高频变换器和开关电源控制器.
- 格式:docx
- 大小:49.01 KB
- 文档页数:6
开关电源电路组成及常见各模块电路分析开关电源电路是一种将输入电流转换为高频脉冲的电路,通过变压器进行变换和滤波,最终将电源提供给负载。
它由多个模块组成,包括输入滤波器、整流器、功率变换器、输出滤波器和反馈控制器等。
下面我将对这些模块进行详细分析。
1.输入滤波器:开关电源电路的输入端通常会接入输入电源,因此需要一个输入滤波器来滤除输入电源中的高频噪声和电磁干扰。
输入滤波器通常由电容和电感构成,能够将输入电压平滑成纯直流信号,并提供稳定的电压给后续电路。
2.整流器:整流器的作用是将交流信号转换为直流信号,并提供稳定的电压给功率变换器。
常见的整流器有全波整流和半波整流两种方式。
全波整流使用四个二极管,能够将输入电压的正半周期和负半周期都转换为直流信号,效率更高。
而半波整流只使用两个二极管,仅将输入电压的正半周期转换为直流信号。
3.功率变换器:功率变换器是开关电源电路的核心部分,主要负责将直流信号转换为高频脉冲信号,通过变压器变换和带宽控制,将电源提供给负载。
常见的功率变换器有多种类型,包括单端交错式、反激式、降压升压式等。
这些变换器均具有高效率、可靠性和短路保护等特点。
4.输出滤波器:输出滤波器用于平滑功率变换器输出的高频脉冲信号,并将其转换为稳定的直流电压。
通常由电感和电容构成,能够滤除高频噪声和纹波,提供稳定的输出电压给负载。
5.反馈控制器:反馈控制器用于监测输出电压,并通过控制开关管的开关状态来实现自动调整电路的输出电压。
当输出电压低于设定值时,反馈控制器会调整开关管的开关状态,使电路输出电压回到设定值。
常见的控制方式有PID控制、PWM控制等。
以上是开关电源电路的常见模块。
这些模块通过相互协作,能够将输入电源转换为稳定的高频输出电压,并提供给负载。
开关电源电路具有高效率、小体积、轻量化等优点,在电子设备中得到广泛应用。
电除尘器电源系统选型探讨【摘要】本文介绍了电除尘器工频电源和高频开关电源原理及特点,对其技术指标和经济效益进行了详细的分析比较,并最终选定了合适的电源类型。
【关键词】电除尘;工频电源;高频电源;选型1.前言随着全球人类对环境保护意识和认识的不断提高,电除尘技术已成为烟尘治理中最重要的技术之一,成为大型燃煤电厂烟尘治理的首选。
电除尘技术在火力发电厂是一项很重要的防治大气污染环保技术,并已广泛得到应用。
电除尘主要可分为气体的电离、粉尘荷电、荷电粉尘的收集以及清理4个过程,其基本原理是在电场加上高压直流电后,电场内的阳极板和阴极线之间建立了一个非均匀的高压静电场,烟气从电场内阴极线和接地的阳极板之间通过,被强电场电离为正离子核负电子,烟气中的粉尘颗粒遇到负电子而荷电,受电场力作用,向阳极移动,从而被吸附到阳极极板上,最后通过清灰系统把粉尘清除出去。
电除尘器要达到好的收尘效果,还需一个好的相匹配的供电电源。
供电电源主要分为工频可控硅电源和高频开关电源。
本文将对电除尘器传统工频电源和高频开关电源技术指标和经济效益进行分析比较,推荐电除尘采用高频开关电源,以适应新形势下日趋严格的环保要求,同时也可为发电企业创造出巨大的经济效益。
2.电除尘工频可控硅电源电除尘器采用工频可控硅电源,在当粉尘比电阻比较高、易出现反电晕现象时除尘效果会明显下降,一般达不到原电除尘器设计指标及环保排放标准要求。
工频电源存在以下缺点:(1)工作频率低,效率转换低(一般在70%以下),因此能耗高;(2)电源输入为两相380V交流工频电源,又是工频相位调节,致使输入功率因数低至0.7以下,容易造成配电系统的不平衡;(3)输出纹波大,平均电压比脉动峰值电压要低25%左右,致使电晕电压低下,波形又是单一的工频波,在高浓度粉尘、高比电阻等工况下,很难达环保排放要求;(4)工作频率低,变压器和滤波器体积大,重量重;(5)体积庞大的电源控制调节柜和隔离升压用的工频变压器分居两处,耗费空间,浪费电缆,增加基建投资费用。
开关电源主要名词解释1.脉宽调制(Pulse Width Modulation–PWM)开关电源中常用的一种调制控制方式。
其特点是保持开关频率恒定,即开关周期不变,改变脉冲宽度,使电网电压和负载变化时,开关电源的输出电压变化最少。
2.占空比(Duty Cycle Ratio)一个周期T内,晶体管导通时间t oN所占比例。
占空比D=t oN/T。
3.硬开关(Hard Switching)晶体管上的电压(或电流)尚未到零时,强迫开关管开通(或关断),这是开关管电压下降(或上升)和电流上升(或下降)有一个交叠过程,因而,开关过程中管子有损耗,这种开关方式称为硬开关。
4.软开关(Soft Switching)使晶体管开关在其中电压为零时开通,或电流为零关断,从而在开关过程中管子损耗接近于零,这种开关方式称为软开关。
5.谐振(Resonance)谐振是交流电路中的一种物理现象。
在理想的(无寄生电阻)电感和电容串联电路输入端,加正弦电压源,当电源的频率为某–频率时,容抗与感抗相等,电路阻抗为零,电流可达无穷大,这一现象称为串联谐振。
同理,在理想的LC并联电路加正弦电流源时,电路的总导纳为零,元件上的电压为无穷大,称为并联谐振。
电路谐振时有两个重要参数:谐振频率–谐振时的电路频率,w0=1/√LC,称为谐振频率。
特征阻抗–谐振时,感抗等于容抗。
其值为:Zo=√L/C,称为特征阻抗。
当LC串联突加直流电压时,电路中电流按正弦规律无阻尼振荡,其频率即电路的谐振频率,或称振荡频率.6.准谐振(Quasi–Resonance)对于有开关的LC串联电路,当电流按谐振频率振荡时,如果开关动作,使电流正弦振荡只在一个周期的部分时间内发生,电流呈准正弦,这一现象称为准谐振。
同样,在LC并联电路中,借助开关动作,也可获得准谐振。
7.零电压开通(Zero–Voltage–Switching,简称ZVS)利用谐振现象,在开关变换器中器件电压按正弦规律振荡到零时,使器件开通,称为ZVS。
