煤矿井下配电系统设计
- 格式:doc
- 大小:57.50 KB
- 文档页数:5
GB50417-2007煤矿井下供配电设计规范中华人民共和国国家标准GB50417-2007煤矿井下供配电设计规范Code for design of electric power supply of under the coal mine2007—05—21发布2007—12—01实施中华人民共和国国家建设部联合发布中华人民共和国国家质量监督检验检疫总局中华人民共和国国家标准中国煤炭建设协会主编中华人民共和国建设部公告第646号建设部关于发布国家标准《煤矿井下供配电设计规范》的公告现批准《煤矿井下供配电设计规范》为国家标准,编号为GB50417—2007,自2007年12月1日起实施。
其中,第2.0.1、2·O·3、2·0.5、2.0.6、2.0.9、4.1.1、4.2.1、4.2.9、5.1.3、5·1·4(4、5、6)、6.1.4、6.3.1(4)、7.1.1、7.1.2、7.1.3、7·1·4、7·1·5、7.2.1、7.2.8条(款)为强制性条文,必须严格执行。
本规范由建设部标准定额研究所组织中国计划出版社出版发行。
中华人民共和国建设部二OO七年五月二十一日前言本规范是根据建设部建标函(2005}124号文件《关于印发“2005年工程建设标准制定、修订计划(第二批)”的通知》的要求,由中煤国际工程集团武汉设计研究院会同有关单位共同编制完成的。
本规范在编制过程中,编制组认真分析、总结和吸取了十几年来国内外煤矿井下供配电采用新技术、新装备的经验及新的科研成果。
所引用的技术参数和指标,是生产实践经验数据的总结。
特别是高产高效工作面近几年发展较快,其供配电系统有了比较成熟的运行实践经验。
编制组广泛征求了有关单位意见,经反复修改,最后经审查定稿。
本规范共8章,内容涉及煤矿井下供电的各个方面,主要包括:总则、井下供配电系统与电压等级、井下电力负荷统计与计算、井下电缆选择与计算、井下主(中央)变电所设计、采区供配电设计、井下电气设备保护及接地、井下照明等。
煤矿井下供配电系统设计发表时间:2016-06-30T15:13:09.843Z 来源:《电力设备》2016年第9期作者:秦艳丽[导读] 井下供配电系统设计分为下井电缆选择、井下中央变电所、采区变电所、移动变电站、采区低压网络电缆的设计。
秦艳丽(陕西华雁工程设计咨询有限责任公司 710054)摘要:电力是煤矿生产的主要动力来源,供电系统对于煤矿安全生产有着重要作用。
煤矿井下供电系统的可靠性及稳定性直接影响煤矿机电设备的安全运行。
本文简要阐述了矿井井下供配电系统、照明系统、保护接地的原则及要求。
关键字:井下;供配电系统;照明;接地;保护煤矿井下作业是一项高危行业,煤矿井下生产环境复杂,条件恶劣,井下瓦斯、粉尘、水等危害因素时时刻刻都在威胁着井下人员和设备的安全。
随着采煤技术的不断发展,各种先进机电设备的不断运用,在提高了煤矿生产效率的同时,极大地改善了井下作业环境,井下安全生产条件得到了明显提高,矿井抗灾能力以及安全保障能力明显增强。
与此同时,煤矿的安全生产对于煤矿供配电系统的依赖程度越来越高,如何保证煤矿供配电系统的稳定运行,确保井下正常、安全供电,对于保障机电设备的稳定运行、提高煤矿生产效率、促进煤矿企业的安全生产工作都具有重要的作用。
