15﹣3=12m,2∴15×4×6+3×12y=20×18+36.解得:y=1.答:需要再安排1名二级技工才能按时完成任务.7.解:(1)设地铁1号线每千米的平均造价为x亿元,则地铁2号线一期每千米的平均造价为(x+0.4)亿元,根据题意得:23x+18(x+0.4)=310.6,解得:x=7.4,∴x+0.4=7.8.答:地铁1号线每千米的平均造价为7.4亿元,地铁2号线一期每千米的平均造价为7.8亿元.(2)61×7.4×(1+20%)=541.68(亿元).答:还需投资541.68亿元.8.解:设甲、乙两地之间的距离是x千米.根据题意得:=+,解得x=252.答:甲、乙两地之间的距离是252千米.9.解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50﹣x)=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小明这两天在该商场购买甲、乙两种商品一共13或14件.10.解:(1)甲班费用16×3+32×2.5=128(元),乙班费用48×2.5=120(元),128﹣120=8,答:乙班比甲班少付8元.(2)设甲班第一次购买苹果x千克,甲班第二次购买苹果(48﹣x)千克,由题意:48﹣x>x,即x<24,①当48﹣x≤30,即18≤x<24时,3x+3(48﹣x)=126,不合题意;②当x<18时,3x+2.5(48﹣x)=126,解得x=12,答:甲班第一次购买苹果12千克,甲班第二次购买苹果36千克.(3)设丙班第一次购买苹果x千克,丙班第二次购买苹果(90﹣x)千克,①当x≤30时,90﹣x≥60,3x+2(90﹣x)=196,x=16,②当30<x<40时,90﹣x>50,2.5x+2(90﹣x)=196,x=32,③当40≤x<50时,40<90﹣x≤50,2.5x+2.5(90﹣x)=196,不合题意,④当50≤x≤60时,30≤90﹣x≤40,2x+2.5(90﹣x)=196,x=58,⑤当x>60时,90﹣x<30,2x+3(90﹣x)=196,x=74,综上所述,丙班第一次、第二次分别购买苹果16千克和74千克;32千克和58千克;58千克和32千克;74千克和16千克;8.解:设甲、乙两地之间的距离是x千米.根据题意得:=+,解得x=252.答:甲、乙两地之间的距离是252千米.9.解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50﹣x)=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小明这两天在该商场购买甲、乙两种商品一共13或14件.10.解:(1)甲班费用16×3+32×2.5=128(元),乙班费用48×2.5=120(元),128﹣120=8,答:乙班比甲班少付8元.(2)设甲班第一次购买苹果x千克,甲班第二次购买苹果(48﹣x)千克,由题意:48﹣x>x,即x<24,①当48﹣x≤30,即18≤x<24时,3x+3(48﹣x)=126,不合题意;②当x<18时,3x+2.5(48﹣x)=126,解得x=12,答:甲班第一次购买苹果12千克,甲班第二次购买苹果36千克.(3)设丙班第一次购买苹果x千克,丙班第二次购买苹果(90﹣x)千克,①当x≤30时,90﹣x≥60,3x+2(90﹣x)=196,x=16,②当30<x<40时,90﹣x>50,2.5x+2(90﹣x)=196,x=32,③当40≤x<50时,40<90﹣x≤50,2.5x+2.5(90﹣x)=196,不合题意,④当50≤x≤60时,30≤90﹣x≤40,2x+2.5(90﹣x)=196,x=58,⑤当x>60时,90﹣x<30,2x+3(90﹣x)=196,x=74,综上所述,丙班第一次、第二次分别购买苹果16千克和74千克;32千克和58千克;58千克和32千克;74千克和16千克;8.解:设甲、乙两地之间的距离是x千米.根据题意得:=+,解得x=252.答:甲、乙两地之间的距离是252千米.9.解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50﹣x)=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小明这两天在该商场购买甲、乙两种商品一共13或14件.10.解:(1)甲班费用16×3+32×2.5=128(元),乙班费用48×2.5=120(元),128﹣120=8,答:乙班比甲班少付8元.(2)设甲班第一次购买苹果x千克,甲班第二次购买苹果(48﹣x)千克,由题意:48﹣x>x,即x<24,①当48﹣x≤30,即18≤x<24时,3x+3(48﹣x)=126,不合题意;②当x<18时,3x+2.5(48﹣x)=126,解得x=12,答:甲班第一次购买苹果12千克,甲班第二次购买苹果36千克.(3)设丙班第一次购买苹果x千克,丙班第二次购买苹果(90﹣x)千克,①当x≤30时,90﹣x≥60,3x+2(90﹣x)=196,x=16,②当30<x<40时,90﹣x>50,2.5x+2(90﹣x)=196,x=32,③当40≤x<50时,40<90﹣x≤50,2.5x+2.5(90﹣x)=196,不合题意,④当50≤x≤60时,30≤90﹣x≤40,2x+2.5(90﹣x)=196,x=58,⑤当x>60时,90﹣x<30,2x+3(90﹣x)=196,x=74,综上所述,丙班第一次、第二次分别购买苹果16千克和74千克;32千克和58千克;58千克和32千克;74千克和16千克;。
一元一次方程应用题复习一、知识点1、用列方程的方法解决实际问题的一般思路是分析数量关系,列出方程。
2、列方程的实质就是用两种不同的方法来表示同一个量。
3、列方程解应用题的一般步骤是设未知数,列方程,解方程,求出方程的解。
4、实际问题中的数量关系比较隐蔽,关键是审题,弄清问题背景,分析清楚数量关系,特别是找出可以作为列方程依据的相等关系。
①路程= ⨯②工作总量= ⨯③顺水航速= ,顺水航速= 。
④利润= ,利润率=⑤如果一个两位数十位数字是a ,个位数字是b ,则这个两位数是:二、基础练习:1、列方程表示下列语句所表示的等量关系:①某校共有学生1049人,女生占男生的40%,求男生的人数。
②两个村共有834人,甲村的人数比乙村的人数的一半还少111人,两村各有多少人?③某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
求两车的速度。
④某人共用142元买了两种水果共20千克,已知甲种水果每千克8元,乙水果每千克6元,问这两种水果各有多少千克?⑤把一些图书分给某班学生,如果每人4本,则剩余12本,如果每人分5本,则还缺30本,问该班有多少学生?2、列方程解下列应用题:①一台计算机已使用1700小时,预计每月再使用150小时,经过多少个月这太计算机的使用时间达到规定的检修时间2450小时?②用一根长80m 的绳子围出一个矩形,使它的宽是长的31,长和宽各应是多少? 三、典型例题:列方程解下列应用题:1、有一列数,按一定规律排列成4-,8-,12-,16-,20-,24-,……其中某三个相邻数的和是672-,求这三个数各是多少?2、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。
已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。
3、一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?四、巩固练习:列方程解下列应用题:1、四个连续的奇数的和为32,这四 个数分别是什么?2、甲仓库储粮35吨 ,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?3、学校有电视和幻灯机共90台,已知电视机和幻灯机的台数比为2 :3,求学校有电视机和幻灯机各多少台?4、在全国足球甲级A 组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该对共胜了多少场?5、用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?(2)若某人一个月内在本地通话150分,选择哪一种方式比较合算?(3)你认为如何选择会更加合算些?五、拓展提升为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家1—4月份用水量和交费情况:根据表格中提供的信息,回答以下问题:1) 求出规定吨数和两种收费标准;2) 若小明家5月份用水20吨,则应缴多少元?3)若小明家6月份缴水费29元,则6月份用水多少吨?1、盒子里有三种颜色的纽扣一共312个,其中红色纽扣的个数比蓝色的3倍还多8个,绿色纽扣的个数比蓝色的少1个,求这三种颜色的纽扣各是多少?2、一批宿舍,若每间住1人,有10人无处住;若每间住3人,则有10间宿舍无人住,那么这批宿舍有多少间,人有多少个?3、某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少?4、一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。
一元一次方程(压轴必刷30题5种题型专项训练)一.一元一次方程的定义(共1小题)1.(2022春•雁峰区校级月考)已知(m2﹣9)x2﹣(m﹣3)x+6=0是以x为未知数的一元一次方程,如果|a|≤|m|,那么|a+m|+|a﹣m|的值为()A.2B.4C.6D.8【分析】根据一元一次方程的定义,则x2系数为0,且x系数≠0,得出m=﹣3;由|a|≤|m|,得a﹣m≥0,a+m≤0,∴|a+m|+|a﹣m|=﹣a﹣m+a﹣m=﹣2m=6.【解答】解:∵一元一次方程则x2系数为0,且x系数≠0∴m2﹣9=0,m2=9,m=±3,﹣(m﹣3)≠0,m≠3,∴m=﹣3,|a|≤|﹣3|=3,∴﹣3≤a≤3,∴m≤a≤﹣m,∴a﹣m≥0,|a﹣m|=a﹣m,a+m≤0,|a+m|=﹣a﹣m,∴原式=﹣a﹣m+a﹣m=﹣2m=6.故选:C.【点评】本题主要考查了如何去绝对值以及一元一次方程的定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1.根据一元一次方程的定义求m的值.去绝对值时注意a+m、a﹣m 与0的关系.二.一元一次方程的解(共2小题)2.(2022秋•拱墅区月考)若关于x的方程(k﹣2019)x﹣2017=7﹣2019(x+1)的解是整数,则整数k的取值个数是()A.2B.3C.4D.6【分析】原方程依次去括号,移项,合并同类项,系数化为1,得到关于k的x的值,根据“该方程的解是整数”,得到几个关于k的一元一次方程,解之即可.【解答】解:方程(k﹣2019)x﹣2017=7﹣2019(x+1)整理化简,可得kx=5,即x=,∵该方程的解是整数,k为整数,∴x=1或﹣1或5或﹣5,即=1或﹣1或5或﹣5,解得:k=5或﹣5或1或﹣1,∴整数k的取值个数是4个,故选:C.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.3.(2021秋•天门月考)已知a,b为定值,关于x的方程=1﹣,无论k为何值,它的解总是1,则a+b=.【分析】把x=1代入方程=1﹣,得:=1﹣,整理可得(2+b)k+2a﹣4=0,再根据题意可得2+b=0,2a﹣4=0,进而可得a、b的值,从而可得答案.【解答】解:把x=1代入方程=1﹣,得:=1﹣,2(k+a)=6﹣(2+bk),2k+2a=6﹣2﹣bk,2k+bk+2a﹣4=0,(2+b)k+2a﹣4=0,∵无论k为何值,它的解总是1,∴2+b=0,2a﹣4=0,解得:b=﹣2,a=2.则a+b=0.故答案为:0.【点评】本题主要考查方程解的定义,由k可以取任何值得到a和b的值是解题的关键.三.解一元一次方程(共3小题)4.(2021春•余杭区校级月考)用⊕表示一种运算,它的含义是:A⊕B=.如果,那么3⊕4=.