2020年高考数学总复习系 新人教版必修二 精品
- 格式:doc
- 大小:986.46 KB
- 文档页数:20
高中数学必修二复习教师版+学生版(知识点+例题+练习+详解)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修二复习教师版+学生版(知识点+例题+练习+详解)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修二复习教师版+学生版(知识点+例题+练习+详解)(word版可编辑修改)的全部内容。
(3)两个平面垂直的性质:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
(4)二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理 五、直线与方程1、直线的倾斜角取值范围是0°≤α<180°2、直线的斜率用k 表示.即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ;() 180,90时,0<k ; 当 90=α时,k 不存在3、过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面三点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k 与P 1、P 2的顺序无关;(3)求斜率由直线上两点的坐标直接求得。
4、直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因 l 上每一点的横坐标都等于0x ,所以它的方程是0x x =②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x ya b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b ⑤一般式:0=++C By Ax (A ,B 不全为0) 注意:错误!各式的适用范围错误!特殊的方程如:平行于x 轴的直线:b y =(b 为常数);平行于y 轴的直线:a x =(a 为常数);5、直线系方程:即具有某一共同性质的直线 (1)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(2)垂直直线系垂直于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=+-C y A x B (C 为常数)(3)过定点的直线系① 斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;② 过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中6、两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的一组解。
高中数学 必修2 第六章平面向量设为所在平面上一点,角所对边长分别为,则(1)为的外心. (2)为的重心.(3)为的垂心. (4)为的内心.【6.1】平面向量的概念1、向量的定义及表示(向量无特定的位置,因此向量可以作任意的平移) (1)定义:既有大小又有方向的量叫做向量.(2)表示:①有向线段:带有方向的线段,它包含三个要素:起点、方向、长度; ②向量的表示:2、向量的有关概念:相等向量是平行(共线)向量,但平行(共线)向量不一定是相等向量 向量名称 定义零向量 长度为0的向量,记作0 单位向量 长度等于1个单位长度的向量平行向量 (共线向量) 方向相同或相反的非零向量,向量a ,b 平行,记作a ∥b ,规定:零向量与任一向量平行相等向量长度相等且方向相同的向量;向量a ,b 相等,记作a =b【6.2】平面向量的运算1、向量的加法(1)定义:求两个向量和的运算. (2)运算法则: 向量求和的法则 图示几何意义三角形法则使用三角形法则时要注意“首尾相接”的条件,而向量加法的平行四边法则应用的前提是共起点已知非零向量a ,b ,在平面内任取一点A ,作AB ⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =b ,则向量AC ⃗⃗⃗⃗⃗ 叫做a 与b 的和,记作a +b ,即a +b =AB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ 平行四边形法则以同一点O 为起点的两个已知向量a ,b ,以OA ,OB 为邻边作▱OACB ,则以O 为起点的向量OC ⃗⃗⃗⃗⃗ (OC 是▱OACB 的对角线)就是向量a 与b 的和(3)规定:对于零向量与任意向量a ,规定a +0=0+a =a .(4)位移的合成可以看作向量加法三角形法则的物理模型;力的合成可以看作向量加法平行四边形ABC ∆,,A B C ,,a b c O ABC ∆222OA OB OC ⇔==O ABC ∆0OA OB OC ⇔++=O ABC ∆OA OB OB OC OC OA ⇔⋅=⋅=⋅O ABC ∆0aOA bOB cOC ⇔++=法则的物理模型.(5)一般地我们有|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. (6)向量加法的运算律与实数加法的运算律相同 2、向量的减法(1)相反向量(利用相反向量的定义,-AB ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ 就可以把减法转化为加法) 定义:我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量性质:①对于相反向量有:a +(-a )=0;②若a ,b 互为相反向量,则a =-b ,a +b =0;③零向量的相反向量仍是零向量(2)向量减法运算(向量的减法是向量加法的一种逆运算) 定义:求两个向量差的运算叫做向量的减法.a -b =a +(-b ),减去一个向量就等于加上这个向量的相反向量.几何意义:a -b 表示为从向量b 的终点指向向量a 的终点的向量.3、向量的数乘运算(实数与向量可以进行数乘运算,但不能进行加减运算)(1)定义:规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作:λa ,它的长度和方向规定如下:①|λa |=|λ||a |;②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. ③由①可知,当λ=0时,λa =0;由①②知,(-1)a =-a .(2)运算律:设λ,μ为任意实数,则有:①λ(μa )=(λμ)a ;②(λ+μ)a =λa +μa ;③λ(a +b )=λa +λb ;特别地,有(-λ)a =-(λa )=λ(-a );λ(a -b )=λa -λb .(3)向量的加、减、数乘运算统称为向量的线性运算,向量的线性运算结果仍是向 量.