农技服务 2018,35(8) :108〜109产业技术2反激式开关电源设计反激式开关电源结构简单,相比于正激式开关电源少了一个大的储能电感,以及续流二极管,所以 反激式开关电源的体积相对较小,成本也相对较低。
同时,反激式开关电源的输出电压范围受占空比的 影响比正激式开关电源要大,使得反激式开关电源 要求调控占空比的误差信号幅度较低,误差信号放 大器的増益和动态范围也比较小。
电路框图如图2 所示。
A图1反激式开关电源的原理•iwwC I S133伴随着电力电子技术的飞速发展,功率器件的 不断更新,脉宽调制技术(Pulse Width Modulation , PWM )的发展日趋完善以电流型PW M 控制 器为核心的高频反激式开关电源由于具有体积小、 重S 轻、效率高、线路简洁、可靠性高以及具有较强 的自动均衡各路输出负载的能力等优点,得到 了广泛的发展,可以更加有效地减小纹波和提高电 源效率,保证了稳定电压的输出。
1开关电源原理简介整个开关电源分为:输人滤波电路、输出整流滤 波电路、整流滤波电路、高频变换器、控制电路、辅助 电路、反馈电路7个部分(图1)。
整个开关电源的 工作流程:输入电压通过E M I 滤波电路进人开关电 源然后再次进一步整流滤波;然后启动控制芯片输 出一个PW M 波对开关器件进行控制;再通过高频 变换器进行电压转换,之后由反馈电路与辅助电路 将反馈信号反馈至控制电路,通过控制电路对开关 器件控制,最后让开关电源能够可靠稳定地输出所 需电压。
3s X 〇Y本c i I 63100u|" "[~22uR I OCllUC2844C 18.OluVpww图 2 反激式开关电路筐[收稿日期]2018~06-28[基金项目]天津市科技发展战略研究计划项目(17ZLZXZF00960);天津市普通髙等学校本科教学质虽与教学改革研究计划项目(171006107C);大学生创新训练计划项目(201710061022,201710061257)[作者简介]孙强(1983 —),讲师,博士,从事电力电子与电气传动研究。
开关电源的设计与制作第一章开关电源概述一. 什幺是开关电源(Switching Power Supply)所谓开关电源是指以高频变压器取代工频变压器,采用脉冲调制技术的直流直流变换器型稳压电源.开关晶体管,开关二级管和开关变压器是组成开关电源的三个关键组件.二. 隔离式高频开关电源.图标说明:1)交流线路电压无论是来自电纲的,还是经过变压器降压的,首先要经过电纲滤波,以消除电磁干扰和射频干扰;2)经电纲滤波后的电流首先要经过整流,滤波电路变成含有一定脉动电压成分的直流电压,然后进入高频变换部分;3)高频变换器具有多种形式,主要分为半桥式,全桥式,推挽式,单端正激式,单端反激式等;高频变换部分的核心是一个高频功率开关组件,比如开关晶体管,场效应管(MDSFET)等组件,高频变换器产生高频(20KHZ以上)高压方波,所得到的高压方波送给高频隔离变压器的初级,在变压器的次级感应出的电压被整流,滤波后就产生了低压直流.4)脉冲宽度调制器(P WM)主要用于调节输出电压,使得在输入交流和输出直流负载发生变化时,输出电压能保持稳定,运作过程是P WM电路通过输出电压采样,并把采样的结果反馈给控制电路,控制电路把它与基准电压作比较,根据比较结果来控制高频功率开关组件的开关时间比例(占空比),达到调整输出电压的目的.(注:控制电路还有调频方式的)5)为了使整个电路安全可靠地工作,必须设置过压,过流保护电路等辅助电路.三.开关电源常用术语.1.效率(dfficiency):电源的输出功率与输入功率的百分比(测量条件为满负载,输入交流电压为标准值)2.ESR: 等效串联电阻,它表示电解电容呈现的电阻值的总和. ESR值越低的电容,性能越好.3.输出电压保持时间: 在开关电源的输入电压撤离后,依然保持其额定输出电压的时间;4.激活浪涌电流限制电路: 属保护电路,它对电源激活时产生的尖峰电流起限制作用.5.隔离电压: 电源电路中的任何一部分与电源基板地之间的最大电压.或者能够加在开关电源的输入端与输出端之间的最大直流电压.6.线性调整率: 输出电压随输入线性电压在指定范转内变化的百分率,条件是线电压和环境温度保持不变.7.负载调整率: 输出电压随负载在指定范围内变化的百分率,条件是线电压和环境温度保持不变.8.噪音和纹波: 附加在直流输出信号上的交流电压和高频兴峰信号的峰值.通常是以mV度量.9.隔离式开关电源: 一般指高频开关电源,它从输入的交流电源直接进行整流和滤波,不使用低频隔离变压器.10.输出瞬态响应时间: 从输出负载电流产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间.11.过载或过流保护: 防因负载过重,使电流超过原设计的额定值而造成电源损坏的电路.12.远程检测: 为了补赏电源输出的电压降,直接从负载上检测输出电压的方法.13.软激活: 在系流激活时,一种延长开关波形的工作周期的方法,工作周期是从零到它的正常工作点所用的时间.14.电磁干扰无线频率干扰(EMI一RFI):那些由开关电源的开关组件引起的,不希望传输和发射的高频能量频谱.15.快速短路保护电路:一种用于电源输出端的保护电路,当出现过压现象时,保护电路激活,将电源输出端电压快速短路.16.占空比:在高频开关电源中,开关组件的导通时间和变换器的工作周期之比.即:δ=Ton /Τ(T= Ton+Toff)开关电源的设计与制作第二章输入电路一.电压倍压整流技术世界范围内的交流输入电压,通常是交流90~130V和180~260V的范围,为了适应不同电源输入环境的需要,实现两种输入电源的转换,要利用倍压整流技术.如下图2一1所示.2一15可用于110V和220V交流的开关电源输入电路电路工作过程为:1)当开关S1闭合时,电路在115V交流输入电压下工作,在交流电的正半周,通过二极管VD1和电容器C1被充电到交流电压的峰值,即115×1.4=160V,在交流电的负半周,电容器C2通过二极管VD4也被冲电到160V, 这样,电路输出的直流电压应该是电容器C1和C2上充电电压之和(160+160V=320V) 注意:不同的用电环境电压选择开关位置一定要选择正确.