【分析】根据题中的新定义化简已知等式求出x的值,所求式子利用新定义化简后,将x的值代入计算即可求出值.【解答】解:根据题中的新定义得:2⊕1=+=,去分母得:2+x=10,即x=8,则3⊕4=+=+=.故答案为:【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.5.(2021秋•潮安区期末)小东同学在解一元一次方程时,发现这样一种特殊现象:x+=0的解为x=﹣,而﹣=﹣1;2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x的方程ax+b=0≠0)的解为x=b﹣a,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x的方程ax+b=0(a≠0)为奇异方程,解关于y的方程:a(a﹣b)y+2=(b+)y.【分析】(1)把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,由于b≠b+1,根据“奇异方程”定义即可求解;(2)根据“奇异方程”定义得到a(a﹣b)=b,方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,解方程即可求解.【解答】解:(1)没有符合要求的“奇异方程”,理由如下:把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,∵b≠b+1,∴不符合“奇异方程”定义,故不存在;(2)∵ax+b=0(a≠0)为奇异方程,∴x=b﹣a,∴a(b﹣a)+b=0,a(b﹣a)=﹣b,a(a﹣b)=b,∴方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,∴by+2=by+y,2=y,解得y=4.【点评】考查了解一元一次方程,关键是熟悉若一个关于x的方程ax+b=0(a≠0)的解为x=b﹣a,则称之为“奇异方程”.6.(2020秋•丰城市校级期中)(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a的值.(2)当m为何值时,关于x5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?【分析】(1)把x=10代入错误的去分母得到的方程,求出a的值即可;(2)表示出两方程的解,由题意求出m的值即可.【解答】解:(1)错误去分母得:4x﹣2=3x+3a﹣1,把x=10代入得:a=3;(2)方程5m+3x=1+x,解得:x=,方程2x+m=5m,解得:x=2m,根据题意得:﹣2m=2,去分母得:1﹣5m﹣4m=4,解得:m=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四.同解方程(共1小题)7.(2022秋•义乌市月考)已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程的解.【分析】根据方程1可直接求出x的值,代入方程2可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【解答】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入得:,解得:.【点评】本题解决的关键是能够求解关于x的方程,根据同解的定义建立方程.五.一元一次方程的应用(共23小题)8.(2022秋•义乌市校级月考)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t1,t2的值.【分析】(1)由题意列出方程可求解;(2)分两种情况讨论,列出方程可求解;(3)M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动,结合数轴分类讨论分析即可.【解答】解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=54,∴t=5,∴运动5秒点M与点N相距54个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,当t<1.6时,点N在点P左侧,MP=NP,∴t﹣(﹣8+6t)=6+2t﹣t,∴6+t=8﹣5t,∴t=s;当t>1.6时,点N在点P右侧,MP=NP,∴﹣8+6t﹣t=6+2t﹣t,∴6+t=﹣8+5t,∴t=s,∴运动s或s时点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P M、P两点向右运动,N点向左运动①如图,当t1=5s时,P在5,M在16,N在﹣38,再往前一点,MP之间的距离即包含11个整数点,NP之间有44个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣39时,此时N、P之间仍为44个整数点,若N点过﹣39时,此时N、P之间为45 个整数点,故t2=+5=s∴t1=5s,t2=s.【点评】本题考查了一元一次方程在数轴上的动点问题中的应用,理清题中的数量关系、数形结合,是解题的关键.9.(2020秋•温州期末)七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?【分析】(1)根据得分规则课判断出不可能得的分数;(2)①设(1)班未满分的人数是x人,则满分的人数是2x人,列方程即可;②分别计算出两班得分的情况计算出两个班的总分,再比较即可.【解答】解:(1)∵共有4条线,可能全部连错,得0分,可能1条线对,3条线错,得5分,可能2条线对,2条线错,得10分,可能3条线对,则第4条也对,得20分,∴每人得分不可能是15分;故答案为:15.(2)①设(1)班未得满分的有x人,得满分的有2x人,依题意得:x+2x=40﹣4,解得x=12,2x=24.答:(1)班得满分的有24人;②∵(1)班除0分外,最低得分人数与其他未满分人数相等,∴得5分的和得10分的都是6人,∴(1)班总分为:24×20+6×10+6×5=570(分);设(2)班最低得分a人,其余未满分b人,则满分人数为(2a+b)人,∴总分为:5a+10b+20(2a+b)=(45a+30b)分,∵a+b+2a+b=40,∴(2)班总分为:45a+30b=15(3a+2b)=600(分)>570(分),∴(2)班总分高.【点评】本题考查一元一次方程的应用,找到等量关系列出方程是解题关键.10.(2021秋•瓯海区月考)某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?【分析】(1)通过理解题意可知本题的等量关系,即甲单独修完这些桌凳的天数=乙单独修完的天数+20天,列方程求解即可;(2)分别计算,通过比较选择最省钱的方案.【解答】解:(1)设该中学库存x套桌椅,则;解得x=960.答:该中学库存960套桌椅.(2)设a、b、c三种修理方案的费用分别为y1、y2、y3元,则y1=(80+10)×=5400,y2=(120+10)×=5200,y3=(80+120+10)×=5040,综上可知,选择方案c更省时省钱.答:方案c省时省钱.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题要掌握工作量的有关公式:工作总量=工作时间×工作效率.11.(2020秋•鹿城区期末)十一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了18.5元钱,问丙商场先打了多少折后再参加活动?【分析】(1)按照不同的优惠方案算出实际花的钱数,再比较得出答案即可;(2)设这条裤子的标价为x元,按照优惠方案算出实际付款数,根据付款额一样,列方程求解即可;(3)先设丙商场先打了x折后再参加活动,折后减50n(0≤n<6),根据打折后比没打折前多付了18.5元钱,列方程求解.【解答】解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270﹣200)=360(元);选丙商城需付费用为290+270﹣5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x﹣100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了x折后再参加活动,折后减50n(0≤n<6且n为整数),根据题意得:(630×﹣50n)﹣(630﹣6×50)=18.5,整理得63x﹣50n=348.5,当n=0时,63x=348.5,可再优惠3×50=150元,与n=0矛盾,舍去当n=1时,63x=398.5,可再优惠3×50=150元,与n=1矛盾,舍去当n=2时,63x=448.5,可再优惠4×50=200元,与n=2矛盾,舍去当n=3时,63x=498.5,可再优惠4×50=200元,与n=3矛盾,舍去当n=4时,63x=548.5,可再优惠5×50=250元,与n=4矛盾,舍去当n=5时,63x=598.5,满足题意,此时x=9.5答:丙商场先打了9.5折后再参加活动.出合适的等量关系列出方程进行求解.12.(2020秋•永嘉县校级期末)某班级组织学生集体春游,已知班级总人数多于20人,其中有15名男同学,景点门票全票价为30元,对集体购票有两种优惠方案.方案一:所有人按全票价的90%购票;方案二:前20人全票,从第21人开始每人按全票价的80%购票;(1)若共有35名同学,则选择哪种方案较省钱?(2)当女同学人数是多少时,两种方案付费一样多?【分析】(1)方案一的收费=学生人数×30×90%,方案二的收费=20×30+(学生人数﹣20)×30×80%,将两者的收费进行比较,从而确定选择何种方案更省钱;(2)设女同学人数是x人时,两种方案付费一样多,列出方程求解即可.【解答】解:(1)方案一收费为:35×30×90%=945(元),方案二收费为:20×30+(35﹣20)×30×80%=960(元),∵960>945,∴方案一更省钱;(2)设女同学人数是x人时,两种方案付费一样多,由题意得(15+x)×30×90%=20×30+(15+x﹣20)×30×80%,解得:x=25,答:当女同学人数是25人时,两种方案付费一样多.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.(2021秋•临海市月考)已知数轴上两点A、B对应的数分别为﹣1,3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值.若不存在,请说明理由?(3)当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?【分析】(1)根据点P到点A、点B的距离相等,结合数轴可得答案;(2)此题要分两种情况:①当P在AB左侧时,②当P在AB右侧时,然后再列出方程求解即可;(3)点P、点A、点B B的运动速度最快,点P的运动速度最慢.故P点总位于A点右侧,B可能追上并超过A.P到A、B的距离相等,应分两种情况讨论.【解答】解:(1)如图,若点P到点A、点B的距离相等,P为AB的中点,BP=P A.依题意得3﹣x=x﹣(﹣1),解得x=1;(2)由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧.①P在点A左侧,P A=﹣1﹣x,PB=3﹣x,依题意得(﹣1﹣x)+(3﹣x)=5,解得x=﹣1.5;②P在点B右侧,P A=x﹣(﹣1)=x+1,PB=x﹣3,依题意得(x+1)+(x﹣3)=5,解得x=3.5;(3)设运动t分钟,此时P对应的数为﹣t,B对应的数为3﹣20t,A对应的数为﹣1﹣5t.①B未追上A时,P A=PB,则P为AB中点.B在P的右侧,A在P的左侧.P A=﹣t﹣(﹣1﹣5t)=1+4t,PB=3﹣20t﹣(﹣t)=3﹣19t,依题意有1+4t=3﹣19t,解得t=;②B追上A时,A、B重合,此时P A=PB.A、B表示同一个数.依题意有﹣1﹣5t=3﹣20t,解得t=.