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1 a ±μ2b )=λμ1 a ±λμ2 b .(4)共线向量定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .也就是说,位于同一直线上的向量可以由位于这条直线上的一个非零向量表示. 4、向量的数量积(1)向量的夹角:两向量的夹角与两直线的夹角的范围不同,向量夹角范围是[0,π],而两直线夹角的范围为[0,π2](2)向量的夹角的定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作向量OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,则∠a O b =θ(0≤θ≤π)叫做向量a 与b 的夹角. 当θ=0时,a 与b 同向;当θ=π时,a 与b 反向. 如果a 与b 的夹角是π2,我们说a 与b 垂直,记作a ⊥b .(3)向量的数量积及其几何意义:向量的数量积是一个实数,不是向量,它的值可正可负可为0 (4)向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cosθ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ.规定:零向量与任一向量的数量积为0.(5)投影:如图,设a ,b 是两个非零向量,AB ⃗⃗⃗⃗⃗ =a ,CD ⃗⃗⃗⃗⃗ =b ,我们考虑如下变换:过AB ⃗⃗⃗⃗⃗ 的起点a 和终点b ,分别作CD ⃗⃗⃗⃗⃗ 所在直线的垂线,垂足分别为A 1,B 1得到A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,我们称上述变换为向量a 向向量b 投影,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 叫做向量a 在向量b 上的投影向量.(6)向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则①a ·e =e ·a =|a |cosθ②a ⊥b ⇔a ·b =0③当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |,特别地,a ·a =|a |2或|a |=√a ·a .在求解向量的模时一般转化为模的平方,但不要忘记开方④|a ·b |≤|a |·|b |.(7)运算律:①a ·b =b ·a ;②(a +b )·c =a ·c +b ·c (8)运算性质:类比多项式的乘法公式【6.3】平面向量基本定理及坐标表示1、平面向量基本定理(定理中要特别注意向量e 1与向量e 2是两个不共线的向量) 条件:e 1,e 2是同一平面内的两个不共线向量结论:对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1 e 1+λ2 e 2 基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底 2、平面向量的坐标表示(1)基底:在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.(2)坐标:对于平面内的一个向量a ,由平面向量基本定理可知,有且仅有一对实数x ,y ,使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标. (3)坐标表示:a =(x ,y ).(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0). (5)平面向量的加减法坐标运算(可类比实数的加减运算法则进行记忆) 设向量a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则有下表:设向量a =(x ,y ),则有λa =(λx ,λy ),这就是说实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(7)平面向量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.向量a ,b (b≠0)共线的充要条件是x 1 y 2-x 2 y 1=0.(8)中点坐标公式:若P 1,P 2的坐标分别是(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ),则x =x 1+x 22y =y 1+y 22.此公式为线段P 1 P 2的中点坐标公式.(9)两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 数量积:两个向量的数量积等于它们对应坐标的乘积的和,即:a ·b =x 1 x 2+y 1 y 2 向量垂直:a ⊥b ⇔x 1 x 2+y 1 y 2=0(10)与向量的模、夹角相关的三个重要公式 ①向量的模:设a =(x ,y ),则|a |=√x 2+y 2.②两点间的距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB ⃗⃗⃗⃗⃗ |=√(x 1-x 2)2+(y 1-y 2)2.③向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则θ=a ·b |a||b|=x 1x 2+y 1y 2√x 12+y 12√x 22+y 22【6.4】平面向量的应用1、平面几何中的向量方法用向量方法解决平面几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系. 2、向量在物理中的应用举例(1)向量与力:向量是既有大小,又有方向的量,它们可以有共同的起点,也可以没有共同的起点.而力是既有大小和方向,又有作用点的量.用向量知识解决力的问题时,往往把向量平移到同一作用点上.(2)向量与速度、加速度、位移:速度、加速度、位移的合成与分解,实质上就是向量的加、减运算.用向量解决速度、加速度、位移等问题,用的知识主要是向量的线性运算,有时也借助于坐标来运算.(3)向量与功、动量:力所做的功是力在物体前进方向上的分力与物体位移的乘积,它的实质是力和位移两个向量的数量积,即W =F ·s =|F ||s |cosθ(θ为F 和s 的夹角).动量m ν实际上是数乘向量. 3、余弦定理、正弦定理(1)余弦定理的表示及其推论(SAS 、SSS 、SSA )文字语言:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号语言:;;.在△ABC 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =(2)解三角形:一般地,三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. (3)正弦定理的表示(AAS 、SSA )文字语言:在一个三角形中,各边和它所对角的正弦的比相等,该比值为该三角形外接圆的直径. 