否则,会导致直流变换器中的开关功率管损坏,或因为输入电压太低而使开关电源进入欠压输入自动保护状态.二.抗电磁干扰和射频干扰电路考虑输入滤波电路(电纲滤波)1.开关电源的设计,生产,一定要将其辐射和传导干扰降低到可接受的程度.在美国,权威的指导性文件是F CCD ocket20780,在国际上,德国的Verband Deutscher Elektronotechniker(VDE)安全标准则得到了广泛的采用.2.开关电源中的RFI产生源:开关噪声的主要来源是开关晶体管,主回路整流器,输出二极管,晶体三极管的保护二极管以及控制单元本身.反激式变换器,由于设计的原因,其输入电流波形呈现三角形,较之输入波形为矩形的变换器,如正激式,桥式变换器等将产生较少的传导RFI噪声.(付里叶分析表明,一个三角形电流波形的高频谐波幅度是以40dB每倍频程进行跌落的,而对一个差不多的矩形电流波形,则只呈现20dB每倍频程的跌落)3.交流输入线路噪声滤波器对RFI的抑制.通常在开关电源中采用的噪声抑制方法是在主交流输入回路接入一个LC组成的滤波器,用于差模一共模方式的RFI抑制,通常是交流线路上串入一对电感L1, , 其两端并联二只电容器(X电容器),并在交流线二端对大地各接一只电容器(Y电容器),如图2一2(低通滤波纲络)2一2开关电源输入线路滤波器结构1)上图中电容电感的值可以采用下列的数值:C (X): 0.1~2UF;C(Y): 2200PF~ 0.033uF;L: 在25A时, 为1.8mH; 0.3A时, 为47mH注意:在选择滤波器的组件时,重要的是要使输入滤波器的谐振频率远低于电源的工作频率;另一方面,滤波器使得电源的工作频率增加时,会使噪声的传导变得更容易.2)上图中并联在交流输入线的电阻R是X电容的放电电阻,这是由VDE一0806和IEC一380两个标准中的有关安全的规范条款推荐应用的.IEC一380的8.8节阐明:若线路滤波器的X电容器的值大于0.1UF,则放电电阻的数值应由下式确定:R=t /2.21c (2一1)式中,t=ls, c为l电容器的总和值3)为进一步减少对称和不对称的干扰电压的措施是在交流线路中另外再接入一对电感L2,从而使得电容C4(X)的充电电流得到限制,于是降低了干扰,如图2一32一3改进的线路滤波器上图中L1与C3.C4组成常模抗干扰回路,L1与C1.C2组成共模,抗干扰回路,L2用于C4的充电电流的限制,因此,整个组合对各种高频干扰信号的抑制作用较好.三.输入整流器及整流后滤波电路.一)输入整流器如图2一1中,此整流电路由VD1~VD4组成(桥式或倍压整流)在选择组合组件或分立组件的整流器时,必须要查对下面的一些重要参数:1.最大正向整流电流,这个参数主要根据开关电源设计的输出功率决定.所选择的整流二极管的稳态电流容量至少应是计算值的2倍.2.峰值反向截止电压(PIV).由于整流器工作在高电压的环境,所以它们必须有较高的PIV值,一般应为600V以上.3.要有能承受高的浪涌电流的能力.二.输入滤波电容.由于滤波电容的选择将会影响到:电源输出端的低频交流波及电压和输出电压保护时间.一般情况下,高质量的电解电容所具有的滤除交流波纹电压的能力越强,它的ESR值越低.其工作电压的额定值至少应达到200V.在图2一1中,C1,C2 为滤波电容,电阻R4,R5与之并联以便在电源关闭时,给电容提拱一个放电通路.计算滤波电容的公式为:C=It /ΔV (2一2)式中C: 电容量, F;I: 负载电流 At: 电容提供电流的时间, s;ΔV: 所允许的峰一峰值纹波电压v .例:计算50w开关电源的输入滤波电容器的值.设输入交流电压为115V,60HZ,允许30V峰一峰值的纹波电压,且电容可维持电压电平的时间为半周期.解:1)计算直流负载电流假定一个最坏的情况,电源的效率为70%,那幺,输出功率为50W的电源其输入功率应该是:Pin=Pout/η=50 / 0.7=71.5(w)利用电压倍压技术(图2一1),在输入交流为115V时,直流输出电压将是2×(115×1∙4)=320(V),则负载直流电流应为I=P/E=7105/320=0.22(A)2)因半周期的线性频率或者说对于60HZ的交流电压大约是8ms,即t=1/2×1/60=8.33ms,故根据式2一2有.C=0.22(8×10 –3) /30=58×10 _6 =58(uF)选择标称值为50 uF的电容器.3)因为在倍压结构中,C4C5为串联,故有1/C=1/C1+1/C2,有C1=C2=100uF,即50W的开关电源,其滤波电容C4,C5为100uF.四.输入保护电路一).浪涌电流1.浪涌,一般情况下,只是电容的ESR值,如果不采取任何保护措施,浪涌电流可接近几百安培.2.控制电流主要是由滤波电容充电引起的,在开关管开始导通的瞬间,电容对交流电呈现出很低的阻抗浪涌电流的方法:广泛采用的措施有两种,一种是利用电阻 双向可控硅并联纲络;另一种是采用负温度系数(NTC)的热敏电阻,用以增加对交流线路的阻抗.1) 如图2一1,R 1,VS 组成此电路,R 1与VS 并联,当输入滤波电容充满电后,由于双向可控硅和电阻是并联的,可以把电阻短路,对其进行分流.这种电路结构需要一个触发电路,当某些预定的条件满足后,触发电路把双向可控硅触发导通,如图2一4 所示.1 T 2可控硅VS 的工作过程为:当电源接通后,C 6两端的电压逐渐升高,电流相应稳定.在C 6两端的电压稳定之前,浪涌电流被与之串联的电阻R 1(6.8Ω)所抑制,当输入交流为115V 时,C6两端的电压V C =115×1∙4=160(V).当电容器C 6充电时,电压加到高频变压器T 1的绕组LB 上,则在绕组LP 4端上产生感应电压,当感应电压达到1.5V 时,电流I G 开启可控硅.