即运动或分钟时,P到A、B的距离相等.【点评】此题主要考查了一元一次方程的应用,以及数轴,关键是理解题意,表示出两点之间的距离,利用数形结合法列出方程.14.(2020秋•永嘉县校级期末)为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.【分析】(1)设钢笔得单价为x元,则毛笔单价为(x+6)元,根据题意列出方程,求出方程的解即可得到结果;(2)①设单价为19元得钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意列出方程,求出方程的解即可得到结果;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意列出关系式,根据z,a为整数,确定出a与z的值,即可得到结果.【解答】解:(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元,由题意得:30x+20(x+6)=1070,解得:x=19,则x+6=25,答:钢笔的单价为19元,毛笔的单价为25元;(2)①设单价为19元的钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意得:19y+25(60﹣y)=1322,解得:y=,不合题意,即张老师肯定搞错了;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意得:19z+25(60﹣z)=1322﹣a,即6z=178+a,由a,z都是整数,且178+a应被6整除,经验算当a=2时,6z=180,即z=30,符合题意;当a=8时,6z=186,即z=31则签字笔的单价为2元或8元.故答案为:2或8.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.15.(2020秋•苍南县期末)一家电信公司推出手机话费套餐活动,具体资费标准见表:(1)已知小聪办理的是月租费为88元的套餐,小明办理的是月租费为118元的套餐,他们某一月的主叫时间都为m分钟(m>360).①请用含m的代数式分别表示该月他们的话费,化简后填空:小聪该月的话费为元;小明该月的话费为元.②若该月小聪比小明的话费还要多14元,求他们的通话时间.(2)若小慧的两个手机号码分别办理了58元、88元套餐.该月她的两个号码主叫时间共为220分钟,总话费为152元,求她两个号的主叫时间分别可能是多少分钟.【分析】(1)①用“根据话费=套餐费+主叫超时费”求出总话费;②因为m>360分钟,所以两人的话费均由套餐费和主叫超时费两部分组成,根据具体数字列出式子即可;(2)可设办理了58元套餐的主叫时间为x分钟,分类进行讨论求解即可.【解答】解:(1)①小聪该月的话费为:88+0.20(m﹣150)=58+0.2m,小明该月的话费为:118+0.15(m﹣350)=65.5+0.15m,故答案为:(58+0.2m),(65.5+0.15m);②58+0.2m=65.5+0.15m+14,解得:m=430,答:他们的通话时间为430分钟;(2)设办理了58元套餐的主叫时间为x分钟,依题意得:①当58元套餐的主叫时间超过限定时间,88元套餐没有超过限定时间时,得:58+0.25(x﹣50)+88=152,解得:x=74,则88元套餐的主叫时间为:220﹣74=146(分钟);②当58元套餐的主叫时间没有超过限定时间,88元套餐超过限定时间时,得:58+88+0.2(220﹣x﹣150)=152,解得:x=40,则88元套餐的主叫时间为:220﹣40=180(分钟);③当58元套餐的主叫时间超过限定时间,88元套餐超过限定时间时,得:58+0.25(x﹣50)+88+0.2(220﹣x﹣150)=152,解得:x=130,则88元套餐的主叫时间为:220﹣130=90(不符合题意).综上所述,小慧58元、88元套餐的主叫时间分别可能是74分钟,146分钟或40分钟,180分钟.【点评】本题考查了一元一次方程的应用,能读懂数表弄清数量关系是解题关键.16.(2020秋•拱墅区期末)某快递公司每件普通物品的收费标准如表:例如:寄往省内一件1.7千克的物品,运费总额为:10+8×(0.5+0.5)=18元.寄往省外一件3.2千克的物品,运费总额为:15+12×(2+0.5)=45元.(1)小丁同时寄往省内一件2千克的物品和省外一件2.7千克的物品,各需付运费多少元?(2)小丽同时寄往省内和省外同一件a千克的物品,已知a超过2,且a的整数部分是m,小数部分小于0.5,请用含字母的代数式表示这两笔运费的差.(3)某日小丁和小丽同时在该快递公司寄物品,小丁寄往省外,小丽寄往省内,小丁的运费比小丽的运费多43元,物品的重量比小丽多1.5千克,则小丁和小丽共需付运费多少元?【分析】(1)根据表中给出的运费计算方式分别计算运费即可;(2)利用已知条件分别求出同一件a千克的物品寄往省内和省外需付的运费,再用寄往省外付的运费﹣寄往省内付的运费即可求解;(3)设小丽的物品重(x+a)千克,x为正整数,a为小数部分,则小丁的物品重(x+a+1.5)千克,分①0<a≤0.5时,②0.5<a<1时两种情况,根据小丁的运费比小丽的运费多43元列出方程求解,再列式计算求出小丁和小丽共需付的运费.【解答】解:(1)寄往省内一件2千克的物品需付运费:10+8=18(元),∵超过1千克即要续重,续重以0.5千克为计重单位(不足0.5千克按0.5千克计算),∴寄往省外一件2.7千克的物品需付运费:15+12×2=39(元),∴小丁寄往省内的费用18元,寄往省外的费用39元;(2)省内:10+8(m﹣1+0.5)=(8m+6)元,省外:15+12(m﹣1+0.5)=(12m+9)元,12m+9﹣(8m+6)=12m+9﹣8m﹣6=(4m+3)元,∴这两笔运费的差(4m+3)元;(3)设小丽的物品重(x+a)千克,x为正整数,a为小数部分,小丁的物品重(x+a+1.5)千克,①0<a≤0.5时,小丽:10+8(x﹣1)+0.5×8=(8x+6)元,小丁:15+12(x﹣1)+2×12=(12x+27)元,∴12x+27﹣(8x+6)=43,解得:x=5.5(不是正整数,舍去);②0.5<a<1时,小丽:10+8(x﹣1)+1×8=(8x+10)元小丁:15+12(x﹣1)+2.5×12=(12x+33)元12x+33﹣(8x+10)=43解得:x=5,小丁和小丽共需付运费:8×5+10+12×5+33=143(元).∴小丁和小丽共需付运费143元.费计算方式分别列出寄往省内和省外需付的运费的代数式.17.(2022秋•义乌市月考)已知点O是数轴的原点,点A、B、C在数轴上对应的数分别是﹣12、b、c,且b、c满足(b﹣9)2+|c﹣15|=0,动点P从点A出发以2单位/秒的速度向右运动,同时点Q从点C出发,以1个单位/秒速度向左运动,O、B两点之间为“变速区”,规则为从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速,从点B运动到点O期间速度变为原来的3倍,之后立刻恢复原速,运动时间为秒时,P、Q两点到点B的距离相等.【分析】根据(b﹣9)2+|c﹣15|=0,可得B表示的数是9,C表示的数是15,由已知分四种情况讨论:①当0≤t≤6时,P在线段OA上,Q在线段BC上,此时不存在P、Q两点到点B的距离相等;②当6<t≤9时,P、Q都在线段OB上,t﹣6=9﹣3(t﹣6),解得t=,③当9<t≤15时,P在线段OB上,Q在线段OA上,此时不存在P、Q两点到点B的距离相等;④当t>15时,P在射线BC上,Q在射线OA上,9+2(t﹣15)﹣9=9﹣[﹣(t﹣9)],解得t=30.【解答】解:∵(b﹣9)2+|c﹣15|=0,∴b﹣9=0,c﹣15=0,∴b=9,c=15,∴B表示的数是9,C表示的数是15,①当0≤t≤6时,P在线段OA上,Q在线段BC上,此时不存在P、Q两点到点B的距离相等;②当6<t≤9时,P、Q都在线段OB上,P表示的数为t﹣6,Q表示的数是9﹣3(t﹣6),∴P、Q两点到点B的距离相等只需t﹣6=9﹣3(t﹣6),解得t=,③当9<t≤15时,P在线段OB上,Q在线段OA上,此时不存在P、Q两点到点B的距离相等;④当t>15时,P在射线BC上,Q在射线OA上,P表示的数为9+2(t﹣15),Q表示的数是﹣(t﹣9),∴P、Q两点到点B的距离相等只需9+2(t﹣15)﹣9=9﹣[﹣(t﹣9)],解得t=30,综上所述,P、Q两点到点B的距离相等,运动时间为秒或30秒,故答案为:或30.【点评】本题考查一元一次方程的应用,涉及数轴上的动点表示的数,两点间的距离等知识,解题的关键是分类讨论.18.(2021秋•义乌市月考)如图,已知一周长为30cm的圆形轨道上有相距10cm的A、B两点(备注:圆形轨道上两点间的距离是指圆上这两点间的较短部分展直后的线段长).动点P从A点出发,以7cm/s的速度,与此同时,动点Q从B点出发,以5cm/s的速度,按同样的方向运动,设运动时间为t(s),在P、Q第二次相遇前,当动点P、Q在轨道上相距14cm时,则t=秒.【分析】设经过ts,P、Q两点相距14cm,分相遇前和相遇后两种情况建立方程求出其解;分点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.【解答】解:共有4种可能:①7t+10﹣5t=14,解得:t=2;②7t+10﹣5t=16,解得:t=3;③7t+10﹣5t=44,解得:t=17;④7t+10﹣5t=46,解得:t=18.综上所知,t=2、3、17或18.故答案为:2、3、17或18.【点评】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.19.(2022秋•拱墅区期末)如图,已知数轴上点A表示的数为10,点B位于点A左侧,AB=15.动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)当点P在A、B两点之间运动时,①用含t的代数式表示PB的长度;②若PB=2P A,求点P所表示的数;(2)动点Q从点B出发,以每秒5个单位长度的速度沿数轴向右匀速运动,当点Q到达点A后立即原速返回.若P,Q两点同时出发,其中一点运动到点B时,两点停止运动.求在这个运动过程中,P,Q 两点相遇时t的值.【分析】(1)①读懂题意,列代数式即可;②根据题意列关于t的一元一次方程,再求解即可;(2)读懂题意,分析整个运动过程,根据第一次相遇,第二次相遇路程上的关系列方程求解.【解答】解:(1)①∵点A表示的数为10,点B位于点A左侧,AB=15,∴点B表示的数为10﹣15=﹣5,∴点P在A、B=15﹣2t;②∵PB=2P A,∴15﹣2t=2×2t,∴t=2.5,∴P A=2×2.5=5,∴10﹣5=5,∴点P所表示的数为5;(2)在这个运动过程中,P,Q两点有两次相遇,设P,Q两点第一次相遇的时间为t秒,根据题意得(2+5)t=15,∴t=;设P,Q两点第二次相遇的时间为t秒,根据题意得2t+15=5t,∴t=5,∴在这个运动过程中,P,Q两点相遇时t的值为秒或5秒.【点评】本题考查了列代数式,数轴,一元一次方程的应用,解题的关键是掌握数轴知识,读懂题意,能根据题意列出正确的代数式和一元一次方程.20.(2022秋•江北区期中)数轴上点A表示﹣8,点B表示6,点C表示12,点D表示18.如图,将数轴在原点O和点B、C处各折一下,得到一条“折线数轴”.在“折线数轴”上,把两点所对应的两数之差的绝对值叫这两点间的和谐距离.例如,点A和点D在折线数轴上的和谐距离为|﹣8﹣18|=26个单位长度.动点M从点A出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点C期间速度变为原来的一半,过点C后继续以原来的速度向终点D运动;点M从点A出发的同时,点N从点D出发,一直以3个单位/秒的速度沿着“折线数轴”负方向向终点A运动,其中一点到达终点时,两点都停止运动.设运动的时间为t秒.