符号语言:在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则2sin sin sin a b cR C===A B (R 为△ABC 的外接圆的半径)(4)正弦定理的变形形式变形形式是在三角形中实现边角互化的重要公式 设三角形的三边长分别为a ,b ,c ,外接圆半径为R ,正弦定理有如下变形: ①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2bR B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; (5)三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . (6)相关术语①仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯2222cos a b c bc A =+-2222cos b c a ca B =+-2222cos c a b ab C =+-角,如图所示.②方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图1所示).③方位角的其他表示——方向角正南方向:指从原点O出发的经过目标的射线与正南的方向线重合,即目标在正南的方向线上.依此可类推正北方向、正东方向和正西方向.东南方向:指经过目标的射线是正东和正南的夹角平分线(如图2所示).(7)解三角形应用题解题思路:基本步骤:运用正弦定理、余弦定理解决实际问题的基本步骤如下:①分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);②建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解三角形的数学模型.③求解:利用正弦定理、余弦定理解三角形,求得数学模型的解.④检验:检验所求的解是否符合实际问题,从而得出实际问题的解.第七章复数【7.1】复数的概念1、数系的扩充和复数的概念(1)复数的定义:形如a +bi (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,全体复数所构成的集合C ={a +bi |a ,b ∈R }叫做复数集.(2)复数通常用字母z 表示,代数形式为z =a +bi (a ,b ∈R ),其中a 与b 分别叫做复数z 的实部与虚部.(3)复数相等:在复数集C ={a +bi |a ,b ∈R }中任取两个数a +bi ,c +di (a ,b ,c ,d ∈R ),我们规定:a +bi 与c +di 相等当且仅当a =c 且b =d . (4)复数的分类①对于复数a +bi (a ,b ∈R ),当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +bi (a ,b ∈R )可以分类如下:复数{实数(b =0)虚数(b ≠0)(当a =0时为纯虚数),②集合表示:2、复数的几何意义(1)复平面(复平面中点的横坐标表示复数的实部,点的纵坐标表示复数的虚部)(2)复数的几何意义①复数z =a +bi (a ,b ∈R )一一对应↔ 复平面内的点z (a ,b ). ②复数z =a +bi (a ,b ∈R )一一对应↔ 平面向量OZ⃗⃗⃗⃗⃗ . (3)复平面上的两点间的距离公式:(,).(4)复数的模①定义:向量OZ⃗⃗⃗⃗⃗ 的模叫做复数z =a +bi (a ,b ∈R )的模或绝对值. 12||d z z =-=111z x y i =+222z x y i =+②记法:复数z =a +bi 的模记为|z |或|a +bi |. ③公式:|z |=|a +bi |=√a 2+b 2(a ,b ∈R ).如果b =0,那么z =a +bi 是一个实数,它的模就等于|a |(a 的绝对值).(5)共轭复数:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数.复数z 的共轭复数用z̅表示,即如果z =a +bi ,那么z̅=a -bi .(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。
知识系统整合规律方法收藏1.待定系数法是数学中特别重要的一种解题方法,在本章的复数的运算当中,待定系数法用的较多,常设z=a+b i(a,b∈R),建立a,b的关系式,然后求解问题.2.解决复数问题时,要注意从整体角度去分析求解,若遇见复数便设为z=a+b i(a,b∈R)的形式,有时会导致计算量过大.运用整体代换及结合几何意义,可以大大地简化计算过程.3.复数相等的充要条件是复数问题实数化的理论依据.4.复数的模是复数的一个重要概念,也是高考重点考察的对象之一.求复数的模的最值时,常用的方法有:(1)设出代数形式,利用求模公式,把模表示成实数范围的函数,然后利用函数来求最值;(2)利用不等式||z1|-|z2||≤|z1±z2|≤|z1|+|z2|求解;(3)利用几何法求解.学科思想培优复数的基本概念复数的分类,要弄清复数类型的充要条件,若复数a +b i 是实数,则b =0,若复数a +b i 是纯虚数,则a =0且b ≠0,若复数a +b i 为零,则a =0,且b =0,若复数a +b i 是虚数,则b ≠0.[典例1] (1)设z 是复数,则下列命题中的假命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数 C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 (2)设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为( ) A .-3 B .-1 C .1 D .3(3)已知复数z =(5+2i)2(i 为虚数单位),则z 的实部为________.解析 (1)设z =a +b i(a ,b ∈R ),则z 2=a 2-b 2+2ab i ,若z 2≥0,则⎩⎪⎨⎪⎧ ab =0,a 2-b 2≥0,即b =0,故z 是实数,A 正确.若z 2<0,则⎩⎪⎨⎪⎧ ab =0,a 2-b 2<0,即⎩⎪⎨⎪⎧a =0,b ≠0,故B 正确.若z 是虚数,则b ≠0,z 2=a 2-b 2+2ab i 无法与0比较大小,故C 是假命题.若z 是纯虚数,则⎩⎪⎨⎪⎧a =0,b ≠0,z 2=-b 2<0,故D 正确.(2)a -103-i =a -10(3+i )(3-i )(3+i )=a -(3+i)=(a -3)-i ,其为纯虚数得a =3.(3)复数z =(5+2i)2=21+20i ,其实部是21. 答案 (1)C (2)D (3)21复数的四则运算复数的四则运算类似于多项式的四则运算,此时含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可,但要注意把i 的幂写成最简单的形式.