《半导体物理》讲义
- 格式:doc
- 大小:24.00 KB
- 文档页数:4
半导体物理总结-讲义(1)《半导体物理总结-讲义》是一本关于半导体物理基础知识的讲解材料,其中包括半导体的基本特性、载流子运动、PN结、场效应管等内容。
以下为该书的重点内容概述:一、半导体材料特性1. 能带结构:半导体的能带结构高于导体、低于绝缘体,因此具有介于导体和绝缘体之间的导电和绝缘特性。
2. 晶格结构:半导体具有有序、周期性的晶体结构,能够有效控制电子在晶体内的运动。
3. 掺杂:通过掺杂材料改变半导体的电子浓度,从而使其具有p型或n型半导体的特性。
二、载流子运动1. 热激发:半导体中的电子可以受到能量的激励而被激发到导带中。
热能、光能、电场或磁场都可以起到激发的作用。
2. 离子化:在电场的作用下,半导体中的电子可能与晶格原子碰撞,失去能量而被离子化。
形成的正负离子对在电场作用下会向相反方向漂移。
3. 扩散:电子或空穴在半导体中由高浓度区域向低浓度区域扩散,使浓度逐渐平均,实现电流的流动。
扩散是在没有外电场的情况下发生的。
三、PN结1. 构成:PN结由p型半导体和n型半导体组成。
2. 特性:PN结具有一定的整流特性,能够阻止电流从n型半导体流向p型半导体,但允许反向电流。
3. 工作原理:在PN结中,载流子在电场的作用下发生扩散和漂移,形成电流。
四、场效应管1. 构成:场效应管由栅、漏极和源极三部分构成。
栅极位于n型半导体上,由于n型半导体中的电子易受到电场的影响,因此在栅极上加入电信号可以控制通道的导电性。
2. 工作原理:在没有控制电压的作用下,场效应管的通道是关闭的。
当加入一定电压时,栅极上的电场可以将通道打开,使得电流得以流动。
以上为《半导体物理总结-讲义》的重点内容概述,读者可根据需要深入学习相关内容。
莲藕批发供货合同模板甲方(供货方):__________地址:_____________________联系电话:_________________法定代表人:_______________身份证号码:______________乙方(采购方):__________地址:_____________________联系电话:_________________法定代表人:_______________身份证号码:______________根据《中华人民共和国合同法》及相关法律法规的规定,甲乙双方本着平等自愿、诚实信用的原则,就莲藕的批发供货事宜,经协商一致,签订本合同,以资共同遵守。
第一条产品信息1. 产品名称:莲藕。
2. 规格型号:______________________。
3. 质量标准:符合国家相关标准及行业规定。
4. 包装要求:应符合运输及储存要求,确保产品在运输过程中不受损害。
第二条供货数量及价格1. 供货数量:乙方每次采购的莲藕数量为______吨,具体数量以乙方订单为准。
2. 单价:每吨莲藕的价格为人民币______元(含税),价格随市场波动可进行调整,双方应提前协商确定。
3. 总价:根据实际供货数量乘以单价计算。
第三条交货时间及地点1. 交货时间:甲方应在乙方下达订单后______天内完成供货。
2. 交货地点:乙方指定的地点,具体地址以乙方订单为准。
第四条运输方式及费用1. 运输方式:______________________。
2. 运输费用:由______方承担。
第五条质量验收1. 乙方在收到货物后______小时内进行验收,如发现质量问题,应在______小时内书面通知甲方。
2. 甲方在接到乙方通知后应及时处理,如确属甲方责任,甲方应负责更换或退货。
第六条付款方式及期限1. 付款方式:乙方应在收到货物并验收合格后______天内支付货款。
2. 付款期限:乙方应在合同约定的付款期限内支付全部货款。
半导体物理讲义-2第二部分半导体中的电子和空穴前面我们讨论了半导体能带结构的一些共同的基本特点。
不同的半导体材料.其能带结构不同,而且往往是各向异件的,即沿不同的被矢k方向,E ~ K关系不同。