(1)当t=2秒时,M、N两点在折线数轴上的和谐距离|MN|为;(2)当点M、N都运动到折线段O﹣B﹣C上时,O、M两点间的和谐距离|OM|=(用含有t的代数式表示);C、N两点间的和谐距离|CN|=(用含有t的代数式表示);t=时,M、N两点相遇;(3)当t=时,M、N两点在折线数轴上的和谐距离为4个单位长度;当t=时,M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等.【分析】(1)当t=2秒时,M表示的数是﹣8+2×4=0,N表示的数是18﹣3×2=12,即的M、N两点在折线数轴上的和谐距离|MN|为|12﹣0|=12;(2)当点M、N都运动到折线段O﹣B﹣C上,即t≥2时,M表示的数是×(t﹣2)=2t﹣4,N表示的数是12﹣3(t﹣2)=18﹣3t,而M、N两点相遇时,M、N表示的数相同,即得额2t﹣4=18﹣3t,可解得答案;(3)根据M、N两点在折线数轴上的和谐距离为4个单位长度,得|2t﹣4﹣(18﹣3t)|=4,可解得t=或t=,由t=2时,M运动到O,同时N运动到C,知t<2时,不存在M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等,当2≤t≤8,即M在从点O运动到点C时,有2t﹣4=|6﹣(18﹣3t)|,可解得t=8或t=,当8<t≤时,M在从C运动到D,速度变为4个单位/秒,不存在M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等,即可得答案.【解答】解:(1)当t=2秒时,M表示的数是﹣8+2×4=0,N表示的数是18﹣3×2=12,∴M、N两点在折线数轴上的和谐距离|MN|为|12﹣0|=12,故答案为:12;(2)由(1)知,2秒时M运动到O,N运动到C,∴当点M、N都运动到折线段O﹣B﹣C上,即t≥2时,M表示的数是×(t﹣2)=2t﹣4,N表示的数是12﹣3(t﹣2)=18﹣3t,∴O、M两点间的和谐距离|OM|=|2t﹣4﹣0|=2t﹣4,C、N两点间的和谐距离|CN|=|12﹣(18﹣3t)|=3t ﹣6,∵M、N两点相遇时,M、N表示的数相同,∴2t﹣4=18﹣3t,解得t=,故答案为:2t﹣4,3t﹣6,;(3)∵M、N两点在折线数轴上的和谐距离为4个单位长度,∴|2t﹣4﹣(18﹣3t)|=4,即|5t﹣22|=4,∴5t﹣22=4或5t﹣22=﹣4,解得t=或t=,由(1)知,t=2时,M运动到O,同时N运动到C,∴t<2时,不存在M、O两点在折线数轴上的和谐距离与N、B两点在折线数轴上的和谐距离相等,当2≤t≤8,即M在从点O运动到点C时,2t﹣4=|6﹣(18﹣3t)|,即|3t﹣12|=2t﹣4,∴3t﹣12=2t﹣4或3t﹣12=4﹣2t,。
一元一次方程的应用一、选择题(每小题4分,共20分)1.下表为服饰店贩卖的服饰与原价对照表.某日服装店举办大拍卖,外套按原价打六折出售,衬衫和裤子按原价打八折出售,服饰共卖出200件,共得24 000元.若外套卖出x 件,则依题意可列出一元一次方程为( ) A.0.6×250x +0.8×125(200+x)=24 000 B .0.6×250x +0.8×125(200-x)=24 000 C .0.8×125x +0.6×250(200+x)=24 000 D .0.8×125x +0.6×250(200-x)=24 0002.甲、乙两种邮票共16张,票面总价为11元.已知甲、乙两种邮票每张票面面值分别为5角、1元,那么甲、乙两种邮票的张数分别是( )A.8,8 B .6,10 C .10,6 D .7,93.水池有一注水管,单开5小时,可以注满水池;另有一出水管,单开18小时,可以把满池水放完,两管齐开,注满水池所用的时间是( ) A.1390小时 B .2390小时 C .9013小时 D .9023小时 4.某工程队共有55人,每人每天平均可挖土2.53m 或运土33m ,为了合理分配劳动力,使挖出的土及时运走,应分配挖土和运土的人数分别是( )A .25,30B .30,25C .35,20D .20,35服饰 原价(元) 外套 250 衬衫 125 裤子125住院医疗费(元) 报销率(%) 不超过500元的部分5.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下:某人住院治疗后得到保险公司报销金额1 000元,此人住院的医疗费是( ) A .1 000元 B .1 250元 C .1 500元 D .1 875元二、填空题(每小题4分,共32分)6.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2 000元,则标价为________元.7.一艘轮船从甲地到乙地顺流行驶,用了4小时,从乙地返回到甲地逆流行驶,用了6小时,已知轮船在静水中的平均速度是20千米/小时,那么水流速度是_________,甲、乙两地之间的航线长是____千米.8.某公路一侧原有路灯106盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54米,则需要更换新型节能灯____盏. 9.106位会员,其中有10人既不懂英语又不懂俄语,有65人懂英语,83人懂俄语,则既懂英语又懂俄语的有____人.10.李帆在两年前按两年定期存入一笔现金(当时年利率为3.14%),现在取款时利息和本金共21 256元,则他当时存入的本金为______元.11.一个两位数,十位上的数字比个位上的数字小3,设十位上的数为x ,则这个两位数可以表示为 .超过500元不足1 000元的部分60超过1 000元不足3 000元的部分 80…………12.在一个底面半径为4cm 的圆柱体杯子里装有高为6cm 的水,现在杯中放入一个半径为3cm 的铁球,那么杯子中水位将升高 cm .(球的体积公式为334r V π=) 13.在高速公路上,一辆长4m ,速度为110km/h 的轿车准备超越一辆长12m ,速度为100km/h 的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是 . 三、解答题(共48分)14.(10分)某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40 kg 到菜市场去卖,黄瓜和土豆这天的批发价和零售价(单位:元/千克)如下表所示:品名 批发价 零售价 黄瓜 2.4 4 土豆 35(1)他当天购进黄瓜和土豆各多少千克? (2)如果黄瓜和土豆全部卖完,他能赚多少钱?15.(10分)某人原计划在一定时间内由甲地步行到乙地,他先以每小时4公里的速度步行了全程的一半后,又搭上了每小时走20公里的顺路汽车,所以比原需要的时间早到了2小时,问甲、乙两地的距离是多少公里?16.(12分)如图,两个长方形重叠部分的面积等于大长方形面积的41,等于小长方形面积的71,已知阴影部分的面积是92cm ,求重叠部分的面积.17.(16分)某开发公司要生产若干件新产品,需要精加工后才能投放市场,现有红星和巨星两个工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可以加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元. (1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助.请你帮公司选择一种既省钱又省时的加工方案.参考答案: 1~5:BCABD6、27507、4千米/时 968、719、52 10、20000 11、11x+3 12、4913、5.76s 14、解:(1)设他购进黄瓜x 千克,则有2.4x +(40-x)×3=114,∴x =10, 答:他当天购进黄瓜、土豆分别是10千克、30千克 (2)10×(4-2.4)+30×(5-3)=76(元), 答:他能赚76元15、解:甲、乙两地的距离是20公里16、解:设重叠部分的面积为x 2cm ,则7x +4x -9=2x ,∴x =1, 答:重叠部分的面积为12cm17、解:(1)设开发公司要生产x 件新产品,依题意得202416=-x x ,解得x =960. 答:开发公司要生产960件新产品(2)红星厂单独加工这批产品需要的时间为16960=60(天),需要的费用为60×80+60×5=5 100(元).巨星厂单独加工这批产品需要的时间为24960=40(天),需要的费用为40×120+40×5=5000(元).红星厂和巨星厂两厂合作1624960+=24.所需的费用为(80+120)×24+24×5=4 920(元),通过比较,选择两厂合作完成较为合适。
《一元一次方程》实际应用题综合提优训练1.某水果零售商店分两批次从批发市场共购进“红富士”苹果100箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款400元.(1)求第一、二次分别购进“红富士”苹果各多少箱?(2)商店对这100箱“红富士”苹果先按每箱60元销售了75箱后出现滞销,于是决定其余的每箱靠打折销售完.要使商店销售完全部“红富士”苹果所获得的利润不低于1300元,问其余的每箱至少应打几折销售?(注:按整箱出售,利润=销售总收入﹣进货总成本)2.某服装厂生产一款T恤和帽子,T恤每件定价200元,每顶帽子定价40元,厂方在开展促销活动期间,向客户提供两种优惠方案.①买一件T恤送一顶帽子②T恤和帽子都按定价的九折付款现某客户要到该服装厂购买T恤40件,帽子x顶(x>40),(1)请用含x的代数式表示:若该客户拨方案①购买,需付款元;若该客户按方案②购买,需付款元;(2)当x为多少时,方案①和方案②需支付的费用一样?3.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟.求:(1)一个月内通话多少分钟,两种通话方式的费用相同?(2)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?4.小红:昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?5.某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗的数量应满足怎样的条件?6.某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3m2瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求3天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要安排多少名二级技工才能按时完成任务?7.为方便市民出行,减轻城市中心交通压力,我市正在修建贯穿城市东西、南北的地铁1号线、地铁2号线一期工程.已知修建地铁1号线23千米和2号线一期18千米共需投资310.6亿;若2号线一期每千米的平均造价比1号线每千米的平均造价多0.4亿元.(1)求1号线,2号线一期每千米的平均造价分别是多少亿元?(2)除1号线,2号线一期外,我市政府规划到2020年后还将再建2号线2期,3号线和4号线,从而形成102km的地铁线网.据预算,这61千米的地铁网每千米的平均造价将比1号线每千米的平均造价多20%,则还需投资多少亿元?8.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地,A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?9.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施不超过380元不优惠超过380元,但不超过500按售价打九折元超过500元按售价打八折按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二天只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?10.