[典例2] 计算:(1)2-i 31-2i ;(2)(2+2i )4(1-3i )5.解 (1)原式=2+i 1-2i=(2+i )i i +2=i.(2)原式=16(1+i )4(1-3i )4(1-3i )=16(2i )2(-2-23i )2(1-3i ) =-644(1+3i )2(1-3i )=-16(1+3i )×4=-41+3i=-1+3i.复数及其运算的几何意义1.任何一个复数z =a +b i 与复平面内一点Z (a ,b )对应,而任一点Z (a ,b )又可以与以原点为起点,点Z (a ,b )为终点的向量OZ →对应,这些对应都是一一对应,即2.设z 1=x 1+y 1i ,z 2=x 2+y 2i ,其对应的复平面内的点分别为Z 1(x 1,y 1),Z 2(x 2,y 2),所以点Z 1,Z 2之间的距离为|Z 1Z 2|=|Z 1Z 2→|=|Z 2-Z 1|=|(x 2+y 2i)-(x 1+y 1i)|=|(x 2-x 1)+(y 2-y 1)i|=(x 2-x 1)2+(y 2-y 1)2.[典例3] 已知z 是复数,z +2i ,z2-i均为实数,且复数(z +a i)2在复平面上对应的点在第一象限,求实数a 的取值范围.解 设z =x +y i(x ,y ∈R ),因为z +2i =x +(y +2)i ,且z +2i 为实数, 所以y =-2.因为z2-i =x -2i 2-i =15(x -2i)(2+i)=15(2x +2)+15(x -4)i ,且z 2-i 为实数,所以x =4,所以z =4-2i ,所以(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,8(a -2)>0,解得2<a <6,所以实数a 的取值范围是(2,6). [典例4] 已知复数z 1=i(1-i)3. (1)求|z 1|;(2)若|z |=1,求|z -z 1|的最大值.解 (1)∵z 1=i(1-i)3=i(1-i)(-2i)=2-2i , ∴|z 1|=22+(-2)2=2 2.(2)解法一:设z 与z 1对应的点分别为Z ,Z 1, ∵|z |=1,∴点Z 在以原点为圆心,1为半径的圆上,∵z 1=2-2i ,∴Z 1(2,-2),∴|z -z 1|为点Z 1到圆上一点的距离,∴|z -z 1|max =|ZZ 1|max =22+22+1=22+1.解法二:∵|z |=1,∴可设z =cos θ+isin θ(θ∈R ), ∴|z -z 1|=|cos θ+isin θ-2+2i| = (cos θ-2)2+(sin θ+2)2 =9+4(sin θ-cos θ) =9+42sin ⎝ ⎛⎭⎪⎫θ-π4.∴当sin ⎝ ⎛⎭⎪⎫θ-π4=1时,|z -z 1|取得最大值,最大值为9+42=22+1.复数方程问题[典例5] 设关于x 的方程是x 2-(tan θ+i)x -(2+i)=0, (1)若方程有实数根,求锐角θ和实数根; (2)证明对任意θ≠k π+π2(k ∈Z ),方程无纯虚数根. 解 (1)设实数根是a , 则a 2-(tan θ+i)a -(2+i)=0, 即a 2-a tan θ-2-(a +1)i =0.∵a ,tan θ∈R ,∴⎩⎪⎨⎪⎧a 2-a tan θ-2=0,a +1=0,∴a =-1,且tan θ=1. 又0<θ<π2,∴θ=π4.(2)证明:若方程存在纯虚数根,设为x =b i(b ∈R ,b ≠0),则(b i)2-(tan θ+i)b i -(2+i)=0,即⎩⎪⎨⎪⎧-b 2+b -2=0,b tan θ+1=0,此方程组无实数解. 所以对任意θ≠k π+π2(k ∈Z ),方程无纯虚数根.。
人教版数学必修2第三章高考复习试题高考数学复习做题是不可缺少的一步,想要考个好的数学成绩的话就多做题吧。
下面是店铺分享给大家的数学必修2第三章高考复习试题的资料,希望大家喜欢!数学必修2第三章高考复习试题一1.双曲线的方程为=1(a>0,b>0),焦距为4,一个顶点是抛物线y2=4x的焦点,则双曲线的离心率e=( )A.2B.C.D.2.已知F1,F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是( )A. (0,1)B.C.D.3.设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点.若=0,则||+||+||=( )A.9B.6C.4D.34.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )A.x=1B.x=-1C.x=2D.x=-25.已知A,B,P是双曲线=1上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPA·kPB=,则该双曲线的离心率为( )A.1B.2C. -1D.-26.已知抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AKl,垂足为K,则AKF的面积是( )A.4B.3C.4D.87.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A,B两点,若线段AB的长为8,则p= .8.(2014湖南,文14)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围是.9.已知双曲线的中心在原点,且一个焦点为F(,0),直线y=x-1与其相交于M, N两点,线段MN中点的横坐标为-,求此双曲线的方程.10.(2014安徽,文21)设F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(1)若|AB|=4,ABF2的周长为16,求|AF2|;(2)若cosAF2B=,求椭圆E的离心率.11.已知点F是双曲线=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若ABE是直角三角形,则该双曲线的离心率是( )A. B.2 C.1+ D.2+12.(2014湖北,文8)设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线=1的公共点的个数为( )A.0B.1C.2D.313.已知椭圆C:=1(a>b>0)的离心率为,双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为( )A.=3B.=1C.=-1D=-2C.=1D.=114.(2014江西,文20)如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2,证明:|MN2|2-|MN1|2为定值,并求此定值.15.已知点A(0,-2),椭圆E:=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当OPQ的面积最大时,求l的方程.数学必修2第三章高考复习试题二1.