即当IG 流过可控硅的控制极G 时,触发T 1与T 2短接,可控硅导通,电阻R 1被VS 短路,使其温度下降,于是实现了R 1抑制浪涌电流的目的 .注:设计时要认真地选择双向可控硅的参数,并加上足够的散热片,因为在它导通时,要流过全部的输入电流.2)热敏电阻技术:这种方法是把负温度系数(NTC)的热敏电阻串联在交流输入或者串联在经过桥式整流后的直流线上,如2一1图中的RT 1和RT 2,其工作原理为:当开关电源接通后,热敏电阻的阻值基本上是电阻的标称值,这样,由于阻值较大,它就限制了浪涌电流,当电容开始充电时,充电电流流过热敏电阻开始对其加热.由于其具有负温度系数,随着电阻的加热,其电阻值开始下降,如果热敏电阻选择得合适,在负载电流达到稳定状态时,其阻值应该是最小,这样,就不会影响整个开关电源的效率..二) 输入瞬间电压保护一般情况下,交流电纲上的电压比较稳定,但由于电纲附近电感性开关,暴风雨天气雷电等现象的存在,都会产生高压的尖峰(如受严重的雷电影响,电纲上的高压尖峰可达5KV;而电感性开关产生的电压尖峰的能量公式W=1/2L.I2.式中L是电感器的漏感:I是通过线圈的电流)可是,虽然电压尖峰持续的时间很短,但是它有足够的能量使开关电源的输入滤波器,开关晶体管等造成致命的损坏,故必须采取措施加以干扰.最通用的抑制干扰器件是金属氧化物物压敏电阻(MOV)瞬态电压抑制器.如图2一1中的RV 把压敏电阻RV连在交流电压的输入端,起到一个可变阻抗的作用.即,当高压尖峰瞬间出现在压敏电阻两端时,它的阻抗急剧减小到一个低消值,消除了尖峰电压使输入电压达到安全值.其瞬能量消耗在压敏电阻上,选择压敏电阻时应按下述步骤进行.(1)选择压敏电阻的电压额定值,应比最大的电路电压稳定值大10%~20%;(2)计算或估计出电路所要承受的最大瞬间能量的焦耳数.(3)查明器件所需要承受的最大尖峰电流开 关 电 源 的 设 计第三章 高频电源变换器的基本类型一. 高频电源变换器的基本类型高频电源变换器的基本类型有五种:单端反激式,单端正激式,推挽式.半桥式和全桥式变换器,而半桥式和全桥式变换器电路实际上是推挽式变换器电路的改进型,所以,有人把这三种电路形式统称为推挽式变换器.高频电源变换器从激励方式上可分为单端(单极性)激励和双极性激励变换器,双极性变换器包括推挽式,半桥式,桥式等,其工作原理的实质是两个单端正激式变换器电路,从其耦合方式可分为直接耦合和变压器隔离两种,其中直接耦合形式为其基本形式.近年来出现的新型的变换器为C U K 变换器.1.单端反激式变换器的模型图: (3一1)(a) (b) 3 一1单端反激式变换器模型图单端反激式变换器的工作原理为:1) 当开关s 闭合时,电流I 流过电感L,在L 中储存能量,由于电压的作用,使二极VD 处于反向偏置,因此,在负载电阻R L 上无电压;2) 当开关S 打开时(上b 图),电感上的感应电压极性相反,则二极管VD 处于正向偏置,并产生电流Iv,这样,在负载电阻R L 上就出现一个与输入电压极性相反的电压.由于开关S 不断地开关动作,电路中的电流就以及脉的形式出现,因此,在单端反激式变换器中,当开关闭合时,能量存储在电感L 中,在开关打开时,能量被传递到负载RL 上.3. 单端正激式变换器的电路模式图(3一2)单端正激式变换器的工作原理为:Vin Ic------------- 1) 当开关S 闭合时,电流I 流过电感L,系,二极管VD 处于反向偏置; 2) 当开关S 打开时,电感L 中的磁场极性发生变化,,b2单端正激式变换器模型图,无脉动现象,恰恰与其相反,输入电流则是不连续的,. 3.(3一3)推挽式变换器的工作原理为:1)当S 1闭合S 2打开时,电源电流流过方向为 a Lp 1 b s1 d V in,那幺此时,在变压器次级绕组中咸应出电压并形成感应电流Is 1.2)当S 2闭 合S 1打工时,电源电流方向为 a f e d vin,那幺此时在变压器次级绕组LS 2中感应出电压形成感应电流IS 2二. 隔离式单端反激式变换器电路.概述 :一般情况下,隔离式开关电源都是用高频变压器作为主要隔离器件.在单端反激式隔离L-------------电路中,高频变压器是以变压器的形成出现的,但实际上它起的作用是扼流圈,所以应称之为变压器 扼流圈.如图3一4中,由于隔离变压器T 除了具有初次级间安全隔离的作用外,它还有变压器和扼流圈的作用,所以在反激式变换器的输出部分一般不需要加电感,但在实际应用中,往往在整流器和滤波电容之间加一个小的电感线圈,用以降低高频开关噪声的峰值.单端隔离激式变换器的工作过程为:1) 当晶体管VT1导通时,它在变压器初 级电感线圈中储存能量,与变压器次 级相连的二极管VD 处于反偏压状 态而截止,故在变压器次级回路无电 流流过,即没有能量传给负截. 2) 当晶体管VT 1截止时,变压器次级电 感感线圈中的电压极性反转过来,使得二极管VD 导通,给输出电容C 充电,同时在负载L 年也有了电流I L 3 一4隔离单端反激式变换器电路注:图3一4中C 为输出滤波电容.1.单端反激式变换器电路中的开关晶体管在单端反激式变换器电路中,所使用的开关晶体管必须具备两个条件:1)在晶体管截止时,要能承受集电极尖峰电压; 2)在晶体管导通时,要能承受集电极的尖峰电流.1) 晶体管截止时尖峰电压的计算公式:V CE max =Vin / 1一δmax式中Vin 是输入电路整流滤波后的直流电压, δmax 是晶体管最大工作占空比(注意:为了限制限晶体管的集电板安全电压,工作占空比应保持在相对地低一些,一般要低于50%,δmax<0.5,在实际设计时, δmax 一般取0.4左右,这样就限制集电极峰值电压: V CE max ≦2.2Vin,因此,在单端反激式变换器电路设计中,晶体管的工作电压一般在800V 通常接900V 计算可安全可靠地工作.)2) 晶体管导通时的集电极电流计算式:I C = I L / n式中,I L 是变压器初级绕组的峰值电流,而n 是变压器初级与次级间的匝数比.注: 为了导出用变压器输出功率和输入电压表达集电极峰值工作电流的公式.