甲、乙两个班到集市上购买苹果,苹果的价格如下:所购苹果数量不超过30kg30kg以上但不超过50kg50kg以上每千克价格3元 2.5元2元甲班两次共购买48kg(第二次多于第一次),乙班一次购买苹果48kg,丙班两次共购买苹果90kg.(1)若甲班第一次购买16kg,第二次购买32kg,则乙班比甲班少付多少元?(2)若甲班两次共付费126元,则甲班第一次、第二次分别购买苹果多少千克?(3)若丙班两次共付费196元,则丙班第一次、第二次分别购买苹果多少千克?参考答案1.解:(1)设第一次购进“红富士”苹果x箱,则第二次购进“红富士”苹果(100﹣x)箱,根据题意得:40(100﹣x)﹣50 x=400,解得:x=40,∴100﹣x=60.答:第一次购进“红富士”苹果40箱,第二次购进“红富士”苹果60箱.(2)设其余的每箱应打y折销售,根据题意得:60×75+60××25﹣40×60﹣50×40≥1300,解得:y≥8.答:其余的每箱至少应打8折销售.2.解:(1)该客户按方案①购买,需付款200×40+40(x﹣40)=(40x+6400)元;该客户按方案②购买,需付款0.9×(200×40+40x)=(36x+7200)元.故答案为:(40x+6400);(36x+7200).(2)根据题意得:40x+6400=36x+7200,解得:x=200.答:购买T恤200件时,两种方案付款金额相同.3.解:(1)设一个月内通话x分钟时,两种通话方式的费用相同,根据题意得:0.2x+50=0.4x,解得:x=250.答:一个月内通话250分钟时,两种通话方式的费用相同.(2)使用“全球通”通话方式可使用时间为(120﹣50)÷0.2=350(分钟),使用“神州行”通话方式可使用时间为120÷0.4=300(分钟),∵350>300,∴选择“全球通”通话方式比较合算.4.解:设去了x名学生,(60﹣x)名老师,依题意得:30(60﹣x)+20x=1240解之得:x=56所以老师:60﹣56=4(名),答:共去了4位老师,56位学生.5.(1)解:设甲购买x株,则乙购买(800﹣x)株由题意可列方程为:24x+30(800﹣x)=2100解方程可得:x=500则800﹣x=800﹣500=300答:甲购买500株,乙购买300株;(2)设购买甲y株,则乙购买(800﹣y)株.由题意可列不等式为:85%y+90%(800﹣y)≥800×88%解得:y≤320∴购买甲的数量应大于等于0株且小于等于320株.6.解:(1)设每个宿舍需要铺瓷砖的地板面积为x m2,则依题意列出方程:﹣=3,解方程得:x=18.答:每个宿舍需要铺瓷砖的地板面积为18m2.(2)设需要再安排y名二级技工才能按时完成任务,∵每名一级技工每天可铺砖面积:=15m2,每名二级技工每天可铺砖面积:15﹣3=12m2,∴15×4×6+3×12y=20×18+36.解得:y=1.答:需要再安排1名二级技工才能按时完成任务.7.解:(1)设地铁1号线每千米的平均造价为x亿元,则地铁2号线一期每千米的平均造价为(x+0.4)亿元,根据题意得:23x+18(x+0.4)=310.6,解得:x=7.4,∴x+0.4=7.8.答:地铁1号线每千米的平均造价为7.4亿元,地铁2号线一期每千米的平均造价为7.8亿元.(2)61×7.4×(1+20%)=541.68(亿元).答:还需投资541.68亿元.8.解:设甲、乙两地之间的距离是x千米.根据题意得:=+,解得x=252.答:甲、乙两地之间的距离是252千米.9.解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50﹣x)=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小明这两天在该商场购买甲、乙两种商品一共13或14件.10.解:(1)甲班费用16×3+32×2.5=128(元),乙班费用48×2.5=120(元),128﹣120=8,答:乙班比甲班少付8元.(2)设甲班第一次购买苹果x千克,甲班第二次购买苹果(48﹣x)千克,由题意:48﹣x>x,即x<24,①当48﹣x≤30,即18≤x<24时,3x+3(48﹣x)=126,不合题意;②当x<18时,3x+2.5(48﹣x)=126,解得x=12,答:甲班第一次购买苹果12千克,甲班第二次购买苹果36千克.(3)设丙班第一次购买苹果x千克,丙班第二次购买苹果(90﹣x)千克,①当x≤30时,90﹣x≥60,3x+2(90﹣x)=196,x=16,②当30<x<40时,90﹣x>50,2.5x+2(90﹣x)=196,x=32,③当40≤x<50时,40<90﹣x≤50,2.5x+2.5(90﹣x)=196,不合题意,④当50≤x≤60时,30≤90﹣x≤40,2x+2.5(90﹣x)=196,x=58,⑤当x>60时,90﹣x<30,2x+3(90﹣x)=196,x=74,综上所述,丙班第一次、第二次分别购买苹果16千克和74千克;32千克和58千克;58千克和32千克;74千克和16千克;。
5.4 一元一次方程的应用(第3课时)1.应用方程解决实际问题时,还常用____________或____________来分析数量关系,并建立____________.2.工作总量=工作效率×工作时间.3.利润=收入-成本.A 组 基础训练1.41人参加运土劳动,有30根扁担,安排多少人抬,多少人挑,可使扁担和人数相配不多不少?若设有x 人挑土,则列出的方程是( )A .2x -(30-x )=41 B.x 2+(41-x )=30 C .x +41-x 2=30 D .30-x =41-x 2.某土建工程共动用15台挖运机械,每台机械每小时能挖土3m 3或运土2m 3.为了使挖土的工作和运土的工作同时结束,若设安排了x 台机械挖土,则x 应满足的方程是( )A .2x =3(15-x )B .3x =2(15-x )C .15-2x =3xD .3x -2x =153.甲、乙两仓库共有货物250吨,现从甲仓库调出货物的19,从乙仓库调出货物的12,此时两个仓库的货物同样多,则甲、乙两仓库原有货物分别为( )A .90吨 160吨B .80吨 170吨C .70吨 180吨D .60吨 190吨4.已知一个水池有甲、乙两个水龙头,单独开甲水龙头,4h 可把空水池灌满;单独开乙水龙头,6h 可把空水池灌满,则灌满水池的23要同时开甲、乙两个水龙头( ) A .4h B.83h C.43h D.85h 5.在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍.问支援拔草和植树的人分别是多少人?若设支援拔草的有x人,下列方程中正确的是()A.32+x=2×8 B.32+x=2(38-x)C.52-x=2(18+x)D.52-x=2×186.某企业原来的管理人员与营销人员的人数之比为3∶2,总人数为180人,为了扩大市场,应从管理人员中抽调____________人参加营销工作,才能使营销人员人数是管理人员人数的2倍.7.第一个油槽里的汽油有120L,第二个油槽里有45L,把第一个油槽里的汽油倒多少升到第二个油槽里,才能使第一个油槽里的汽油是第二个油槽里汽油的2倍?设从第一个油槽里倒出x(L)到第二个油槽里,则可列方程:____________.8.一项工程甲单独做要20小时,乙单独做要12小时.现在先由甲单独做5小时,然后乙加入进来合做.完成整个工程一共需要多少小时?若设一共需要x小时,则所列的方程为____________.9.甲、乙合作加工200个零件,甲先单独加工了5h,然后又与乙一起加工了4h才完成.已知甲每小时比乙多加工2个零件,则甲、乙每小时分别加工多少个零件?10.某车间每个工人一天生产螺栓12个或螺母18个,每个螺栓要两个螺母配套,现有工人28人,怎样分配生产螺栓与螺母的人数,才能使每天生产量刚好配套?11.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a.由甲单独修理;b.由乙单独修理;c.甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?B组自主提高12.甲、乙两人共同完成一项工作,甲先单独做了3天,然后乙加入合作,和甲一起完成剩下的工作.设工作总量为1,工作进度如下表所示,则完成这项工作共需()A.9天B.10天C.11天D.12天13.(深圳中考)下表为深圳市居民每月用水收费标准,(单位:元/m3).(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?C组综合运用14.某管道由甲、乙两工程队单独施工分别需30天,20天完成.(1)如果两队从两端同时相向施工,那么需要多少天铺好?(2)已知甲队单独施工每天需付2000元的施工费,乙队单独施工每天需付2800元的施工费,请你设计一个最省钱的方案,并说明理由.参考答案5.4 一元一次方程的应用(第3课时)【课堂笔记】1.列表 画示意图(线段示意图) 等量关系【分层训练】1.C 2.B 3.A 4.D 5.B 6.48 7.120-x =2(45+x) 8.120×5+(120+112)(x -5)=1 9.设甲每小时加工x 个零件,则乙每小时加工(x -2)个.根据题意,得5x +4x +4(x -2)=200,解得x =16.∴x -2=14个.答:甲每小时加工16个零件,乙每小时加工14个零件.10.应分配12人生产螺栓,16人生产螺母.11.(1)设乙单独修完需x 天,则甲单独修完需(x +20)天.甲每天修16套,乙每天修24套. 根据题意,16(x +20)=24x ,解得x =40,经检验,符合题意.∴共有桌椅:16×(40+20)=960(套).答:该中学库存桌椅960套.(2)由甲单独修理所需费用80×(40+20)+10×(40+20)=5400(元),由乙单独修理所需费用:120×40+10×40=5200(元),甲、乙合作同时修理,完成所需天数:960÷()16+24=24(天),所需费用:(80+120+10)×24=5040(元),∴由甲、乙合作同时修理所需费用最少,答:选择甲、乙合作修理.12.A 【解析】甲、乙合作的效率为⎝⎛⎭⎫12-14÷2=18.设乙加入合作后需x 天完成剩下的工作,根据题意,得18x =1-14,解得x =6.∴共需3+6=9(天). 13.(1)由题意,得10a =23,解得a =2.3,∴a 的值为2.3.(2)设该用户用水x 立方米,若x ≤22,则2.3x =71,解得x =302023>22,舍去. 若x >22,则2.3×22+(2.3+1.1)(x -22)=71,解得x =28,适合.答:该用户用水28立方米.14.(1)设需要x 天铺好,根据题意,得x 30+x 20=1,解得x =12. (2)方案一:甲队单独施工,需30×2000=60000(元);方案二:乙队单独施工,需20×2800=56000(元);方案三:两队同时施工,需12×(2000+2800)=57600(元).∴选方案二(即由乙队单独施工)最省钱.5.4 一元一次方程的应用(第4课时)1.利息=____________×____________×____________,利息×____________=利息税,____________+____________-____________=实得本利和.2.(1)解决问题通常可以按____________、____________、____________、____________四个步骤来进行.(2)制订计划是在理解问题的基础上,运用有关的数学知识和方法拟订出解决问题的____________.(3)执行计划是把已制定的计划具体地进行实施,包括____________等.A组基础训练1.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是() A.x+3×4.25%x=33825B.x+4.25%x=33825C.3×4.25%x=33825D.3(x+4.25x)=338252.”六一”期间,某商店将单价标为130元的书包按8折出售可获利30%,则该书包每个的进价是()A.65元B.80元C.100元D.104元3.