1.煤矿生产对煤矿供配电系统的要求煤矿企业是特殊供电用户,供配电系统是煤矿一切生产活动的基础,确保煤矿井下安全生产主要的机电设备如人员提升机、通风机、井下主排水泵等都离不开稳定的电力供应,一旦供电系统突然发生故障,导致突然停电,不仅影响生产,更会直接威胁到井下人员和设备安全,甚至造成较大的人员伤亡事故和财产损失。
因此,对于煤矿供配电系统的要求主要是要保证供电的安全、可靠以及供电的质量和经济性。
1.1供配电的安全性。
我国煤矿开采主要是在井下作业,井下地质环境复杂,巷道空间狭小,并且环境潮湿。
在井下条件下,供电设备和电缆等容易受到顶板等外部因素压力的影响,造成机电设备和线路的损坏;并且潮湿的环境,容易使机电设备和电缆的绝缘性降低,尤其是在井下相对密闭的、危险的瓦斯和煤粉尘环境中,井下发生人身触电和电火灾、爆炸事故的可能性更大,造成的危害也更大。
目录第一节井下采区供电设计 (2)第二节拟定采区供电系统 (6)第三节确定采区变电所和工作面配电点的位置 (8)第四节计算与选择采区变电所动力变压器 (11)第五节选择采区低压动力电缆 (14)第六节选择采区配电装置 (45)第七节整定采区低压电网过流保护装置 (47)第八节制订采区保护接地措施 (56)第九节制订采区漏电保护措施 (57)第十节制订采区变电所防火措施 (57)第十一节绘制采区供电系统图 (58)第十二节绘制采区设备布置图 (58)第十三节绘制采区变电所设备布置图 (58)第一节井下采区供电设计一、原始资料1、采区井巷布置平面图如图一所示,煤层是东西走向,向南倾斜,倾角12º;采区的开拓是中间上山,采区内分三个区段,区段长170米,工作面长150米,采区一翼走向长400米;煤层厚度1.3米,煤质中硬,煤层的顶、底板较平稳;上山周围环境温度为+20ºC,运输平巷及工作面温度为+25ºC。
本矿属有煤和瓦斯突出煤层。
2、采煤方法:走向长壁,区内后退式采煤法,两翼同时开采,掘进超前,回采工作面采用BMD-100型单滚筒采煤机组,两班出煤,一班整修及放顶。
3、煤的运输:工作面采用SGB-630/60型刮板运输机;区段平巷采用SGW-40T型刮板运输机;采区上山采用SPJ-800型吊挂披带运输机;采区轨道上山采用55千瓦单筒绞车作材料运输。
4、掘进煤平巷时,用电钻打眼,ZMZ2-17铲斗式装岩机装煤,开切眼掘进,加设调度绞车。
人工装煤。
5、工作面采用金属支架和绞接顶梁(梁长1.2米)回柱。
6、采区内各用电设备的台数及其技术数据见表1。
它们的分布位置见图一。
二、任务1、确定采区变电所和工作面配电点的位置;2、拟定采区供电系统;3、计算与选择采区变电所动力变压器(型号、容量、台数);4、选择采区低压动力电缆(型号、长度、芯数、截面);5、选择采区配电装置;6、整定采区低压电网过流保护装置;7、制订采区保护接地措施;8、制订采区漏电保护措施;9、制订采区变电所防火措施;10、绘制采区供电系统图;11、绘制采区设备布置图;12、绘制采区变电所设备布置图。
煤矿井下采区供电系统设计一、供电线路设计1.煤矿井下采区供电线路应采用三相四线制,线路电压为380/660V,频率为50Hz。
2.采用0.4/0.69kV双皮带电缆供电,采用Y型接线方式,配电箱与电缆的连接采用专用接头,保证安全可靠。
3.供电线路应采用集中供电和分散供电相结合的方式,根据井下设备的不同需求进行合理配电。
二、配电装置设计1.采用箱式变电站作为供电系统主要配电装置,箱式变电站应具备防尘、防水、防爆等功能,能够在恶劣的井下环境中正常工作。