已知抛物线x2=ay的焦点恰好为双曲线y2-x2=2的上焦点,则a=( )A.1B.4C.8D.162.(2014辽宁,文8)已知点A(-2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为( )A.-B.-1C.-D.-3.抛物线y=-4x2上的一点M到焦点的距离为1,则点M的纵坐标是( )A.-B.-C.D.4.抛物线C的顶点为原点,焦点在x轴上,直线x-y=0与抛物线C交于A,B两点,若P(1,1)为线段AB的中点,则抛物线C的方程为( )A.y=2x2B.y2=2xC.x2=2yD.y2=-2x5.已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上,且|AK|=|AF|,则AFK的面积为( )A.4B.8C.16D.326.以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为.7.已知抛物线x2=2py(p为常数,p≠0)上不同两点A,B的横坐标恰好是关于x的方程x2+6x+4q=0(q为常数)的两个根,则直线AB的方程为.8.已知F是抛物线C:y2=4x的焦点,A,B是C上的两个点,线段AB 的中点为M(2,2),求ABF的面积.9.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在正数m,对于过点M(m,0),且与曲线C有两个交点A,B 的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由.10.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A.相离B.相交C.相切D.不确定11.设x1,x2R,常数a>0,定义运算“*”,x1*x2=(x1+x2)2-(x1-x2)2,若x≥0,则动点P(x,)的轨迹是( )A.圆B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分12.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若=4,则|QF|=( )A. B.3 C. D.213.过抛物线x2=2py(p>0)的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B在x轴上的正射影分别为D,C.若梯形ABCD的面积为12,则p= .14.(2014大纲全国,文22)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l'与C 相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.15.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,ADF为正三角形.(1)求C的方程;(2)若直线l1l,且l1和C有且只有一个公共点E,证明直线AE过定点,并求出定点坐标;ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.参考答案及解析:1.C 解析:根据抛物线方程可得其焦点坐标为,双曲线的上焦点为(0,2),依题意则有=2,解得a=8.2.C 解析:由已知,得准线方程为x=-2,F的坐标为(2,0).又A(-2,3),直线AF的斜率为k==-.故选C.3.B 解析:抛物线方程可化为x2=-,其准线方程为y=.设M(x0,y0),则由抛物线的定义,可知-y0=1y0=-.4.B 解析:设A(x1,y1),B(x2,y2),抛物线方程为y2=2px,则两式相减可得2p=×(y1+y2)=kAB×2=2,即可得p=1,故抛物线C的方程为y2=2x.5.B 解析:抛物线C:y2=8x的焦点为F(2,0),准线为x=-2,K(-2,0).设A(x0,y0),过点A向准线作垂线AB垂足为B,则B(-2,y0).|AK|=|AF|,又|AF|=|AB|=x0-(-2)=x0+2,由|BK|2=|AK|2-|AB|2,得=(x0+2)2,即8x0=(x0+2)2,解得A(2,±4).故AFK的面积为|KF|·|y0|=×4×4=8.6.x2+(y-4)2=64 解析:抛物线的焦点为F(0,4),准线为y=-4,则圆心为(0,4),半径r=8.故圆的方程为x2+(y-4)2=64.7.3x+py+2q=0 解析:由题意知,直线AB与x轴不垂直.设直线AB的方程为y=kx+m,与抛物线方程联立,得x2-2pkx-2pm=0,此方程与x2+6x+4q=0同解,则解得故直线AB的方程为y=-x-,即3x+py+2q=0.8.解:由M(2,2)知,线段AB所在的直线的斜率存在,设过点M的直线方程为y-2=k(x-2)(k≠0).由消去y,得k2x2+(-4k2+4k-4)x+4(k-1)2=0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.由题意知=2,则=4,解得k=1,于是直线方程为y=x,x1x2=0.因为|AB|=|x1-x2|=4,又焦点F(1,0)到直线y=x的距离d=,所以ABF的面积是×4=2.9.解:(1)设P(x,y)是曲线C上任意一点,则点P(x,y)满足-x=1(x>0),化简得y2=4x(x>0).(2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).设l的方程为x=ty+m.由得y2-4ty-4m=0,Δ=16(t2+m)>0,于是因为=(x1-1,y1),=(x2-1,y2),所以=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+y1y2+1.又<0,所以x1x2-(x1+x2)+y1y2+1<0,③因为x=,所以不等式可变形为+y1y2-+1<0,即+y1y2-[(y1+y2)2-2y1y2]+1<0.将代入整理得m2-6m+1<4t2.因为对任意实数t,4t2的最小值为0所以不等式对于一切t成立等价于m2-6m+1<0,即3-20),则FD的中点为.因为|FA|=|FD|,由抛物线的定义知3+,解得t=3+p或t=-3(舍去).由=3,解得p=2.所以抛物线C的方程为y2=4x.(2)由(1)知F(1,0).设A(x0,y0)(x0y0≠0),D(xD,0)(xD>0),因为|FA|=|FD|,则|xD-1|=x0+1.由xD>0得xD=x0+2,故D(x0+2,0).故直线AB的斜率kAB=-.因为直线l1和直线AB平行,设直线l1的方程为y=-x+b, 代入抛物线方程得y2+y-=0,由题意Δ==0,得b=-.设E(xE,yE),则yE=-,xE=.当≠4时,kAE==-,可得直线AE的方程为y-y0=(x-x0),由=4x0,整理可得y=(x-1),直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0).所以直线AE过定点F(1,0).