小明将1000元压岁钱按一年期存入银行,期满时扣除20%的利息税后,共得本息和1018元.则这种存款的年利率是()A.1% B.2% C.2.25% D.10%4.某人以8折的优惠价购买一套服装省了25元,那么买这套服装实际用了()A.31.25元B.60元C.125元D.100元5.有一旅客携带了30kg行李从北京到广州,按民航规定,旅客最多可免费携带20kg 行李,超过部分每千克按飞机票价的1.5%购买行李票.现该旅客购买的行李票价为180元,则他的飞机票价为()A.800元B.1000元C.1200元D.1400元6.(1)原价100元的商品,打8折后的价格为____________元;(2)原价____________元的商品,提价40%后的价格为140元;(3)进价100元的商品,以150元卖出,利润是____________元,利润率是____________.7.如图A,B两张纸片部分重叠,所占面积为160cm2,若A的面积为120cm2,B的面积为74cm2,则重叠部分(图中阴影部分)的面积是____________cm2.第7题图8.有两根竹竿,长度分别为2m和3m.若把它们绑接成长度为4.2m的竹竿,则重叠部分的长度是____________m.9.七年级(2)班有45人都订阅了《数学学习报》或《数学大世界》杂志,已知订阅《数学大世界》的比订《数学学习报》的多5人,两种杂志都订阅的有20人,问:订《数学学习报》的有多少人?10.已知甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本.B组自主提高11.篮球赛的组织者出售球票,需要付给售票处12%酬金,如果组织者在扣除酬金后每张球票净得不少于12元,按精确到0.01元的要求,球票票价至少应为()A.13.44元B.13.54元C.13.64元D.13.74元12.周大爷准备去银行储蓄一笔现金.经过咨询,银行的一年定期储蓄年利率为3.5%,两年定期的年利率为4.4%.如果将这笔现金存入两年定期储蓄,期满后将比先存一年定期储蓄到期后连本带息再转存一年定期的方式多得利息335.5元.周大爷准备储蓄的这笔现金是多少元?C组综合运用13.(南京中考)某园林门票价格规定如下表:某校一年级甲、乙两班共104人去该园游玩,其中甲班人数较多,有50多人,经估算,若两班都以班为单位分别购票,则一共应付1240元.问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可以省多少钱?14.某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:”公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:”我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元?(2)公司经理问:”你们准备怎样租车?”甲同学说:”我的方案是只租用45座的客车,可是会有一辆客车空出30个座位.”乙同学说:”我的方案是只租用60座客车,正好坐满且比甲同学的方案少用两辆客车.”王老师在一旁听了他们的谈话说:”从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由.参考答案5.4一元一次方程的应用(第4课时) 【课堂笔记】1.本金利率存期税率本金利息利息税 2.(1)理解问题制订计划执行计划回顾(2)思路和方案(3)建立数学模型、求解【分层训练】1.A 2.B 3.C 4.D 5.C 6.(1)80(2)100(3)5050% 7.348.0.89.设订《数学学习报》的有x人,那么订《数学大世界》的就有(x+5)人.根据题意得,x+(x+5)=45+20,解得x=30.答:订《数学学习报》的有30人.10.设甲服装成本x元,则乙服装成本为(500-x)元,由题意,得[(1+50%)x+(1+40%)(500-x)]×0.9-500=157,解得x =300,500-300=200(元).答:甲服装成本为300元,乙服装成本为200元. 11.C 12.20000元13.(1)设甲班有x(x >50)人,则乙班人数为(104-x)人.①当104-x ≤50时,有11x +13(104-x)=1240,解得x =56(符合题意).104-x =48(人). ②当104-x >50时,有11x +11(104-x)=1240,此方程无解.(2)104×9=936(元),1240-936=304(元).答:(1)甲班有56名学生,乙班有48名学生;(2)两班合起来购票可以节省304元.14.(1)设45座的客车每辆每天的租金为x 元,则60座的客车每辆每天的租金为(x +100)元.则2(x +100)+5x =1600,解得:x =200,∴x +100=300(元).答:45座的客车每辆每天的租金为200元,60座的客车每辆每天的租金为300元.(2)设这个学校七年级共有y 名学生,则y +3045=y 60+2,解得y =240. 答:甲和乙的方案的费用都为1200元,比甲和乙更经济的方案是:租用45座的客车4辆,60座的客车1辆.这个方案的费用为1100元,且能让所有同学都有座位.。
第4课时利率等其他问题一、选择题1.某品牌服装折扣店将某件衣服按进价提高50%后标价,再打八折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是( )A.50%x×80%=2401+50%x×80%=240B.()C.240×50%×80%=x1+50%x=240×80%D.()2.2017·恩施州某服装进货价为80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为( )A.5 B.6 C.7 D.83.陈华以八折的优惠价购得一双鞋子节省了20元,则他买鞋子实际花了( )A.60元 B.80元 C.100元 D.150元4.某商店均以64元的价格卖出两个进价不同的计算器,其中一个盈利60%,另一个亏本20%,则在这次买卖中,这家商店( )A.不赔不赚 B.赚了8元C.赔了8元 D.赚了32元5.商品涨价25%后,欲恢复原价,则应降价( )A.15% B.20% C.25% D.40%6.国家规定工职人员每月工资超出3500元以上的部分应缴纳个人所得税,超过部分不满1500元的,应按3%的税率纳税.小张的爸爸10月份的工资是4500元,则小张的爸爸10月份应交个人所得税( )A.135元 B.105元 C.45元 D.30元二、填空题7.刘老师2017年12月存入银行若干元人民币,年利率为1.75%,一年后将获得利息525元,则他存入了________元人民币.8.某中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,那么正好送完.设敬老院有x位老人,依题意可列方程为______________.三、解答题9.某班学生有45人会下象棋或围棋,会下象棋的人数比会下围棋的多5人,两种都会下的有20人,则会下围棋的学生有多少人?10.五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为1000元的商品,共节省280元,则用贵宾卡又享受了几折优惠?11.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?12.为了合理利用电力资源,缓解用电紧张状况,某省电力部门出台了使用“峰谷电”的政策及收费标准(见下表).已知王老师家5月份使用“峰谷电”95千瓦时,交电费43.4元,则王老师家5月份“峰电”和“谷电”各用了多少千瓦时?13.某商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场共获利多少元?14.2017·平阳期末平价商场经销的甲、乙两种商品,甲种商品每件售价为60元,利润率为50%;乙种商品每件进价为50元,售价为80元.(1)甲种商品每件进价为________元,乙种商品每件的利润率为________;(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件;(3)在元旦期间,该商场只对甲、乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件.链接学习手册例3归纳总结1.B2.[解析] B根据题意得200×x10-80=80×50%,解得x=6.故选B. 3.B4.B5.B6.[全品导学号:63832301] D7. 300008. 2x+16=3x9.解:设会下围棋的学生有x人,则会下象棋的有(x+5)人.由题意可得x+5+x-20=45,解得x=30.答:会下围棋的学生有30人.10.解:设用贵宾卡又享受了x折优惠,由题意得1000×0.8×x10=1000-280,解得x=9.答:用贵宾卡又享受了九折优惠.11.解:设每件衬衫降价x元,根据题意得120×400+(500-400)×(120-x)=500×80×(1+45%),解得 x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.12.解:设王老师家5月份“峰电”用了x千瓦时,则“谷电”用了(95-x)千瓦时,根据题意,得0.56x+0.28×(95-x)=43.4,解这个方程,得x=60,则95-x=35.答:王老师家5月份“峰电”和“谷电”分别用了60千瓦时和35千瓦时.13.解:(1)设第一次购进了x台,根据题意,得150x=(150+30)(x-10),解得x=60,则x-10=50.答:第一次购进了60台,第二次购进了50台.(2)(250-150)×60+(250-180)×50=9500(元),所以商场共获利9500元.14.解:(1)40 60%(2)设购进甲种商品x件,则购进乙种商品(50-x)件,由题意得40x+50(50-x)=2100,解得x=40,则50-x=10.答:购进甲种商品40件,乙种商品10件.(3)设小华打折前应付款y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得y=560,560÷80=7(件);②打折前购物金额超过600元,由题意得600×0.82+(y-600)×0.3=504,解得y=640,640÷80=8(件).综上所述,小华在该商场购买乙种商品7件或8件.。