由于问题复杂,虽然理论上发展了多种计算的力法.但还不能完全确定出电子的全部能态,尚需借助于实验帮助,采用理论和实验相结合的方法来确定半导体中电子的能态。
本节介绍最初测出载流子有效质量并据此推出半导体能带结构的回旋共振实验及硅和锗的能带结构。
因对大多数半导体,起作用的往往是导带底附近的电子和价带顶附近的空穴,所以只给出导带底和价带顶附近的能带结构一、k空间等能面已知,一维情况下设能带极值在k=0处,则导带底附近和价带顶附近的E ~ K关系:图极值附近E ~K 关系示意图所以,如果知道m*n和m*p ,则极值附近的能带结构便可了解。
对实标的三维晶体,以kx , ky , kz为坐标轴构成k空间,k空间任―矢量代表波矢k(kx , ky , kz) 。
其中简单情况(半导体或晶体具有各向同性时):导带低附近E ~ K关系当E(k)为某一定值时,对应于许多组不同的(kx,ky,kz),将这些组不同的(kx,ky,kz)连接起来构成一个封闭面,在这个面上的能量值均相等,这个面称为等能量面,简称等能面。
容易看出,上式表示的等能面是一系列半径为的球面。
图 k空间球形等能面平面示意图一般情况(半导体或晶体具有各向异性的性质):导带低附近E ~ K关系晶体有各向异性时,E(k)与k的关系沿不同的k方向不一定相同,反映出沿不同的k 方向,电子的有效质量不一定相同,而且能带极值不一定位于k=o处。
设导带底位于k0 ,能量为E(k0),在晶体中选择适当的坐标轴kx , ky , kz,并令m*x , m*y , m*z分别表示沿kx , ky , kz 三个方向的导带底电子的有效质量,用泰勒级数在极值k0附近展开,略去高次项,得:注意:要具体了解这些球面或椭球面的方程,最终得出能带结构,还必须知道有效质量的值。
半导体物理讲义一、硅的性质硅是一种呈灰色金属光泽的半金属。
所谓半金属是其一些物理,化学特性介于金属和非金属之间的元素。
硅无毒,无害,性脆,易碎。
元素符号为Si,属周期表中第三周期ⅣA族元素,比重为2.33,原子序数14,原子量为28.086。
在自然界中没有游离状态的硅、多呈氧化物状态存在。
在岩石圈(自表面深度为16公里内的地壳)中的丰度为27.6(重量)%,因而硅的资源极为丰富。
硅的资源虽然极为丰富,但由于其在自然界中呈氧化物状态存在,想要获得半导体级硅实为不是一件易事。
硅的主要原子价态是4价,其次是2价。
常温下化学性质稳定,不溶于强酸,易溶于碱。
在高温下性质活泼,易与多种物资发生化学反应。
硅在自然界的同位素及其所占的比例分别为:28Si 为92.23%, 29Si为4.67 %,30Si为3.10 %。
常压下硅的晶体结构为金刚石型,α=0.5431nm, 加压到15GPa时,改变为面心立方型,α=0.6636nm。
硅纯化到一定程度为良好半导体材料。
所谓半导体,是指其电阻率介于导体和绝缘体之间,其范围为10-3-1010Ω.cm的一种固体物质。
如载流子浓度为1×1018 cm-3的N型重掺硅单晶,其电阻率大约为5×10-2Ω.cm,而载流子浓度为1×1012 cm-3的N型高纯度硅单晶,其电阻率大约为5000Ω.cm。
载流子浓度是一个与杂质浓度有关的重要电学参数,杂质含量多少是影响电阻率大小的重要因素。
电流是带正电的空穴和带负电的电子定向传输实现的。
硅是一种神奇元素,通常的工业硅(99.0 - 99.9%)不具有半导体性能。
这种纯度水平的硅多用在制造硅钢片或与铝制成合金用在汽车工业上。
只有将硅提纯到很高纯度,即人们常说的89(99.999999 %)到99 (99.9999999 %)时就显示出其优异的半导体材料性能。
半导体硅材料包括:硅多晶,硅单晶,硅单晶片(切片,研磨片以及抛光片等)硅外延片,非晶硅和微晶硅,多孔硅以及以硅基材料(SOI和SiGe/Si材料等)。
半导体物理讲义(第五稿)胡礼中编大连理工大学物理与光电工程学院电子科学与技术研究所2011年2月引言本课程是为我校电子科学与技术专业开设的一门必修专业基础课,也是其他相关专业的重要选修课,主要介绍半导体的一些基本物理概念、现象、物理过程及其规律,为学习诸如《半导体材料》、《半导体器件》等后续课程打下基础。