变压器绕组传递的能量Pout =可用下式表示:Pout = L . I L 2 / 2T ·η (3 一 3 )式中,η是变换器的效率.则有: Ic= 2Pout / η·Vin ·δmax ( 3 一 4 )假定变器的效率η是0.8,最大占空比δmax=0.4(即40%),那幺Ic = 6. 2Pout / Vin ( 3 一 5 )2. 单端反激式变换电路中的变压器绕组.在单端反激式变换器电路中,在设计时要汪意不要使磁芯饱和,所选的磁芯一定要有足够大+ RL 一的有效体积,通常应用空气隙来扩大其有效体积:V=Uo ·Ue · I L max ·L / B 2max ( 3一6 )中,Ilmax: 最大负载电流;L :变压器次级绕组的电感量; Uo : 空气的导磁率,其值为1;Ue: 所选磁芯的磁性材料的相对导磁率Bmax:磁芯的最大磁通密度;(具体见第五章)3一53.基本的单端反激式变换器的变形.1)如图3一5中,由于考虑到单只晶体管有时承受不了过高的输入电压,(一般商甲晶体管达不到指针),故利用两只晶体管工作.图中VD 1和VD 2同时导通或截止,二管起箝位作用,它们把晶体管的最大集电板电压限制在Vin,这样耐压低的晶体管就可以使用了.2单端反激式变换器电路的优点是:电路结构简单,可以实现多路电压输出.如图3一6,在电路中隔离变压器对各路输出电压起到公共扼流圈的作用变压器的次级可以有多个绕组,故可以实现多路输出 .每个次级绕组只需一个整流二极管和一个滤波电容,就可以得到一组直流输出电压.3一6有多路输出的单端反激式变换器电路+ R L 一1 1 out 1 out2 + V out3 一 L L3一7隔离单端正激式变换器电路图三.隔离单端正激式变换器电路1.概述:如图3一7所示1)在单端正激式变换器电路中,隔离组件是一个纯粹的变压器,为了有效地传递能量,,在输出电路中, 必须有储能组件电感线圈Lo同时,初次级绕组的极性是相同的.其电路工作过程为:当VT1导通时,在变压器的初级产生了电流,并储存了能量,由于变压器的次级极性与初级同相,这个能量也传到了变压器的次级并处在偏正的二极管VD2把能量储存到了电感L中.此时,二极管VD3是处在反向偏压状态,为截止状态,当三极管VT1截止时,二极管VD2是反向偏压,变压器绕组中的电压反向,续流二级管VD3处于正向偏压,在输出回路中,储存在电感中的能量通过电感L 继续传负载R L .2)变压器的第三绕组称为箝位绕组(或回授绕组)LP2,它与二极管VD1串联,其作用是用来限制晶体管C一E结上的电压尖峰,在晶体管截止时,还能使高频变压器的磁通复位, 这是因为:A.在VT1导通时,变压器初级绕组LP 1中会储存能理,当VT1截止时,变压器次级侧二极管VD2截止,那幺储存在LP1中的能量再不能传递到次级绕组了,此时必须要通过一种途径释放出来,否则,必然在线圈两端产生过高的电压,解决的办法是增加箝位绕组和二极管VD1,并使箝位绕组的匝数与初级绕组的匝数相同,二者紧密耦合,这样,当箝位绕组上的感应电超过电源电压时,二极管VD1导通,将磁能送回电源中,就可以把初级绕组的电压限制在电源电压上,所以,开关晶体管VT1的C一E极间的最高电压就被限制在二倍电源电压上.B.为满足磁芯复位的条件,使磁通建立和复位的时间相等,所以这种把电路的占空比不能超过50%.3)磁化电流Imag的计算公司为:Ima= Tδmax·Vin∕N ( 3一7)式中, T·δmax是VT时向,L是输出电感Ho4))单端正激式变换器是在晶体管导通时通过变压向负载传输能量,故运用的输出功率范转较大,一般情况下可达50~200W,其高频变压器要起变压器隔离和传输能量的作用,又起电感线圈储存能量的作用.2单端正激式变换器电路中的开关晶体管1)晶体管截止峰值电压:在单端正激式变换器电路中,由于有第三绕组和续流二极管VD1的作用,所以其截止时降在VT1上的最大电压VCEmax应为2Vin,且只要二极管VD1处于导通状态,即在Tδmax这个时间内,降在VT铁C 一E间的2Vin的峰值电压就维持不变.2)晶体管导通时集电极电流的峰值:为正激式变换器的电流值加上磁化电流Imag.Ic= Ic / n + Tδmax Vin / L =6.2Pout / Uin式中.n: 变压器初次级匝数比;IL : 输出电感电流. A;Tδmax: 晶体管导通时间L: 输出电感, H.3.单端正激式变换器电路的传输变压器在设计正激式变换器的传输变压器时,应十分注意选择适当的磁芯有效体积,并选择空气隙,以避免磁芯的饱和,其有效体积V为:V= UoUe I2mag L / B2max注意:A.这种电源的最大工作占空比应保持低于50%,以便通过第三绕组将变压器的电压进行箝位,将总电限制在2倍输入电压之内.这样,当VT1导通时,为箝位电平:当VT停止时,使该总电压接近于0值.如果最大工作占空比大于50%,即δmax > 0.5,将打破这种2倍于电源电压的平衡,导致变压器发生饱和,反过来会产生很高的集电峰位电流,这可能会损坏开关晶体管.B.尽管有第三绕组以及箝位二极管可将开关晶体管的峰值集电极电压限制在2倍直流输入电压之内,但在制作变压器时,还要严格注意初级绕组和第三绕组间的紧密耦合,以消除由于漏感引起的致命的电压尖峰.4.单端正激式变换器电路的变形.1)如同单端反激式变换器电路一样,也可用两个晶体管代替一个晶体管工作,它们同时导通或同时截止,但每个晶体管所承受的电压不会高于Vin.2)此电路也可以产生多路的出电压,但是需增加二极管和扼流圈应指出的是,续流二极管的容量至少要与主回路中的整流二极管相同,因为在晶体管VT1截止时,它要提供输出电路中的全部电流.四. 推挽式变换器电路概述:如图3一8所示,推挽式变换器电路实际上是由两个正激式变换器电路组成,只是它们工作时相位相反,在每个周期里,,两个晶体管交替导通和截止,在各自导通的半个周期内,分别把能量传递给负载,所以称之为”推挽”电路.