由知直线AE过焦点F(1,0),所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.设直线AE的方程为x=my+1,因为点A(x0,y0)在直线AE上,故m=.设B(x1,y1),直线AB的方程为y-y0=-(x-x0),由于y0≠0,可得x=-y+2+x0,代入抛物线方程得y2+y-8-4x0=0.所以y0+y1=-,可求得y1=-y0-,x1=+x0+4.所以点B到直线AE的距离为d===4.则ABE的面积S=×4≥16,当且仅当=x0,即x0=1时等号成立.所以ABE的面积的最小值为16.数学必修2第三章高考复习试题三1.甲、乙两名篮球运动员每场比赛的得分情况用茎叶图表示如右:则下列说法中正确的个数为( )甲得分的中位数为26,乙得分的中位数为36;甲、乙比较,甲的稳定性更好;乙有的叶集中在茎3上;甲有的叶集中在茎1,2,3上.A.1B.2C.3D.42.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.63.某中学高三(2)班甲、乙两名学生自高中以来每次考试成绩的茎叶图如图,下列说法正确的是( )A.乙学生比甲学生发挥稳定,且平均成绩也比甲学生高B.乙学生比甲学生发挥稳定,但平均成绩不如甲学生高C.甲学生比乙学生发挥稳定,且平均成绩比乙学生高D.甲学生比乙学生发挥稳定,但平均成绩不如乙学生高4.为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6B.8C.12D.185.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5B.91.5和92C.91和91.5D.92和926.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C.60D.457.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用右图所示的茎叶图表示,若甲运动员的中位数为a,乙运动员的众数为b,则a-b= .8.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95],由此得到频率分布直方图如图,则由此估计该厂工人一天生产该产品数量在[55,70)的人数约占该厂工人总数的百分率是.9.(2014广东,文17)某车间20名工人年龄数据如下表:年龄(岁) 工人数(人) 19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计 20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.10.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为311.样本(x1,x2,…,xn)的平均数为,样本(y1,y2,…,ym)的平均数为),若样本(x1,x2,…, xn,y1,y2,…,ym)的平均数=α+(1-α),其中0<α<,则n,m 的大小关系为( )A.nm C.n=m D.不能确定12.(2014课标全国,文18)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表: 质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125) 频数 6 26 38 22 8(1)在答题卡上作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?参考答案1.C 解析:由茎叶图可知乙的集中趋势更好,故错误,正确.2. D 解析:每一个数据都加上60时,平均数也应加上60,而方差不变.3.A 解析:从茎叶图可知乙同学的成绩在80~100分分数段的有9次,而甲同学的成绩在80~100分分数段的只有7次;再从题图上还可以看出,乙同学的成绩集中在90~100分分数段的最多,而甲同学的成绩集中在80~90分分数段的最多.故乙同学比甲同学发挥较稳定且平均成绩也比甲同学高.4.C 解析:设样本容量为n,由题意,得(0.24+0.16)×1×n=20,解得n=50.所以第三组频数为0.36×1×50=18.因为第三组中没有疗效的有6人,所以第三组中有疗效的人数为18-6=12.5.A 解析:按照从小到大的顺序排列为87,89,90,91,92,93,94,96.有8个数据,中位数是中间两个数的平均数:=91.5,平均数:=91.5.6.A解析:样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,又频数为36,样本容量为=120.样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.7.8 解析:由茎叶图可知,a=19,b=11,a-b=8.8.52.5% 解析:结合直方图可以看出:生产数量在[55,65)的人数频率为0.04×10=0.4,生产数量在[65,75)的人数频率为0.025×10=0.25,而生产数量在[65,70)的人数频率约为0.25×=0.125,所以生产数量在[55,70)的人数频率约为0.4+0.125=0.525,即52.5%.9.解:(1)由图可知,众数为30.极差为:40-19=21.(2)1 92 8889993 0000011112224 0(3)根据表格可得:∴s2=[(19-30)2+3(28-30)2+3(29-30)2+5(30-30)2+4(31-30)2+3(32-30)2+(40-30)2]=12.6.10.D 解析:根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A中,中位数为4,可能存在大于7的数;同理,在选项C中也有可能;选项B中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项D中,根据方差公式,如果有大于7的数存在,那么方差不会为3,故答案选D.11.A 解析:由题意知样本(x1,…,xn,y1,…,ym)的平均数为,又=α+(1-α),即α=,1-α=.因为0<α<,所以0<,即2n。
2020届高考数学总复习资料整理高中数学必备知识点大全三、算法、推理与证明五、函数、基本初等函数I的图像与性质指数函数2y a=01a〈〈(),-∞+∞单调递减,01,001x y x y〈〈〉〈〈时时函数图象过定点(0.1)1a〉(),-∞+∞单调递增,01,01x y x y〈〈〈〉〉时0时六、函数与方程、函数模型及其应用函数零点概念方程()0f x=的实数根。
方程()0f x=的实数根⇔函数()0y x=的图象与x轴有交点⇔函数()y f x=有零点。
存在定理对于在区间[],a b上连续不断,若()()0f a f b〈,则()y f x=在(),a b内存在零点。
二分法方法对于在区间[],a b上连续不断且()()0f a f b〈的函数()y f x=。
通过不断把函数()f x的零点所在的区间一分为二,使区间两个端点逐步逼近零点。