七年级数学一元一次方程提高练习一.解答题(共30小题)1.已知+m=my﹣m.(1)当m=4时,求y的值.(2)当y=4时,求m 的值.已知关于x的方程3(x﹣2)=x﹣a的解比的解小,求a 的值.2.某同学在解方程去分母时,方程右边的(﹣1)没有乘3,因而求得的解为x=2,请你求出a的值,并正确地解方程.3.某工厂第一车间有x人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?10.先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.11.已知关于x的方程(m+3)x|m|﹣2+6m=0…①及nx﹣5=x(3﹣n)…②的解相同,其中方程①是一元一次方程,求代数式(m+x+1)2019•(﹣m2n+xn2)的值.12.某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高35%后,打9折另送50元路费的方式销售,结果每台电视机仍获利208元,问每台电视机的进价是多少元?13.甲乙两运输队,甲队原有32人,乙队原有28人,若从乙队调走一些人到甲队,那么甲队人数恰好是乙队人数的2倍,问从乙队调走了多少人到甲队?14.关于x的方程(m﹣1)x n﹣3=0是一元一次方程.(1)则m,n应满足的条件为:m ,n ;(2)若此方程的根为整数,求整数m的值.15.将连续的奇数1,3,5,7,9…,排成如图的数表,问:(1)十字框中的五个数的和及15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于2009吗?若能,请求出这五个数;若不能,请说明理由.某市收取水费按以下规定:若每月每户用水不超过20立方米,则每立方米按1.2元收费;若超过20立方米,则超过的部分每立方米按2元收费,如果某户居民某月所交水费的平均水价为每立方米1.5元,那么他这一个月用了多少水?17.一张长方形的餐桌可以坐6个人,按照下图的方式摆放餐桌和椅子:(1)观察表中数据规律填表:餐桌张数1234…n 可坐人数6810(2)一家酒楼,按上图的方式拼桌,要使拼成的一张大餐桌刚好能坐160人,请问需几张餐桌拼成一张大餐桌?(3)若酒店有240人来就餐,哪种拼桌的方式更好?最少要用多少张餐桌?18.若关于x的方程2x﹣3=1和=k﹣3x有相同的解,求k的值.19.如果a,b为定值时,关于x的方程,无论为k何值时,它的根总是1,求a,b的值.20.已知x=3是方程的解,n满足关系式|2n+m|=1,求m+n的值.21.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.22.(1)已知x=﹣3是关于x的方程2k﹣x﹣k(x+4)=5的解,求k 的值.(2)在(1)的条件下,已知线段AB=12cm,点C是直线AB上一点,且AC:BC=1:k,若点D是AC的中点,求线段CD的长.24.学生甲乙两人沿400米的环形跑道跑步,甲的速度为8米/秒,乙的速度为6米/秒.(1)若乙站在甲前面100米处,两人同时同向起跑,几秒后两人能首次相遇?(2)若甲站在乙前面10米处,两人同时同向起跑,几秒后两人能首次相遇?25.甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?26.一个两位数,数字之和是11,若原数加上45,则得到的数正好是原数的十位数字及个位数字交换位置,求原来的两位数.27.先阅读下列解题过程,然后解答问题解方程:|x+3|=2解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5所以原方程的解是x=﹣1,x=﹣5(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b ①无解;②只有一个解;③有两个解.(3).28.已知(m2﹣1)x2﹣(m﹣1)x+8=0是关于x的一元一次方程,它的解为n,试求关于y的方程m|y|=n的解.29.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?30.列方程(组)解下列应用题:(1)一种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么,此商品是按几折销售的?(2)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么该厂六、七两月产量平均增长的百分率是多少?。
章节测试题1.【答题】一种肥皂的零售价是每块2元,购买2块以上(含2块),商场推出两种优惠销售办法,第一种:1块按原价,其余按原价的七五折销售;第二种:全部按原价的八折销售.在购买相同数量的情况下,要使第一种办法和第二种办法得到的优惠相同,需要购买肥皂()A. 5块B. 4块C. 3块D. 2块【答案】A【分析】【解答】设需要购买x块肥皂,则1×2+2×0.75(x-1)=2×0.8x,解得x=5.即需要购买肥皂5块.2.【答题】(2018云南曲靖中考)一个书包的标价为115元,按8折出售仍可获利15%,则该书包的进价为______元.【答案】80【分析】【解答】设该书包的进价是x元,根据题意列方程为115×0.8-x=15%x,解得x=80.3.【答题】(2020独家原创试题)某书店为了响应市文化宣传局推出的“我读书,我快乐,我进步”的九字号召,特推出一种优惠卡,优惠卡面值20元,凭卡购书可享受八折优惠.李飒同学到该书店购书,她先买了优惠卡,再凭卡付款,结果节省了10元.若此次李飒同学不买卡直接购书,则她需要付款______元.【答案】150【解答】设李飒同学不买卡直接购书需要付款x元,由题意得x-(20+0.8x)=10,解得x=150.故她需要付款150元.4.【题文】商场将某种品牌的冰箱先按进价提高50%作为标价,然后打出“八折酬宾,外送100元运装费”的广告,结果每台冰箱仍获利300元,求每台冰箱的进价是多少元.【答案】见解答【分析】【解答】设每台冰箱的进价为x元,则标价为(1+50%)x元.根据题意,得x(1+50%)×80%-100=x+300,解这个方程得x=2000.答:每台冰箱的进价是2000元.5.【答题】动物园的门票售价:成人票每张50元,儿童票每张30元某日动物园售出门票700张,共得29000元.设儿童票售出x张,依题意可列出的一元一次方程是()A. 30x+50(700-x)=29000B. 50x+30(700-x)=29000C. 30x+50(700+x)=29000D. 50x+30(700+x)=29000【答案】A【解答】由题意得成人票售出(700-x)张,可列方程为30%+50(700-x)=29000.选A.6.【题文】如图4-3-2-1,解答下列问题.【答案】见解答【分析】【解答】设平时一袋牛奶需要x元,则一盒饼干需要(7.9+x)元,根据题意得0.9(7.9+x)+x=10-0.8,解得x=1.1,则x+7.9=9.答:平时一盒饼干需要9元,一袋牛奶需要1.1元.7.【答题】(2020山东济南平阴期末,10,★☆☆)一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价为()A. 106元B. 105元C. 118元D. 108元【答案】D【分析】【解答】设这件衣服的进价为x元,则由题意得132×0.9=x+10%x,解得x=108.选D.8.【答题】(2019山东泰安东平期中,18,★☆☆)商店同时卖出两件商品,每件都卖60元,其中一件盈利20%,另一件亏本20%,则这个商店卖出这两件商品是()A. 赚了7元B. 亏了7元C. 赚了5元D. 亏了5元【答案】D【分析】【解答】设这两件商品中其中一件的原价为a元,则a(1+20%)=60,解得a=50,则赚了60-50=10元;设另一件的原价为b元,则b(1-20%)=60,解得6=75,则亏了75-60=15元,因此两件商品一共亏了15-10=5元选D.9.【答题】(2020山东泰安岱岳期末,15,★★☆)某品牌手机进价为800元,按标价的八折出售仍可获利12.5%,则标价为______元.【答案】1125【分析】【解答】设标价为x元,依题意得,解得x=1125,故答案为1125.10.【题文】(2020山东威海乳山期末,23,★★☆)超市的A商品原价为50元/件,B商品原价为6元/件.超市对A,B两种商品制定如下两种促销活动:①购买一件A商品,免费赠送一件B商品;②按购买两种商品总价的八折付款.有一位顾客要购买A商品4件,B商品x件(x>4).(1)若该顾客按方案①购买,则需付款多少元?(用含x的代数式表示)(2)若该顾客按方案②购买,则需付款多少元?(用含x的代数式表示)(3)若该顾客要购买20件B商品,且选用上述中的一种方案,你认为哪种方案合算?为什么?【答案】见解答【分析】【解答】(1)若该顾客按方案①购买,则需付款50×4+6(x-4)=(6x+176)元.(2)若该顾客按方案②购买,则需付款(50×4+6x)×0.8=(160+4.8x)元.(3)采用方案②合算.理由:将x=20代入6x+176,得6×20+176=296(元).将x=20代入160+4.8x,得160+4.8×20=256(元).由于256<296,所以采用方案②合算.11.【答题】(2017湖北恩施州中考,10,★☆☆)某服装进货价为80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A. 5B. 6C. 7D. 8【答案】B【分析】【解答】根据题意得,解得x=6.选B.12.【答题】(2019贵州黔东南州中考,15,★★☆)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价的8折销售,售价为2240元,则这种商品的进价是______元.【答案】2000【分析】【解答】设这种商品的进价是x元,由题意,得(1+40%)x×0.8=2240,解得x=2000,故答案为2000.13.【答题】(2018内蒙古呼和浩特中考,13,★☆☆)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元小华说:“那就多买一个吧,谢谢根据两人的对话可知,小华结账时实际付款______元.【答案】486【分析】【解答】设小华计划买x个笔袋,则可列方程为18x-18×0.9×(x+1)=36,解得x=29.故小华结账时实际付款18×0.9×30=486(元).14.【答题】(2018湖北武汉中考)将正整数1至2018按一定规律排列,如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019B. 2018C. 2016D. 2013【答案】D【分析】【解答】设方框中间的数为x,则另外两个数分别为x-1、x+1,所以这三个数之和为(x-1)+x+(x+1)=3x,所以方框中三个数的和是3的倍数.四个选项中,2018不是3的倍数,舍去;令3x=2019,解得x=673,由673=84×8+1,易得673在题表中最左边一列,而方框中间的数不可能出现在最左侧,∴2019不符合题意,舍去;令3x=2016,解得x=672,由672=84×8,易得672在题表中最右边一列,而方框中间的数不可能岀现在最右侧,∴2016不符合题意,舍去;令3x=2013,解得x=671,由671=83×8+7,易得此时符合题意,∴方框中三个数的和可能为2013.选D.15.【题文】(2018广东梅州实验中学第二次质检)平价商场经销甲、乙两种商品,甲种商品每件售价为60元,利润率为50%;乙种商品每件进价为50元,售价为80元.(1)甲种商品每件进价为______元,每件乙种商品的利润率为______;(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件;(3)在国庆节期间,该商场对甲、乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件.【答案】见解答【分析】【解答】(1)设甲种商品每件进价为x元,则60-x=50%x,解得x=40.故甲种商品每件进价为40元.每件乙种商品的利润率为(80-50)÷50×100%=60%.(2)设购进甲种商品y件,则购进乙种商品(50-y)件,由题意得40y+50(50-y)=2100,解得y=40,即购进甲种商品40件.(3)设打折前小华应付款w元,①当450<w≤600时,由题意得0.9w=504,解得w=560,∴560÷80=7(件).②当w>600时,由题意得600×0.82+(w-600)×0.3=504,解得w=640,∴640÷80=8(件).综上可得,小华在该商场购买乙种商品7件或8件.16.【答题】(2018山东枣庄滕州期末)小华从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟,则他家到学校的路程是()A. 35kmB. 20kmC. 18kmD. 15km【答案】D【分析】【解答】设小华家到学校的路程为xkm,根据题意,得,解得x=15.选D.17.【答题】(2020独家原创试题)小明在妈妈上班的学校上学,妈妈到学校需要用30分钟,小明也走相同的这段路到校,他只需要用20分钟,妈妈比小明提前5分钟动身,小明追上妈妈需要的时间是()A. 5分钟B. 10分钟C. 15分钟D. 20分钟【答案】B【分析】【解答】设小明家到学校的路程是s米,则妈妈的速度为米/分钟,小明的速度为米/分钟,设小明追上妈妈需要的时间为x分钟,则有,解得x=10.选B.18.【答题】小明和小亮在长为400米的圆形跑道上练习长跑.小亮每分钟跑320米,小明每分钟跑240米,如果两人同时由同一起点出发,同向跑步,经过______分钟两人首次相遇.【答案】5【分析】【解答】设经过x分钟两人首次相遇,根据题意得320x-240x=400,解得x=5.19.【题文】(2019山东青岛市局直属四校期末)如图4-3-3-1,已知数轴上点4表示的数为8,B是数轴上位于点A左侧的一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数为______;点P表示的数为______(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问出发多少秒后,P、Q之间的距离恰好等于2?(3)动点M从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、M同时出发,问出发多少秒后,点P追上点M?【答案】见解答【分析】【解答】(1)-12;8-5t.(2)因为运动时间为t(t>0)秒,根据题意得,5t+3t=20-2或5t+3t=20+2,解得或.答:出发秒或秒后,P、Q之间的距离恰好等于2.(3)因为运动时间为t(t>0)秒,根据题意得5t-3t=20,解得t=10.答:出发10秒后,点P追上点M.20.【答题】将一笔资金按一年定期存入银行,年利率为2.2%,到期支取时,得本息和7154元,则这笔资金是()A. 6000元B. 6500元C. 7000元D. 7100元【答案】C【分析】【解答】设这笔资金是x元,由题意得(1+2.2%)x=7154,解得x=7000,即这笔资金是7000元.。