2.配电装置应根据井下采区的实际情况进行合理布置,确保供电系统的可靠性和安全性。
3.配电装置应具备过载、短路、漏电等保护功能,并及时报警或切断电源,确保井下设备和人员的安全。
三、电缆敷设设计1.电缆应采用阻燃、耐磨损的特殊材料,具备良好的绝缘性能和机械性能,能够在井下恶劣环境中长期稳定运行。
2.电缆敷设应避免与锚杆、滚筒等设备相接触,避免外力磨损和机械损坏。
3.电缆敷设应采用固定夹具或线槽等形式固定,确保电缆的安全可靠运行。
四、绝缘电缆保护设计1.在采区内应设置绝缘保护装置,控制电缆的绝缘电阻,确保电缆与井壁不发生电击事故。
2.绝缘保护装置应具有自动断电功能,在电缆故障发生时能够及时切断电源,避免事故扩大发生。
3.绝缘电缆保护装置应定期检查和维护,确保其正常工作。
以上是一份关于煤矿井下采区供电系统设计的基本内容,为确保井下电气设备的安全运行,设计应遵循相关的国家标准和规范,并定期进行检查和维护。
同时,设计人员还需要根据煤矿井下采区的具体情况,合理安排供电线路、配电装置和电缆敷设等。
只有确保供电系统的可靠性和安全性,才能保障煤矿井下电气设备的正常运行。
煤矿井下供电设计1.供电系统的选择和布置供电系统的选择和布置是煤矿井下供电设计的首要任务。
一般来说,煤矿井下供电系统选择交流供电,因为交流电具有输送能量高、输电损耗小、运行稳定等优点。
同时,煤矿井下供电系统应该采用多回路供电结构,以确保在井下故障发生时仍能保持正常供电。
2.供电线路的设计供电线路的设计是煤矿井下供电设计的重点之一、供电线路应该按照国家相关标准进行设计,线路材质应该选用耐磨、耐张力和耐腐蚀的特殊材料。
同时,供电线路的敷设应该采用优化的线路布局,以避免互相干扰和故障。
3.供电变压器的选型和布置供电变压器的选型和布置是煤矿井下供电设计的关键环节之一、供电变压器的选型应该根据井下的负荷需求和供电距离来确定,同时还需要考虑供电变压器的可靠性和安全性。
供电变压器的布置应该采用合理的位置和结构,以避免井下的振动和温度变化对其造成影响。
4.井下配电设备的选购和布置井下配电设备的选购和布置是煤矿井下供电设计的另一个重要环节。
井下配电设备的选购应该根据其负荷能力、安全性和可靠性来确定。
井下配电设备的布置应该考虑到易用性和可维护性,以方便井下工作人员进行操作和检修。
5.井下照明设计井下照明设计是煤矿井下供电设计的另一个重要方面。
井下的照明设备应该选择符合国家标准的矿用灯具,以确保足够的照明强度和可靠性。
同时,井下的照明设计应该考虑到不同部位的照明需求,以提高照明效果和安全性。
6.电气保护与自动化系统设计电气保护与自动化系统设计是煤矿井下供电设计的最后一个环节。
电气保护系统应该设置合适的保护装置,以保护供电设备免受过电流、过电压等故障的影响。
自动化系统设计应该考虑到井下环境的特殊性,以提高煤矿供电系统的运行效率和安全性。
总之,煤矿井下供电设计是一个复杂而关键的设计工作。
设计人员应该根据国家相关标准和煤矿的实际情况,选用合适的供电系统、线路、设备和保护措施,并进行合理的布置和调整,以确保煤矿井下供电的正常运行和安全生产。
井下供电系统设计制度标准井下供电系统第八十四条井下供配电硐室、供电线路,供、用电设备的运行、维护必须符合《煤矿安全规程》《设备完好标准》《电气设备防爆标准》《矿三大保护整定细则》及供用电标准化标准的有关规定。
第八十五条井下供电系统必须责任到人,所有供配电硐室、供电线路,供、用电设备都要明确专责人。