本课程共分八章。
第一和第二章扼要复习一下《固体物理》已详细介绍过的有关晶体结构和晶格振动及缺陷的基本知识,这些内容是学习后续内容前必需掌握的。
第三章到第八章,讲述半导体物理的主要内容。
包括:半导体中的电子状态,电子与空穴的统计分布,电导和霍尔效应,非平衡载流子,半导体的接触现象和半导体表面。
应该说,能带理论是半导体物理学的基础,因此在第三章中先通过简单的模型和讨论将能带理论的主要结论告诉同学们。
包括更复杂的数学推导与计算的严格能带理论,我们将安排在研究生的《半导体理论》课程中讲授。
半导体物理涉及的物理概念和基本原理较多,为了加深对它们的理解,在各章里均给同学们留有习题或思考题,这些题目有的还是基本内容的补充。
也有少量难度较大的题目,这样的问题有利于拓宽同学们的知识面和训练同学们的独立思考能力。
这里还想说明一点,近年来,半导体学科发展迅速,涉及的内容极其丰富,这门48学时的课程是远远不能容纳的。
我只希望能通过本课程的学习,把大家引进门,使同学们对半导体科学和技术发生兴趣,以便今后进一步深入学习、研究和应用。
第五稿修正了第四稿中仍然存在的一些错误和不妥之处。
参考书1.黄昆,谢希德《半导体物理学》,科学出版社,1958年2.黄昆,韩汝琦《半导体物理基础》,科学出版社,1979年3.刘文明《半导体物理学》,吉林人民出版社,1982年4.刘恩科等《半导体物理学》,国防工业出版社(1~~4版)5.孟宪章,康昌鹤《半导体物理学》,吉林大学出版社,1993年6.中岛坚志郎《半导体工程学》,科学出版社,2001年7.叶良修《半导体物理学》,高等教育出版社,1987年8.方俊鑫,陆栋《固体物理学》,上海科学技术出版社,1993年9.曾谨言《量子力学》,科学出版社,2000年作业本:活页形式目录第一章晶体结构 4 §1-1 晶体内部结构的周期性 4 §1-2 晶体的对称性 5 §1-3 倒格子与周期性函数的付立叶展开 6 §1-4 常见半导体的晶体结构7 第二章晶格振动和晶格缺陷9 §2-1 一维均匀线的振动9 §2-2 一维单原子链的振动10 §2-3 一维双原子链的振动12 §2-4 玻恩---卡门边界条件(周期性边界条件)14 §2-5 声子16 §2-6 晶体中的缺陷和杂质16 第三章半导体中的电子状态18 §3-1 电子的运动状态和能带18 §3-2 价带、导带和禁带21 §3-3 (自由)载流子22 §3-4 杂质能级与杂质补偿效应22 第四章半导体中载流子的统计分布25 §4-1 状态密度25 §4-2 费米分布函数和费米能级27 §4-3 导带电子密度和价带空穴密度29 §4-4 本征半导体30 §4-5 杂质半导体31 §4-5-1 杂质能级的占据几率31 §4-5-2 只含一种杂质的半导体32 §4-5-3 存在杂质补偿的半导体37 §4-6 简并半导体40 第五章半导体中的电导现象和霍耳效应42 §5-1 载流子的散射42 §5-2 电导现象44 §5-3 霍耳效应46 第六章非平衡载流子51 §6-1 非平衡载流子的产生和复合51 §6-2 连续性方程53 §6-3 非本征半导体中非平衡少子的扩散和漂移58 §6-4 近本征半导体中非平衡载流子的扩散和漂移63 §6-5 载流子复合64 第七章半导体的接触现象67 §7-1 外电场中的半导体67 §7-2 金属—半导体接触70 §7-3 金属—半导体接触的整流现象72 §7-4 半导体pn结74§7-5 pn结的整流现象77 §7-6 理想pn结理论(窄pn结理论)77 §7-7 pn结击穿80 §7-8 异质结81 §7-9 欧姆接触83 第八章半导体表面84 §8-1 表面态与表面空间电荷区84 §8-2 空间电荷区的理论分析84 §8-3 表面场效应87 §8-4 理想MOS的电容—电压特性88 §8-5 实际MOS的电容—电压特性90附:半导体物理习题。
《半导体物理》讲义晶体结构晶格§1晶格相关的基本概念1.晶体:原子周期排列,有周期性的物质。