一元一次方程应用题分类专题练习列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.一、年龄问题1.小明今年6岁,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的14倍?解:设x年后小明的年龄是爷爷的14倍,根据题意得方程为: 4(6+x)=72+x二、数字问题2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么?如果把个位数字和十位数字对调,新的两位数可以表示为什么?(填表格并完成解答过程)解.:设这个数的十位数字是x,根据题意得…解方程得:答3.两个连续奇数的和为156,求这两个奇数,设最小的数为x,列方程得 x+x+2+x+4=1564.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
解:设原4位数为x。
&3(20000+x)+489=10x+2解这个方程,得:x=864120000+x=28641 答:原数是28641.5.将连续的奇数1,3,5,7,9…,排成如下的数表:(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.(1),答:五个数的平均数等于15. (2)315/5=63—63-10=5363+10=73 63-1=62 63+1=64答:这五个数分别是53、63、73、62、64。
三、日历时钟问题6、你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗?如果能,求出这四天分别是几号?如果不能,请说明理由. 77/2=38.5@答:不能。
7、在6点和7点间,时钟分针和时针重合?四、几何等量变化问题(等周长变化,等体积变化)常用公式:三角行面积= ,正方形面积 圆的面积 , 梯形面积3735333121111!矩形面积 柱体体积 椎体体积 球体体积8、已知一个用铁丝折成的长方形,它的长为9cm ,宽为6cm ,把它重新折成一个宽为5cm 的长方形, 则新的长方形的宽是多少?设新长方形长为xcm ,列方程为 2*(9+6)=2*(5+x )9、将棱长为20cm 的正方体铁块没入盛水量筒中,已知量筒底面积为12cm 2,问量筒中水面升高了多少cm ? 无解,因为放不下。
10、如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm 2,求重叠部分面积。
解:设重叠部分面积是x 。
224+2x=4x+6x 解这个方程,得:x=28 答:重叠部分面积是28 cm 211、如图是两个圆柱体的容器,它们的半径分别是4cm 和8cm ,高分别为16cm 和10cm ,先在第一个容器中倒满水,然后将其全部倒入第二个容器中。
(1)问倒完后,第二个容器水面的高度是多少?(2)如右图把容器1口朝上插入容器2水位又升高多少?…/容器1半径4cm容器2 半径8cm五、打折销售:公式:利润=售出价-进货价(成本价) 利润率=×100%商品利润商品进价12、 一只钢笔原价30元,现打8折出售,现售价是 24 元;如果这支钢笔的成本价为12元,那么不打折前商家每支可以获利 18 元,打折之后,商家每支还可以获利 12 元13、 一件服装标价200元,①按标价的8折销售,仍可获利20元,该服装的进价是 140 元;②按标价的8折销售,仍可获利10%,该服装的标价是 192.5 元15、一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是_250元.~设进价x 元,根据题意列方程得 1.2x*0.9=x+2016、服装店将某种服装按成本提高40%标价,又以八折优惠卖出,每件仍获利15元,则每件的成本为_________. 17、某件商品9折降价销售后每件商品售价为a 元,则该商品每件原价为________。
18、一种药物涨价25%的价格是50元,那么涨价前的价格x 满足的方程是____________。
18、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.19、某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。
问该文具的进价是每件多少元?%20、杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的成本降低了 .(精确到0.01元.毛利率=00100-⨯售价成本成本)21、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?23、某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系: 11733D P+-=.问:.(1)当单价为4元时,市场需求量是多少?(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?24、八一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。
每张五夹板可做两个面,每平方米用漆500克..(1)建材商店将一张五夹板按成本价提高40%后标价,又以8折优惠卖出,结果每张仍获利4.8元(五夹板必须整张购买):(2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34元.试问购买五夹板和油漆共需多少钱?六、人员分配调配问题:25、某班级开展活动而分为甲乙两个小组,甲队29人,乙队19人:【(1) 若从甲组调x名学生到乙组,使得两组人数相等,则可列方程:;(2) 若从乙组调y名学生到甲组,使得甲组人数是乙组人数的两倍,则可列方程:。
26、如果甲、乙两班共有90人,如果从甲班抽调3人到乙班,则甲乙两班的人数相等,则甲班原有多少人?解:设甲班原有x人,则乙班原有人,由题意可得方程27、某班级开展植树活动而分为甲乙两个小组,甲队29人,乙队19人,后来发现任务比较重,人手不够,从另外一个班调来12个人分配给两个队,怎样分配才能使甲对人数是乙队的2倍&/28、温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台。
现在决定给武汉8台,南昌6台。
每台机器的运费如表1。
设杭州运往南昌的机器为x台。
(1)把表2填写完整(单位:百元);起点到终点的运费情况起点到终点机器分配情况(表1 表2(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?&29、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
$30、学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?【31、小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。
七、比值问题:技巧在于根据比值来设未知数*32、如果两个课外兴趣小组共有人数54人,两个小数的人数之比是4:5;如果设人数少的一组有4x人,那么人数多的一组有________人,可列方程为: ______________________33、甲乙两人身上的钱数之比为7:6,两人去商店买东西后,甲花去50元,乙花去60时,此时他们身上的钱数之比为3:2,则他们身上余下的钱数分别是多少?设甲余钱元,乙余钱元,列方程为;八、部分与整体问题思路:此类问题中,一般都存在两个等量关系,选择一个关系来设未知数,并表示出其他量,再利用另一个关系来列方程(通常用可列表的方法)。
34、学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块砖,其他年级同学每人搬8块,总共搬了400块砖,问初一同学有多少人参加搬砖?分析:设初一同学有x人参加搬砖,列表如下>可列出方程:_________________________________________}35、如果买1本笔记本和1支钢笔刚好需要6元钱,买1本笔记本和4支钢笔,共需18元,那么两种笔的价格分别是多少?36、某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
—37、某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?.38、某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
·九、工程问题:一般情况下把工作总量看成单位1,公式:工作时间×工作效率=工作总量(单位1)如:一项工程甲队需30天完成任务,则甲每天完成工作量的130,则工作效率为130;如果乙队需要20天完成任务,则甲每天完成工作量的120,则工作效率为120,两人一起可以完成11()2030——工作效率之和39、某件文件需要打印,小李独立完成需要6个小时,小王独立完成需要8个小时,如果两人合作的话,需要多少时间可以完成。
设需要x小时两人合作可以完成,则可列方程:40、一项工作甲工程队单独施工需要30天才能完成,乙队单独需要20天才能完成。
现在由甲队单独工作5天之后,剩下的工作再由两队合作完成,问他们需要合作多少天?>十、(1)储蓄问题:利息=本金×利率×期数,本息和=本金+利息41、小明把700元存入银行,已知存款一年的利率为2.2%,一年后他从银行取钱,共拿到本息合计715.4元完成表格:42、小明把春节得到的1000元钱存入银行,一年后,小明扣除利息税后连本带息共取回1080元,若利息税是20%,小明实得利息是_________元,他存入银行的这一年的利率是__________。
43、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。
若设小明的这笔一年定期存款是x元,则下列方程中正确的是()(A )1219%20%98.1=⋅+x (B )1219%20%98.1=⋅x【(C )1219%)201(%98.1=-⋅x (D )1219%)201(%98.1=-⋅+x x(2)增长率问题:44、某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产 %45、某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x 公斤,则列出的正确的方程是 。