进而得到零点近似值的方法叫做二分法。
步骤第一步确定区间[],a b,验证()()0f a f b〈g,确定精确度∈。
221cos 2sin 21cos 2cos 2aa aa -=+=注:表中,n k均为正整数。
十三、空间几何体(其中为半径、为高、为母线等)S h十四、空间点、直线平面位置关系(大写字母表点、小写字母表直线、希腊字母表平面):【注:标准d根据上下文理解为圆心到直线的距离与两圆的圆心距】十八、圆锥曲线的定义、方程与性质注:1.表中两种形式的双曲线方程对应的渐进线方程分别为x a y ±=,x by ±=2.表中四种形式的抛物线方程对应的准线方程分别是2,2,2,2p y p y p x p x =-==-=。
十九、圆锥曲线的热点问题二十一、离散型随机变量及其分布(理科)二十二、统计与统计案例二十三、函数与方程思想,数学结合思想二十四、分类与整合思想,化归与转化思想二十五、几何证明选讲二十六、坐标系与参数方程。
(完整版)高中数学人教版必修二知识点总
结
高中数学人教版必修二知识点总结
本文档总结了高中数学人教版必修二的知识点,帮助学生进行复和总结。
以下是各个章节的重点内容:
第一章函数与导数
- 函数的概念和性质
- 函数的图像与奇偶性
- 导数的定义和性质
- 函数的单调性与极值
第二章三角函数
- 正弦、余弦、正切函数的定义和性质
- 三角函数的基本关系式
- 三角函数的图像和性质
- 三角恒等式的运用
第三章数列与数学归纳法- 数列的定义和性质
- 数列的通项公式和通项求和- 数学归纳法的原理和应用
第四章二次函数与其应用- 二次函数的定义和性质
- 二次函数的图像和性质
- 二次函数的最值问题
- 二次函数在实际问题中的应用
第五章平面向量
- 向量的定义和运算
- 向量共线与共面的判定
- 向量的数量积和性质
- 向量的应用
第六章概率
- 概率的基本概念和性质
- 随机事件与概率
- 条件概率和乘法定理
- 排列与组合的应用和概率计算
第七章统计与回归分析
- 统计的基本概念和性质
- 数据的收集和整理
- 统计图表的制作和分析
- 回归分析的原理和应用
以上是高中数学人教版必修二的主要知识点总结,希望对学生的复有所帮助。
详细内容以教材为准。
2020年高中数学必修二全册精品教案(全套完整版)课题:柱、锥体的结构特征教学目标:通过实物模型,观察大量的空间图形,认识柱体、锥体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体的结构特征.教学难点:柱、锥的结构特征的概括.教学过程:一、新课导入:在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。
由这些物体抽象出来的空间图形叫做空间几何体。
下面请同学们观察课本P2图1.1-1的物体,它们具有什么样的几何结构特征?你能对它们进行分类吗?分类的依据是什么?学生观察思考,最后归类总结。
上图中的物体大体可分为两大类:(一)由若干个平面多变形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面。
相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
(二)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴。
这节课我们主要学习多面体——柱、锥的结构特征。
二、讲授新课:1. 棱柱的结构特征:请同学们根据刚才的分类,再对比一下图1.1-1中(2)(5)(7)(9)中的几何体,并寻找它们的共同特征。
(师生共同讨论,总结出棱柱的定义及其相关概念)(1)定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
(2)棱柱的有关概念:(出示右图模型,边对照模型边介绍)棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点。
(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等。
(4)棱柱的表示用底面各顶点的字母表示,如右图的六棱柱可表示为“棱柱''F''''BABCDEF ”AEDC思考1:有两个面平行,其余各面都是平行四边形的几何体是不是棱柱?答:不是棱柱。
《2020年高考数学总复习系列》——高中数学必修二第一章 立体几何初步 一、基础知识(理解去记)(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩L 底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
补充知识点 长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.5面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)注意:大多数省市在高考试卷会给出面积体积公式,因此考生可以不用刻意地去记2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有3.3侧面展开图:正n 棱锥的侧面展开图是有n 个全等的等腰三角形组成的。
3.4面积、体积公式:S 正棱锥侧=12ch ',S 正棱锥全=12ch S '+底,V 棱锥=13S h ⋅底.(其中c 为底面周长,h '侧面斜高,h 棱锥的高)4.圆锥4.1圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
4.2圆锥的性质:①平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比; ②轴截面是等腰三角形;如右图:SAB V ③如右图:222l h r =+.4.3圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。
4.4面积、体积公式:S 圆锥侧=rl π,S 圆锥全=()r r l π+,V 圆锥=213r h π(其中侧面母线Br 为底面半径,h 为圆锥的高,l 为母线长) 5.棱台5.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 5.2正棱台的性质:①各侧棱相等,各侧面都是全等的等腰梯形;②正棱台的两个底面以及平行于底面的截面是正多边形; ③ 如右图:四边形`,``O MNO O B BO 都是直角梯形④棱台经常补成棱锥研究.如右图:`SO M V V V V 与SO N ,S`O `B`与SO B相似,注意考虑相似比.5.3棱台的表面积、体积公式:S S S 全上底下底=S ++侧,1S `)3V S h 棱台=(,(其中,`S S 是上,下底面面积,h 为棱台的高) 6.圆台6.1圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 6.2圆台的性质:①圆台的上下底面,与底面平行的截面都是圆; ②圆台的轴截面是等腰梯形;③圆台经常补成圆锥来研究。