并制订定期维护、检查制度,做到电气设备台台完好,保护值正确,防爆性能良好,电缆线路吊挂整齐合格,线路标志清晰醒目(电缆进出口和线路每20米长有一个标志),接地保护装置齐全合格。
第八十六条加强井下供电系统及各种保护装置的维护和管理,建立井下电气设备定期检修试验制度。
经常保持设备性能良好,对井下供电设备保护整定不合格、甩保护、保护装置损坏的,要建立责任追究制度,严肃处理。
第八十七条下井的防爆电气设备必须符合《煤矿安全规程》的要求,必须有“产品合格证”、“防爆合格证”、“煤矿矿用产品安全标志”,且安全性能检查合格。
第八十八条防爆电气设备的管理要严格按照河南省煤炭工业局颁发的豫煤行(2003)250号《河南省煤矿防爆电气检查细则》的规定执行。
第八十九条井下供电系统按照《煤矿安全规程》规定,要有井下配电系统图、井下电气设备布置示意图和电力、信号等线路平面附设示意图,并随着情况变化定期添绘。
上述各图应符合《规程》的具体要求。
第九十条井下变配电工、维修电工主要职责:1、熟练掌握运行设备的性能,定时对运行设备进行巡回检查,及时认真填写记录,保持设备和环境的整洁卫生。
2、当班电工每小时对所辖电气设备运行情况进行一次全面点检,按要求填写配电及运转日志。
通过看、嗅、听、摸等方法,观察设备运行是否正常,绝缘是否老化,是否有异常声响,温度是否正常。
3、熟练掌握辖区内的供电线路、电气设备情况,能够按规定熟练操作,判断、处理问题准确、快捷。
保持电气设备防爆性能良好状态,维护保养不遗留质量问题。
4、必须按规定运行各种保护装置。
不准甩保护、虚设保护和私自改变保护值。
煤炭工业部煤矿井下供电设计技术规定“煤炭工业部煤矿井下供电设计技术规定”是中国煤炭工业部针对煤矿井下供电系统制定的技术标准和规范。
煤炭工业是我国能源行业的重要组成部分,煤矿井下供电系统对其生产和安全管理都具有重要意义。
本文将对该规定的内容、意义和实施情况进行分析。
一、文档的内容“煤炭工业部煤矿井下供电设计技术规定”分为12章,共103条规定,主要包括以下内容:1. 井下供电系统的分类、技术要求及安全措施;2. 井下开关设备的技术参数和选型原则;3. 井下电缆的敷设及维护措施;4. 井下照明及配电系统的设计和安装标准;5. 井下特殊场所(如井下机车车间、提升井、机电设备房等)供电系统的设计及安全管理;6. 井下自动化控制系统的供电设计原则。
以上规定均是根据煤矿生产中的实际需求,就井下供电系统的安全性、可靠性、稳定性以及节能环保等方面提出了具体要求。
二、文档涉及的重要意义1. 安全生产保障煤矿井下供电系统是保障生产、防范事故发生的关键环节,因此该规定的制定目的之一就是为了保障煤矿安全生产。
文档规定了井下供电系统的设计原则及要求,同时明确了设备的选型、安装、维护等各个环节的标准,使井下供电系统更加稳定、安全、可靠。
2. 提高生产效率井下供电系统的质量和可靠性直接影响到煤矿的生产效率,高质量的井下供电系统可以提高生产线的运转效率,从而提高生产产能和降低生产成本。
本规定就是为了通过提高井下供电系统的质量来推动煤矿行业的发展。
3. 保护环境井下供电系统的能源消耗占到了煤矿井下能耗的很大一部分,因此,通过制定标准和规范,促进井下供电系统的节能降耗,有利于推进煤炭工业的节能减排、环境治理和可持续发展。
三、文档的实施情况自“煤炭工业部煤矿井下供电设计技术规定”颁布以来,煤矿企业逐渐重视井下供电系统建设,有序地推进了技术改造和提升。