2.晶体结构:原子排列的具体形式。
3.晶格:典型单元重复排列构成晶格。
4.晶胞:重复性的周期单元。
5.晶体学晶胞:反映晶格对称性质的最小单元。
6.晶格常数:晶体学晶胞各个边的实际长度。
7.简单晶格&复式晶格:原胞中包含一个原子的为简单晶格,两个或者两个以上的称为复式晶格。
8.布拉伐格子:体现晶体周期性的格子称为布拉伐格子。
(布拉伐格子的每个格点对应一个原胞,简单晶格的晶格本身和布拉伐格子完全相同;复式晶格每种等价原子都构成和布拉伐格子相同的格子。
)9.基失:以原胞共顶点三个边做成三个矢量,α1,α2,α3,并以其中一个格点为原点,则布拉伐格子的格点可以表示为αL=L1α1 +L2α2 +L3α3 。
把α1,α2,α3 称为基矢。
10.平移对称性:整个晶体按9中定义的矢量αL 平移,晶格与自身重合,这种特性称为平移对称性。
(在晶体中,一般的物理量都具有平移对称性)11.晶向&晶向指数:参考教材。
(要理解)12.晶面&晶面指数:参考教材。
(要理解)立方晶系中,若晶向指数和晶面指数相同则互相垂直。
§2金刚石结构,类金刚石结构(闪锌矿结构)金刚石结构:金刚石结构是一种由相同原子构成的复式晶格,它是由两个面心立方晶格沿立方对称晶胞的体对角线错开1/4长度套构而成。
常见的半导体中Ge,Si,α-Sn(灰锡)都属于这种晶格。
金刚石结构的特点:每个原子都有四个最邻近原子,它们总是处在一个正四面体的顶点上。
(每个原子所具有的最邻近原子的数目称为配位数)每两个邻近原子都沿一个<1,1,1,>方向,处于四面体顶点的两个原子连线沿一个<1,1,0>方向,四面体不共顶点两个棱中点连线沿一个<1,0,0,>方向。
金刚石结构的密排面:{1,1,1} 晶面的原子都按六方形的方式排列。
第三部分 载流子输运现象一、半导体导电性 1、电导率(电阻率)实际问题中,通过半导体的电流往往是不均匀的。
不能只讲通过半导体的总电流强度而必须具体地分析电流的不均匀分布。
图1 用探针测电流 图2 集成片的电流分布( 图1电流形成一个以探针针尖为中心、沿半径四外散开的电流分布图2从表面向内,每一层杂质浓度都不一样,通过它的电流在各层之间是不均匀的,越近表面电流越强。
)为了描述导电体内各点电流强弱的不均匀性,通常采用欧姆定律的微分形式:可从欧姆定律RVI =导出,取一个长为L ,横截面为S 的均匀导电体,当两端加电压V 时,在这样一个形状规则的均匀材料中,电流是均匀的,电流密度j 在各处是一样的。
总电流强度Sj I =同时,电场强度也是均匀的,有LE V = 则,RLESj = 得,E j ρ1=其中LRS=ρ,即材料的电阻率。
单位: 定义,ρσ1=,称为电导率。
单位:所以,欧姆定律的微分形式E j σ= 。
单位:安培/厘米2 (A/cm 2);注意:在这里,微分形式的欧姆定律虽然是从均匀导电情况导出的,显然,它也适用于非均匀的情况。
因为对于非均匀导体,我们可以取一个小体积元,当小体积元足够小时,可以看成是均匀的。
从微分欧姆定律看出,材料的导电能力是用电导率来表示。
通过前面学习已知,一般掺杂半导体在常温范围内导电性能主要由掺杂决定。
那末,电导率和掺杂是什么关系呢?要解决这个问题,就有必要分析—下,在电场作用下载流子如何形成电流的机理。
下面我们结合N 型半导体分析这个问题。
我们应当知道,即使没有电场作用,电子也并不是静止不动的,而是象气体中分子那样,杂乱无章地进行热运动。
由于电子质量比分子小得多,所以,电子热运动的速度比气体分子要大得多。
具体说,按照热运动理论,微观粒子无规则热运动的平均动能与绝对温度T 有如下关系:平均热运动动能2*2123t n k v m kT E ==如果用V t 表示半导体中电子的平均热运动速度,T=300K, 并且代入电子质量m 。
第二部分半导体中的电子和空穴一、热平衡载流子的统计分布为设计、分析半导体器件,有必要了解半导体单位体积内的载流子浓度(即载流子密度),由前面讲述可知,本征半导体中电子和空穴的浓度大致相等。