如右图: `SO A SOB V V 与相似,注意相似比的应用. 6.3圆台的侧面展开图是一个扇环;6.4圆台的表面积、体积公式:22()S r R R r l πππ+++全=,V圆台2211S `))33S h r rR R h πππ++=(=(,(其中r ,R 为上下底面半径,h 为高)7.球7.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. 或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称球; 7.2球的性质:①球心与截面圆心的连线垂直于截面;②r d 、球的半径为R 、截面的半径为r )7.3球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决.7.4球面积、体中R 为球的半径)(二)空间几何体的三视图与直观图根据最近几年高考形式上看,三视图的考察已经淡化,所以同学只需了解即可 1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形; 正视图——光线从几何体的前面向后面正投影,得到的投影图; 侧视图——光线从几何体的左面向右面正投影,得到的投影图; 正视图——光线从几何体的上面向下面正投影,得到的投影图;注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。
(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽”. (2)正视图,侧视图,俯视图都是平面图形,而不是直观图。
3.直观图:3.1直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3.2斜二测法:step1:在已知图形中取互相垂直的轴Ox 、Oy ,(即取90xoy ∠=︒ );step2:画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y or ∠=︒︒,它们确定的平面表示水平平面;step3:在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
解决两种常见的题型时应注意:(1)由几何体的三视图画直观图时,一般先考虑“俯视图”.(2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
二 点、直线、平面之间的位置关系 (一) 平面的基本性质1.平面——无限延展,无边界 1.1三个定理与三个推论公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。
用途:常用于证明直线在平面内.图形语言: 符号语言:公理2:不共线...的三点确定一个平面. 图形语言: 推论1:直线与直线外的一点确定一个平面. 图形语言: 推论2:两条相交直线确定一个平面. 图形语言: 推论3:两条平行直线确定一个平面. 图形语言: 用途:用于确定平面。
公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线).用途:常用于证明线在面内,证明点在线上.图形语言: 符号语言:形语言,文字语言,符号语言的转化:(二)空间图形的位置关系1.空间直线的位置关系:⎧⎨⎩I 共面:a b=A,a//b异面:a与b异面平行线的传递公理:平行于同一条直线的两条直线互相平行。
符号表述://,////a b b c a c ⇒等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
异面直线:(1)定义:不同在任何一个平面内的两条直线——异面直线; (2)判定定理:连平面内的一点与平面外一点的直线与这个平面内不过此点的直线是异面直线。
图形语言:aαAP 符号语言:PA a P A a A a ααα∉⎫⎪∈⎪⇒⎬⊂⎪⎪∉⎭与异面异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法. 如右图,在空间任取一点O ,过O 作'//,'//a a b b ,则','a b 所成的θba b'a'θαO角为异面直线,a b 所成的角。
特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.2.直线与平面的位置关系: //l l A l l αααα⊂⎧⎪=⎧⎨⊄⎨⎪⎩⎩I图形语言:3.平面与平面的位置关系:αβαβαβ⎧⎪⎧⎨⎨⎪⊥⎩⎩I 平行://斜交:=a 相交垂直:(三)平行关系(包括线面平行,面面平行)1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭(线线平行⇒线面平行)【如图】③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭I (线面平行⇒线线平行)【如图】④判定或证明线面平行的依据:(i )定义法(反证)://l l αα=∅⇒I(用于判断);(ii )判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭“线线平行⇒面面平行”(用于证明);(iii )////a a αββα⎫⇒⎬⊂⎭“面面平行⇒线面平行”(用于证明);(4)//b a b a a ααα⊥⎫⎪⊥⇒⎬⎪⊄⎭(用于判断);2.线面斜交:l A α=I①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。
【如图】 PO α⊥于O ,则AO 是PA 在平面α内的射影, 则PAO ∠就是直线PA 与平面α所成的角。
范围:[]0,90θ∈︒︒,注:若//l l αα⊂或,则直线l 与平面α所成的角为0︒;若l α⊥,则直线l 与平面α所成的角为90︒。
3.面面平行: ①定义://αβαβ=∅⇒I;θαA O②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b a b O a b ααααβ⊂=⇒I 【如下图①】O b aβαa'b'O O b aβα图① 图②推论:一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行 符号表述:,,,',',//',//'//a b a b O a b a a b b αβαβ⊂=⊂⇒I 【如上图②】 判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.【如右图】③判定与证明面面平行的依据:(1)定义法;(2)判定定理及推论(常用)(3)判定2 ④面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭(面面平行⇒线面平行);(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭I I ;(面面平行⇒线线平行)(3)夹在两个平行平面间的平行线段相等。