下面列举几个典型案例:1. 西大社煤矿2015年底,西大社煤矿完成了一次全新的井下电力自动化转型,该矿采用了规定中推荐的先进的PLC控制技术,实现了传统光电式控制向智能化控制的跨越式发展,有效提高了井下设备的自动化程度,大幅度降低了人为干扰对设备稳定性的影响。
第三章矿井井下供配电第一节供配电电压及供配电系统第3.1.1条井下主变(配)电所的设计应根据生产规模、主排水方式和开采方法等因素确定。
主变(配)电所宜由地面主变电所供电。
采区变(配)电所和其它变(配)电所宜由主变(配)电所或附近的地面变(配)电所经风井或钻孔供电。
第3.1.2条矿井井下应采用下列配电电压:一、井下高压电力网的配电电压,应采用6kV、10kV;二、井下低压网络的配电电压,应采用660V、380V;综采工作面设备应采用1140V;三、手持电气设备额定电压不应大于127V。
第3.1.3条井下配电变压器低压侧严禁采用中性点直接接地方式。
地面上中性点直接接地的变压器或发电机严禁直接向井下供电,但专供架线式电机车整流设备的变压器不受此限。
第3.1.4条井下主变(配)电所的电源电缆,不应少于两回路,并应引自地面主变电所的不同母线段。
当任一回路停止供电时,其余回路的供电能力应能承担全部负荷。
向二、三级负荷供电的小型矿井井下主变(配)电所,可只设一回电源电缆。
第3.1.5条经由地面架空线路引入井下的供电电缆,必须在架空线与电缆连接处装设避雷装置。
第3.1.6条向井下供电的电源线路上不得装设自动重合闸装置。
第3.1.7条井下主变(配)电所的高压馈出线上,应装设相间保护装置和有选择性的接地保护装置;接地保护应动作于断路器跳闸或信号。
第3.1.8条属于下列情况之一的采区供电方式,宜采用移动变电站:一、综采、综掘工作面的用电设备;二、由固定式采区变电所供电有困难或不经济时;三、独头大巷掘进、附近无电源可利用时。
第3.1.9条井下照明网路额定电压,应符合下列规定:一、有爆炸危险的矿井,不得大于127V;经省煤炭局批准,有新鲜风流入的主要巷道,可采用220V;二、无爆炸危险的矿井,固定式照明应采用220V或127V;当采用220V时,天井以及天井至回采工作面之间应采用36V;采掘工作面应采用36V;三、行灯电压不应大于36V。
煤矿井下变电所供电设计一、设计目标1.安全稳定供电:确保井下变电所能够正常运行,为煤矿生产提供稳定可靠的电力供应。
2.灵活可靠运行:针对井下变电所的实际情况,设计电力设备和配电系统具有一定的灵活性和自动化程度,能够适应各种工况的需求,并能在电气故障发生时自动切换。
3.节能环保:在供电设计中考虑节能环保的因素,采用高效节能的设备,并合理利用井下的可再生能源,减少对外界能源的依赖。
二、电源系统的设计1.主变电所:选择合适的主变电所容量和型号,根据井下的总负载来确定供电能力。
主变电所应当具备双供电回路,确保备用供电的可靠性。
2.备用电源:选择可靠的备用电源,如发电机组、蓄电池等,以应对主电源故障或停电的情况。
3.电缆线路:选择适应井下环境的电缆线路,采用阻燃、耐张力和耐磨损等特点较好的电缆,保证线路的安全可靠。
三、配电系统的设计1.配电柜:根据井下的不同区域和设备的需要,设置适当数量和容量的配电柜。
配电柜应具备过载和短路保护功能,且能自动切换电源。
2.电流互感器:在配电系统中设置电流互感器,监测电流的变化,保证供电的平衡和稳定。
3.自动切换开关:在其中一电源发生故障时,能够自动切换到备用电源,保证供电的连续性和可靠性。