故在推挽式变换器电路中,两组开关三极管和输出整流二极管因流过每一组组件的平均电流比同等的单端正激式变换器电路减少35%以上,其设计计算可接单端正激式变换器.还应看到,在只开关晶体管导通间隙,二极管VD1和VD2同时导通,它们把高频变压器的次级给短路了,与此同时,把能量传递到了输出回路,实质上,它们起到了续流二极管的作用.推挽式变换器电路的输出电压可用下式计算:V out= 2δmax·Vin / n (3一10)注意:为了避免两只开关晶体管同时导通而引起损坏,公式中δmax的值必须得持在0.5以下.假定δmax=0.4则有:Vout = 0.8Vin / n (3一11 )式中n是高频变压器的初级对次级的匝数比.1)每只开关管的峰值集电极电流Ic=Ic / n (3一12)Ic = Pout / η. (3一13)设η=0.8 δmax=0.8则Ic= 1.6Pout / Vin (3一14)2)每只管所承受的峰值电压限制在2Vin以内.3.推挽式变换器电路中的高频变压器在推挽式变换器电路中,两只晶体管导通时间相等(或者说强制两管导通时间相等),高频变压器的。
电源模块的功能与作用电源模块是现代电路中不可或缺的部件之一,它的作用是将来自电网或者电池的电能转化为电路需要的电能。
本文将详细介绍电源模块的功能和作用,以及常见的电源模块种类和应用。
一、电源模块的功能1. 电压稳定电源模块的一个主要功能是稳定输出电压,使电路中的负载得到合适的电压供应。
许多电路需要一个恒定的电压作为工作电压,电源模块能够提供一个稳定的电压输出,这对电路的正常工作非常重要。
2. 电流保护电源模块能够保护电路免受过流、短路等问题的影响。
一旦电路中出现过大的电流,电源模块会自动断开电路,防止电路中的元件受到损坏。
3. 滤波电源模块还能够对输入的电源信号进行滤波处理,去除噪声和杂波,使输出的电流更加稳定,降低对周围环境的干扰。
二、电源模块的种类1. 线性电源模块线性电源模块通过变压器将输入的交流电转换为所需的直流电。
它能够提供高精度、稳定的输出电压,而且在输出电流较小的时候,噪声水平非常低。
但是它效率低,热损耗较大。
2. 开关电源模块开关电源模块通过高频变换器来将输入的交流电转换为所需的直流电。
它的效率比线性电源模块高,稳定性更好,还能够适应输入电压波动大的情况。
但是它噪声和干扰比较大,对输入电压的稳定性要求高。
3. 电池管理模块电池管理模块能够对电池进行充电、放电管理,保护电池免受过充、过放、过流等问题的影响。
它能够提供稳定的电压输出,对需要便携性和移动性的电子设备非常重要。
三、电源模块的应用电源模块广泛应用于各种电子设备中,比如计算机、手机、数码相机、电视机、音响等。
在这些设备中,电源模块能够提供电路所需的电能,使这些设备能够正常工作。
同时它还能够对电路进行保护,延长设备的使用寿命。
总之,电源模块在电子领域中是一个非常重要的部件,它能够提供稳定的电压输出、保护电路和电池,对电子产品的正常工作和使用寿命都起到了至关重要的作用。
2021.11科技论坛开关电源的工作原理及技术趋势赵利华(四川长虹电子控股集团有限公司,四川绵阳,621000)摘要:在家用电器、电子设备的应用实践中,电源是不可缺少的部分,而且其性能的优劣会对家用电器、电子设备的技术指标以及使用安全性造成显著的影响,所以明确电源的具体价值和要求,对电源利用做分析与讨论有突出的现实意义。
关键词:开关电源;工作原理;技术趋势Working principle and technical trend of switching power supplyZhao Lihua(Sichuan Changhong Electronic Holding Group Co.,LTD.,Mianyang Sichuan,621000) Abstract:In the application practice of household appliances and electronic equipment,the power supply is an indispensable part,and its performance will have a significant impact on the technical indicators and use safety of household appliances and electronic equipment,so the specific power supply is clear Values and requirements,analysis and discussion of power utilization have outstanding practical significance.Keywords:switching power supply;working principle;technology trend1开关电源要明确开关电源的工作原理和技术趋势,必须要对开关电源有清楚的认知。
高频电源技术方案引言高频电源技术是一种用于转换电力的关键技术,广泛应用于各种电子设备和系统中。
本文将介绍高频电源技术的基本原理、常见的方案以及其在不同领域的应用。
高频电源技术原理高频电源技术通过将输入电压转换为高频交流电,并通过变压器和滤波器进一步转换为所需的输出电压。
其主要原理包括以下几个方面:1.变频器:高频电源技术使用变频器将输入电压转换为高频交流电。
变频器通常采用开关电源技术,通过控制开关管的通断来实现电压的转换。
常见的变频器包括升压变频器和降压变频器。
2.变压器:高频交流电经过变频器转换后,需要进一步通过变压器进行电压的转换。
变压器是高频电源技术中的关键组件之一,通过变压器的绕组比例可以实现输入电压到输出电压的转换。
3.滤波器:高频电源技术通过滤波器对输出电压进行滤波,以去除高频噪声和杂波。
滤波器通常采用电容器和电感器组成的LC滤波网络,可以有效地滤波输出电压。
高频电源技术方案高频电源技术有多种方案可供选择,具体方案的选择取决于应用需求以及系统的功率和效率要求。