掺加施主杂质后,电子为多数载流子的n型半导体,其空穴浓度会怎么样? P型半导体的电子浓度、空穴浓度又如何? 这里,我们以前面获取的知识为基础,以定量方式求出半导体的载流子浓度。
前面已讲过,价带、导带是电子的能级集合体。
在各级能带中,电子按照某种分布概率配置在各能级上。
那么,单位晶体中电子所能利用的能级数有几个,它们在能带中怎样分布呢? 这就需要借助统计力学的一些结论来说明,以帮助我们进一步来理解半导体。
1、电子的分布函数固体中的电子具有下述特征:1)根据泡利不相容原理.若占有同一个能级的电子数超过2个则不能有相同的能量值。
2)不能相互区别。
受此制约,能量为E的电子态(能级)被1个电子占有的概率可由下式的费米-狄拉克分布函数(或者简称费米函数)结出:这里,k为玻尔兹曼常数(k=1.38x10-23 J/K=8.62x10-5 eV/K),T是绝对温度[K],EF 费米能级(费米能)。
可以看出,当能量E与费米能级EF相等时,分布函数为即电子占有率为l/2的能级称为费米能级。
左图表示了T=0K和任意温度T1、T2(T2> T1)时费米分布函数f(E)的情况。
我们注意到f(E)在E=EF时是对称的。
T=0K时,若E < EF , f(E)=1 ; 若E > EF,f(E)=0 。
这意味着比EF小的能级上全部被电子占据,比EF大的能级上全部空着(没有电子)。
图费米分布函数当温度上升,即T>0K时,电于占据比EF高的能级的概率很小,比EF低的能级上电子不存在(能级空着)的概率为1- f(E)。
这意味着EF附近的电子获得热能后,占据了比EF更高的能级,而在原处留下了空位。
当能量E 比E F 大3KT 或小3KT 时,费米分布函数中的指数项分别大于20或小于0.05。
半导体物理学讲义第⼀章半导体中的电⼦状态本章介绍:本章主要讨论半导体中电⼦的运动状态。
主要介绍了半导体的⼏种常见晶体结构,半导体中能带的形成,半导体中电⼦的状态和能带特点,在讲解半导体中电⼦的运动时,引⼊了有效质量的概念。
阐述本征半导体的导电机构,引⼊了空⽳散射的概念。
最后,介绍了Si、Ge和GaAs的能带结构。
在1.1节,半导体的⼏种常见晶体结构及结合性质。
在1.2节,为了深⼊理解能带的形成,介绍了电⼦的共有化运动。
介绍半导体中电⼦的状态和能带特点,并对导体、半导体和绝缘体的能带进⾏⽐较,在此基础上引⼊本征激发的概念。
在1.3节,引⼊有效质量的概念。
讨论半导体中电⼦的平均速度和加速度。
在1.4节,阐述本征半导体的导电机构,由此引⼊了空⽳散射的概念,得到空⽳的特点。
在1.5节,介绍回旋共振测试有效质量的原理和⽅法。
⾃学内容。
在1.6节,介绍Si、Ge的能带结构在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构第⼀节半导体的晶格结构和结合性质本节要点1.常见半导体的3种晶体结构;2.常见半导体的2种化合键。
1. ⾦刚⽯型结构和共价键重要的半导体材料Si、Ge都属于⾦刚⽯型结构。
这种结构的特点是:每个原⼦周围都有四个最近邻的原⼦,与它形成四个共价键,组成⼀个如图1(a)所⽰的正四⾯体结构,其配位数为4。
⾦刚⽯型结构的结晶学原胞,是⽴⽅对称的晶胞如图1(b)图所⽰。
它是由两个相同原⼦的⾯⼼⽴⽅晶胞沿⽴⽅体的空间对⾓线滑移了1/4空间对⾓线长度套构成的。
⽴⽅体顶⾓和⾯⼼上的原⼦与这四个原⼦周围情况不同,所以它是由相同原⼦构成的复式晶格。
其固体物理学原胞和⾯⼼⽴⽅晶格的取法相同,但前者含两个原⼦,后者只含⼀个原⼦。
原⼦间通过共价键结合。
共价键的特点:饱和性、⽅向性。
2. 闪锌矿结构和混合键III-V族化合物半导体绝⼤多数具有闪锌矿型结构。
闪锌矿结构由两类原⼦各⾃组成的⾯⼼⽴⽅晶胞沿⽴⽅体的空间对⾓线滑移了1/4空间对⾓线长度套构成的。
半导体物理讲义
(第五稿)
胡礼中编
大连理工大学物理与光电工程学院
电子科学与技术研究所
2011年2月
引言