四、抗干扰和防爆设计1.电磁兼容性策略:采取合理的电源和线路布置,减少电器设备之间的互相干扰,确保系统的稳定和减少电器故障的发生。
2.隔爆设计:根据矿井环境的爆炸等级,选用符合防爆要求的电气设备,确保供电系统在异常情况下不引发火灾和爆炸。
3.接地设计:合理设置接地系统,保证井下的设备与大地之间有良好的接地连接,减少因接地不良引起的电器故障和安全事故。
五、节能环保设计1.利用可再生能源:根据煤矿井下的情况,合理利用水能、风能等可再生能源,实现煤矿井下变电所自给自足,减少对外界能源的依赖。
2.能量管理系统:采用先进的能量管理系统,实时监测和分析电力消耗情况,合理调整供电负荷,实现节能减排的效果。
煤矿井下供配电设计规范(GB50417-2007)2007—05—21发布2007—12—01实施中华人民共和国国家建设部联合发布中华人民共和国国家质量监督检验检疫总局中华人民共和国国家标准中国煤炭建设协会主编中华人民共和国建设部公告第646号建设部关于发布国家标准《煤矿井下供配电设计规范》的公告现批准《煤矿井下供配电设计规范》为国家标准,编号为GB50417—2007,自2007年12月1日起实施。
其中,第2.0.1、2·O·3、2·0.5、2.0.6、2.0.9、4.1.1、4.2.1、4.2.9、5.1.3、5·1·4(4、5、6)、6.1.4、6.3.1(4)、7.1.1、7.1.2、7.1.3、7·1·4、7·1·5、7.2.1、7.2.8条(款)为强制性条文,必须严格执行。
本规范由建设部标准定额研究所组织中国计划出版社出版发行。
中华人民共和国建设部二OO七年五月二十一日前言本规范是根据建设部建标函(2005}124号文件《关于印发“2005年工程建设标准制定、修订计划(第二批)”的通知》的要求,由中煤国际工程集团武汉设计研究院会同有关单位共同编制完成的。
本规范在编制过程中,编制组认真分析、总结和吸取了十几年来国内外煤矿井下供配电采用新技术、新装备的经验及新的科研成果。
所引用的技术参数和指标,是生产实践经验数据的总结。
特别是高产高效工作面近几年发展较快,其供配电系统有了比较成熟的运行实践经验。
编制组广泛征求了有关单位意见,经反复修改,最后经审查定稿。
本规范共8章,内容涉及煤矿井下供电的各个方面,主要包括:总则、井下供配电系统与电压等级、井下电力负荷统计与计算、井下电缆选择与计算、井下主(中央)变电所设计、采区供配电设计、井下电气设备保护及接地、井下照明等。
适用于煤矿井下供电设计咨询的各个阶段。
本规范以黑体字标志的条文为强制性条文,必须严格执行。
煤矿井下配电系统设计
国投新集二矿抽排区牛多雨
内容摘要:煤矿井下供电系统的优劣直接影响到电网的安全性、可靠性、合理性和经济性。
尤其随着煤矿井下采掘机械化程度的提高,生产工作面不断向前延伸、扩大,给煤矿井下安全供电带来了许多不利的影响。
本文就煤矿井下配电系统的设计进行探讨。
关键词:煤矿井下供配电系统设计
煤矿井下供配电系统介绍
煤矿井下供电系统的优劣直接影响到电网的安全性、可靠性、合理性和经济性。
尤其随着煤矿井下采掘机械化程度的提高,生产工作面不断向前延伸、扩大, 给煤矿井下安全供电带来了许多不利的影响。