以下是几种常见的高频电源技术方案:1.开关电源:开关电源是一种常见的高频电源技术方案,它通过开关管的通断控制来实现电压转换。
开关电源具有体积小、效率高、输出电压稳定等优点,广泛应用于各种电子设备中。
2.谐振变换器:谐振变换器是一种利用电感和电容的谐振作用来进行能量转换的高频电源技术方案。
谐振变换器具有高效率、高频率、低噪声等特点,在电池充电、电焊等领域得到广泛应用。
3.逆变器:逆变器是一种将直流电转换为交流电的高频电源技术方案。
逆变器通过采用高频开关电路和逆变电路,将直流电转换为高频交流电,并通过变压器将交流电输出。
4.共振变换器:共振变换器是一种利用共振电路来实现能量转换的高频电源技术方案。
共振变换器具有高效率、低杂散、高频率等特点,适用于高频电源和电力转换。
高频电源技术在不同领域的应用高频电源技术在各个领域中都有广泛应用。
以下是几个典型的应用领域:1.通信设备:高频电源技术在通信设备中起到关键作用。
开关电源的基本原理与分类方法开关电源是指调整功率管以开关方式进行工作的稳压电源。
缩写为SPS(Switching Power Supply),开关电源的核心部分是一个直流变换器。
目前开关电源向着高频、高可靠性、低功耗、低噪声、抗干扰和模块化方向发展。
开关电源现在在社会上应用越来越广泛,需求也越来越大。
电源在一个典型系统中或者在一台机器中担当十分重要的角色,电源给系统的电路提供持续、稳定的能量,使得系统或者机器能够正常地工作。
电源的好坏直接影响了系统能否正常工作。
随着电源的应用和需求越来越广泛,人们对于电源的要求也越来越高。
人们对电源的效率、体积、重量、稳定性和可靠性等方面都有了更高的要求。
开关电源正是以其效率高、体积小、重量轻、稳定性高、零负载消耗低等多方面的优势逐步取代了效率低、又笨又重的线性电源。
现在社会上出现的需要应用开关电源的仪器、机器越来越多;利用开关电源作为驱动电源的产品也层出不穷,例如LED驱动开关电源的需求量越来越多。
而现代电力电子技术的发展,特别是大功率器件IGBT和MOSFET、各类电源芯片的迅速发展,将开关电源的工作频率提高到相当高的水平,使得开关电源的转换效率不断提高。
人们对于转换效率的不断要求也促使开关电源的开发技术将越来越高。
开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等部分构成。
开关带能源的工作原理:首先是将交流输入电源经整流滤波成脉动直流;然后通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;接着开关变压器次级感应出高频电压,经整流滤波供给负载;最后,输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
常见的开关电源的分类方法有下列几种:1.按激励方式的不同可以划分为他激式和自激式。
开关稳压电源简称开关电源( Switching PowerSuppiy ),因电源中起调整稳压控制功能的器件始终以开关方式工作而得名。
它是利用现代电力电子技术,通过控制开关管通断的时间比率来维持电子游戏机等电子设备上。
随着电力电子技术的发展,特别是大功率器件技术的迅速发展,将开关电源的工作频率提高到150〜200 kHz ,使开关电源具有较好的稳定性和较高的性价比,因此,开关电源将日益取代使用工频变压器的线性调整稳压电源。
在开关电源电路中,最关键的部分是高频变换器和开关电源控制器。
制器已普遍应用, 其对开关元件的控制方式取决于高频变换器的电路结构, 核心就是高频变换器,即DC 辕DC 转换器。
在输入输岀隔离的开关电源中,形式有5种院单端正激式尧单端反激式、半桥式、推挽式和全桥式。
下面分别介绍、分析这些高 频变换电路的结构和工作原理。
1、正激式变换电路正激式变换电路的结构如图 1(a)所示。
由于其储能元件与负载电阻 RL 串联又称串联型变换电路。
该电路直流电压 Ui 是由工频交流电源通过电源滤波器、整流滤波器后转换获得;功率开关管S1为绝缘栅双极型晶体管(IGBT )或MOSFETT 为高频变压器;L 和C1组成LC 滤波器;二极 管D1为半波整流元件,D2为续流二极管;RL 为负载电阻; 动信号vgs1为PWM 控制电路输岀的方波。
各环节电压波形如图11111m V. j HrI)⑻原理图nnil(b)波形图1正激变换电路当vgs1为高电平使S1导通时,变压器获得输入电压为vT1=ui ,二极管D1导通袁D2截但由于集成开关电源控 因此开关电源电路的 高频变换器的基本Uo 为输岀稳定的直流电压。
S1的驱1(b)所示。
止,此时电源经变压器耦合向负载传输能量,负载上获得电压,滤波电感L储能。
当控制电路使S1截止时,开关管 S1所承受的电压与输入电压相等,即 vs 仁Ui ,变压器原、副边输岀电压 为零。
此时,变压器原边在S1导通时储存的能量经过线圈N3和二极管D3反送回电源。
而变压器的副边由于输岀电压为零,所以二极管 D1截止,电感L 通过二极管 D2续流并向负载释放能量,因为电容 C1的滤波作用,此时负载上所获得的电压保持不变,输岀电压为”=4加沪”3( I )式中:n 为变压器的变压比;D N1由式(1)可看岀,输岀电压正激变换电路结构比较简单,易于实现,可适用于中小功率的开关电源。
2 、单端反激式变换电路图2所示为单端反激式变换电路,其高频变压器T 既起隔离作用又起电感 L 轭流的作用,因为它的储能元件 L 与负载RL 并联,所以又称为并联型变换电路。
同时也可以判断岀,同正激 式变换电路不同,变压器的铁心工作在磁滞回线的另一侧,故称为反激式变换电路。
D J.V.D>图2反激式变换电路当控制电路使功率开关管 S1导通时,由于同名端的关系,二极管 D1不导通。
当S1截止 时,变压器的副边绕组产生的感生电动势反向,使D1导通,给电容器充电,同时负载 RL 上产生电压。
在此电路中,基极的控制、畐y 边绕组的设计,都要遵循反激的原则。