本课程是为我校电子科学与技术专业开设的一门必修专业基础课,也是其他相关专业的重要选修课,主要介绍半导体的一些基本物理概念、现象、物理过程及其规律,为学习诸如《半导体材料》、《半导体器件》等后续课程打下基础。
本课程共分八章。
第一和第二章扼要复习一下《固体物理》已详细介绍过的有关晶体结构和晶格振动及缺陷的基本知识,这些内容是学习后续内容前必需掌握的。
第三章到第八章,讲述半导体物理的主要内容。
包括:半导体中的电子状态,电子与空穴的统计分布,电导和霍尔效应,非平衡载流子,半导体的接触现象和半导体表面。
应该说,能带理论是半导体物理学的基础,因此在第三章中先通过简单的模型和讨论将能带理论的主要结论告诉同学们。
包括更复杂的数学推导与计算的严格能带理论,我们将安排在研究生的《半导体理论》课程中讲授。
半导体物理涉及的物理概念和基本原理较多,为了加深对它们的理解,在各章里均给同学们留有习题或思考题,这些题目有的还是基本内容的补充。
也有少量难度较大的题目,这样的问题有利于拓宽同学们的知识面和训练同学们的独立思考能力。
这里还想说明一点,近年来,半导体学科发展迅速,涉及的内容极其丰富,这门48学时的课程是远远不能容纳的。
我只希望能通过本课程的学习,把大家引进门,使同学们对半导体科学和技术发生兴趣,以便今后进一步深入学习、研究和应用。
第五稿修正了第四稿中仍然存在的一些错误和不妥之处。
参考书
1.黄昆,谢希德《半导体物理学》,科学出版社,1958年
2.黄昆,韩汝琦《半导体物理基础》,科学出版社,1979年
3.刘文明《半导体物理学》,吉林人民出版社,1982年
4.刘恩科等《半导体物理学》,国防工业出版社(1~~4版)
5.孟宪章,康昌鹤《半导体物理学》,吉林大学出版社,1993年
6.中岛坚志郎《半导体工程学》,科学出版社,2001年
7.叶良修《半导体物理学》,高等教育出版社,1987年
8.方俊鑫,陆栋《固体物理学》,上海科学技术出版社,1993年
9.曾谨言《量子力学》,科学出版社,2000年
作业本:活页形式
目录
第一章晶体结构 4 §1-1 晶体内部结构的周期性 4 §1-2 晶体的对称性 5 §1-3 倒格子与周期性函数的付立叶展开 6 §1-4 常见半导体的晶体结构7 第二章晶格振动和晶格缺陷9 §2-1 一维均匀线的振动9 §2-2 一维单原子链的振动10 §2-3 一维双原子链的振动12 §2-4 玻恩---卡门边界条件(周期性边界条件)14 §2-5 声子16 §2-6 晶体中的缺陷和杂质16 第三章半导体中的电子状态18 §3-1 电子的运动状态和能带18 §3-2 价带、导带和禁带21 §3-3 (自由)载流子22 §3-4 杂质能级与杂质补偿效应22 第四章半导体中载流子的统计分布25 §4-1 状态密度25 §4-2 费米分布函数和费米能级27 §4-3 导带电子密度和价带空穴密度29 §4-4 本征半导体30 §4-5 杂质半导体31 §4-5-1 杂质能级的占据几率31 §4-5-2 只含一种杂质的半导体32 §4-5-3 存在杂质补偿的半导体37 §4-6 简并半导体40 第五章半导体中的电导现象和霍耳效应42 §5-1 载流子的散射42 §5-2 电导现象44 §5-3 霍耳效应46 第六章非平衡载流子51 §6-1 非平衡载流子的产生和复合51 §6-2 连续性方程53 §6-3 非本征半导体中非平衡少子的扩散和漂移58 §6-4 近本征半导体中非平衡载流子的扩散和漂移63 §6-5 载流子复合64 第七章半导体的接触现象67 §7-1 外电场中的半导体67 §7-2 金属—半导体接触70 §7-3 金属—半导体接触的整流现象72 §7-4 半导体pn结74
§7-5 pn结的整流现象77 §7-6 理想pn结理论(窄pn结理论)77 §7-7 pn结击穿80 §7-8 异质结81 §7-9 欧姆接触83 第八章半导体表面84 §8-1 表面态与表面空间电荷区84 §8-2 空间电荷区的理论分析84 §8-3 表面场效应87 §8-4 理想MOS的电容—电压特性88 §8-5 实际MOS的电容—电压特性90
附:半导体物理习题。