目前我国煤矿井下常见的供电电压按《煤矿井下供电设计技术规定》,高压有10kV和6kV,一般采用6kV,有10kV 矿用变配电设备时,若经济、技术合理,可采用10kV供电;低压有1140V、660V 和380V,就高产高效综采工作面而言,若工作面供电电源引自采区变电所6000分段母线上,则工作面就存在6000V,3300V,1140V和660V等4个电压等级。
随着煤矿井下生产工作面的不断向前延伸、扩大,高压供电电缆及设备不断深入末端,低压系统一直向前延伸,星罗棋布的电网由变压器、高低压开关和磁力起动器相连,这些供电设备和电缆安全与否,直接关系着矿井的生产安全。
由于煤矿井下环境条件的特殊性,在采掘过程中容易产生有爆炸危险的瓦斯(甲烷)和煤尘,并且由于电气设备经常处于温度湿度较高的状态下,设备内部产生凝露现象比较普遍,霉菌现象也时有发生。
据有关资料统计,在煤矿瓦斯、煤尘爆炸事故中,电火花引起的事故约占50%;在煤矿发生的触电事故中,煤矿井下触电死亡人数约占64%。
可见对煤矿井下进行可靠、安全、经济合理的供电,有助于提高产品质量,经济效益及保证安全生产。
为了确保安全和正常的生产,合理优化煤矿井下供电系统是十分重要的。
煤矿井下常见的几种电气故障
1.短路故障
短路是指具有电位差的两点,通过电阻值很小的导电体直接短接的一种电气事故。
当发生短路事故时,短路回路中的短路电流值比正常运行情况下的额定电
流值大几倍,几十倍,甚至上百倍,这样大的电流在极短的时问内就可能造成电缆和电气设备的损坏、供电中断,从而引发着火事故和爆炸事故。
2.单相接地故障
单相接地故障是指相线对地或与地有联系的导电体之间的短路,是短路事故的一种。
它包括相线与大地、配电和用电设备的金属外壳、金属接线盒、金属管道或构件、水沟等之间的短路。
对于高压电网,过大的电网将产生较大的单相接地电容电流。
接地故障短路电流虽然较小,但与它有联系的电气设备和管道的外露可导电部分对地和装置外的可导电部分之间存在故障电压,此电压可使触摸到的人身遭到电击,也可因其对地所产生的电弧或电火花引发着火事故和瓦斯煤尘爆炸事故。
3.漏电故障
漏电故障是指电气设备的绝缘受到损坏或老化,使绝缘电阻降低,从而形成电气设备对地之间的放电或电弧现象,漏电故障是接地故障的一种。
漏电故障的结果,不仅会使电气设备进一步损坏,形成短路事故,而且还可能导致人身触电和瓦斯煤尘爆炸事故。
井下电缆选择与计算
电缆类型选择
1下井电缆必须选用有煤矿矿用产品安全标志的阻燃电缆。
电缆应采用铜芯,严禁采用铝包电缆。
2在立井井筒、钻孔套管或倾角为45º及以上井巷中敷设的下井电缆,应采用聚氯乙烯绝缘粗钢丝铠装聚氯乙烯护套电力电缆、交联聚乙烯绝缘粗钢丝铠装聚氯乙烯护套电缆。
3在水平巷道或倾角在45º以下井巷中敷设的电缆,应采用聚氯乙烯绝缘钢带或细钢丝铠装聚氯乙烯护套电力电缆、交联聚乙烯绝缘钢带或细钢丝铠装聚氯乙烯护套电缆。
4移动变电站的电源电缆,应采用高柔性和高强度的矿用监视型屏蔽橡套电缆。
5井底车场及大巷的电缆选择,必须符合国家现行标准《煤矿用阻燃电缆执行标准》MT 818的规定。
电缆安装及长度计算
1在总回风巷和专用回风巷中不应敷设电缆。
在有机械提升的进风斜巷(不包括带式输送机上、下山)和使用木支架的立井井筒中敷设电缆时。
必须有可靠的安全保护措施。
溜放煤、矸、材料的溜道中严禁敷设电缆。
2无轨胶轮车运输的井筒和巷道内不宜敷设电缆。
当需要敷设时,电缆应敷设在高于运输设备的井筒和巷道的上部。
3下井电缆宜敷设在刮立井井筒内,并应安装在维修方便的位置。
斜井及平硐应敷设在人行道侧。