同样地,开关管S1的耐压和变压器的输入电压与电源输入电压相等,因此反激变换电路同 正变换电路一样,结构比较简单,易于实现,可适用于中、小功率的开关电源。
3 、推挽式变换电路推挽式变换电路实际上是两个单端正激式变换电路组合以推挽方式工作,电路如图 3所示,两只功率开关管 S1、S2交替导通。
其工作过程为:当S1导通,S2截止时,根据同名端可以判断岀,只有 D2导通,电流通过 L 向RL 供电,当S1截止、S2导通时,可以判岀,只有 D1导通,电流继续流过 L 向RL 供电,所以RL 上得到的电流是连续的。
为方波的占空比;、N2为变压器原、副边绕组的匝数。
Uo 仅由电源电压 Ui 和方波的占空比 D 决定。
S.IllD I wflD;7^ I I______图3推挽式变换电路同样可以看岀,开关管的耐压和变压器的输入电压与电源输入电压相等,磁滞回线的两侧。
推挽式变换电路结构相对比较复杂,对驱动电路的要求较高,适用于中、大功率的开关电源。
所以,这种变换电路得到了广泛的应用。
4、半桥变换电路如图4(a)所示为半桥变换电路原理图,各点输岀电压波形如图4(b)所示。
激变换电路不同的是:由两个变压器铁心工作在但输岀功率较大,半桥变换电路与正IGBT功率开关管S1、S2构成,二极管D3、D4组成全波整流元件。
电感L、电容C3组成LC滤波电路,实现对整流输岀电压的滤波。
二* 001_£—faj—~—1*- 0*D 石I n_Z(a)电路图n(b)波形图图4半桥变换电路输入电压Ui 通过两个同容量的输入电容把 Ui 转换成为双电源,UC 仁UC2=Ui/2,即A 点的 电压UA 是输入电压 Ui 的一半。
开关管S1和S2的驱动信号vgs1和vgs2由控制电路产生,是互 为反相的PWM 信号。
为了防止开关管 S1、S2同时导通造成电源短路,驱动信号 vgs1、vgs2之 间必须具有一定的死区时间,即二者同时为零的时间。
当vgs1为高电平时,vgs2为低电平,S1导通,2关断。
电容C1两端的电压通过 S1施加在 高频变压器的原边,此时 vT1=Ui/2,变压器副边所接二极管D3导通,D4截止,整流输岀电压与图示Uo 方向相同,再经 LC3滤波得到输岀电压 Uo 。
当vgs2为高电平,vgs1为低电平时袁 S2导 通,S1关断,电容C2两端的电压施加在高频变压器的原边,此时vT1=-Ui /2 。
二极管D4导通,D3截止,整流输岀电压的方向也与图示 Uo 方向相同遥在 S 俐S2共同关断期间袁原副边绕组上的电压为零袁即vT1=0,vT2=0。
在二极管D3、D4导通期间,电感 L 开始储能。
在开关管 S1尧S2 同时截止期间,虽然变压器副边电压为零,但此时电感 L 释放能量,又由于电容C3的作用将使输岀电压维持恒定不变。
半桥变换电路同正激、89.44 454.反激式电路不同,在一个开关周期内,前半个周期流过高 频变压器的电流与后半个周期流过的电流大小相等,方向相反,因此,与前两种电路相比,变压器的磁芯工作在磁滞回线 B-H 的两端,磁芯得到充分利用又防止了磁饱和,因此高频变压器可 以设计得更小而功率更大。
在一个开关管导通时,处于截止状态的另一个开关管所承受的电压与 输入电压相等。
开关管由导通转为关断的瞬间,漏感将会引起尖峰电压对S1、S2造成影响。
为此开关管S1、S2两端各并联一个二极管D1、D2,可以把漏感引起的尖峰电压箝位,因此开关管所承受的电压绝对不会超过输入电压,同时二极管 D1、D2还作为续流二极管具有续流作用,而施加在高频变压器上的电压只是输入电压的一半。
半桥变换电路结构相对比较复杂,对驱动电路的要求较高, 功率的开关电源。
5 、全桥变换电路用另外两只开关管 S3、S4将半桥电路中的两个电解电容 动电路即可组成如图5所示的全桥变换电路。
变压器副边所接整流二极管D5、D6实现全波整流。
S1驱动信号vgs1与S4的vgs4相同,S2驱动信号vgs2与S3的vgs3相同,而且vgs1、vgs4与 vgs2、vgs3互为反相。
其输岀的电压波形类似半桥电路。
图5全桥变换电路当vgs1与vgs4为低电平,vgs2与vgs3为高电平时,开关管 S2和 S3导通,S1和S4关断,电源电压通过 S2和S3施加在高频变压器的原边,此时变压器原边电压为vT1=Ui 。
当vgs1和vgs4为高电平,vgs2与vgs3为低电平时,开关管 S1和S4导通,S2、S3关断,变压器原边电 压为vT1=-Ui O与半桥电路相比,原边绕组上的电压增加了一倍,而每个开关管的耐压仍为输入 电压。
开关管S1、S2S3和 S4的集电极与发射极之间分别反接有箝位二极管但输岀功率较大,适用于中、 大C1和C2取代,并配上相应的驱a7uD1尧D2尧D3和n D4,由 Ki-i0,*-于这些箝位二极管的作用袁当开关管从导通到截止时袁变压器初级磁化电流的能量以及漏感储 能引起的尖峰电压的最高值不会超过电源电压 Ui ,同时还可将磁化电流的能量反馈给电源,从而提高整机的效率。
全桥变换电路虽然采用了 4只开关管,结构复杂,对驱动电路的要求很高,但综合性能最好。
在输入电压Ui 相等的情形下,较之半桥式变换电路可以输岀更大的功率,因此适用于较大 功率的开关电源。
6 、结语本文在详细分析了最常见的 5种开关电源的电路及波形,在选用开关电源的变换电路时, 要综合考虑多方面的因素,根据实际要求选定。
[1] [2][3] [4] [5] ⑹参考文献 国沙占友.单片开关电源最新应用技术 国郑耀添.控制技术在开关电源中的应用研究 国郑国川,李洪英.实用开关电源技术 国黄俊袁王兆安.电力电子变流技术国黄家善,王廷才.电力电子变流技术[M].北京:机械工业岀版社, [J].科技资讯,2005, [M].福州:福建科学技术岀版社,2000. (23):74-77. 2004. [M].北京院机械工业岀版社,2002.[M].北京:机械工业岀版社,2001.2004.国曾方.电力电子技术[M].西安:西安电子科技大学岀版社,。