当条件限制必须由主井敷设电缆时,在箕斗提升的立井中的电缆水平段应有防止箕斗落煤砸伤电缆的措施,垂直段可不设置防护装置。
4立井下井电缆在井口井径处应预留电缆沟(洞),并应有防止地面水从电缆沟(洞)灌入井下的措施。
5安装下井电缆用的固定支架或电缆挂钩,应按前后期两者中电缆的最多根数考虑,并宜留有1~2回路备用位置。
6立井下井电缆支架,宜固定在井壁上,支架间距不应超过6m。
斜井、平硐及大巷中的电缆悬挂点的间距不应超过3m。
7电缆在立井井筒中不应有接头。
若井筒太深必须有接头时,应将接头设在地面或井下中间水平巷道内(或井筒壁龛内),且不应使接头受力。
每一接头处宜留8~]0m的余量。
8沿钻孔敷设的电缆必须绑紧在受力的钢丝绳上,钻孔内必须加装套管,套管内径不应小于电缆外径的2倍。
9风管或水管上不应悬挂电缆,不得遭受淋水。
电缆上严禁悬挂任何物体。
电缆与压风管、水管在巷道同一侧敷设时,电缆必须敷设在风管、水管上方,二者并应保持0.3m以上的距离。
在有瓦斯抽放管路的巷道内,电缆必须与瓦斯抽放管路分挂在巷道两侧。
10井筒和巷道内的通信、信号和控制电缆应与电力电缆分挂在巷道两侧,如受条件所限需布置在同一侧时,在井筒内,上述弱电电缆应敷设在电力电缆0.3m 以外的地方;在巷道内,上述弱电电缆应敷设在电力电缆0.1m以上的地方。
11高、低压电力电缆在巷道内同一侧敷设时,高、低压电缆之间的距离应大于0.1m。
高压电缆之间、低压电缆之间的距离不得小于0.05m。
井下主变电所硐室的设计要求
不得有渗水、滴水现象;硐室门的两侧及顶端,预埋穿电缆的钢管。
钢管内径不应小于电缆外径的1.5倍;
电缆沟应设有盖板,宜采用花纹钢盖板;硐室的地面应比其出口处井底车场或大巷的底板高出0.5m;硐室通道上必须装设向外开的栅栏防火两用铁门;硐室内应设置固定照明及灭火器材。
主(中央)变电所内设备布置时,其通道尺寸不宜小于表5.1.5—1、5.1.5 2、5.1.5 3的规定。
高压开关柜(箱)通道尺寸设计要求
煤矿井下的选择性漏电保护以及设计方法
我国井下低压电网的中性点全部为不接地方式,选择性漏电保护装置主要采用零序电流型、零序功率方向型原理。
零序电流型是利用故障支路零序电流大于任一支路自身的零序电流的特点实现选择性。
零序功率方向型是通过比较各支路Io与uo相位,选出故障支路并切断该支路。
对于采区低压电网,因其供电距离不长,电网对地电容值不大,使得单相接地的零序电流值较小,同时又由于支路数不多,故零序电流保护原理难以使用,多采用零序功率方向保护原理。
设计方法
煤矿井下的选择性漏电保护可采用以下几种方法:1. 采用两级选择性漏电保护系统,并且限制其在总自动馈电开关和分支自动馈电开关两处使用。
2. 采用人为旁路措施,将漏电一相迅速人为接地,使人身触电电流很快减小,然后再按选择性要求让有关开关跳闸。
3. 采用自动复电措施,当电网发生漏电时,总自动馈电开关检漏继电器动作,使开关跳闸切断电源,然后总馈电开关、分支馈电开关依次重合闸送电,由于总馈电开关和分支馈电开关均设有漏电闭锁装置,漏电故障线路不能合闸,而非漏电线路能够合闸继续工作。
它要求自动馈电开关必须有电动合闸功能。
否则便不能自动合闸送电。
参考文献
[1] 徐陆军.煤矿供电安全保护中存在的问题与解决办法[J].江西能源,2007(9)
[2]张红兵;杜向阳矿井地面电网调度系统方案研究.机械管理开发2008(03)
[3]吴斌. 煤矿井下供配电系统的常见问题浅谈.中国科技博览.2010(26)。