EDA技术概述
- 格式:ppt
- 大小:4.01 MB
- 文档页数:50
EDA技术的概念EDA技术是在电子CAD技术基础上发展起来的计算机软件系统,是指以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果,进行电子产品的自动设计。
利用EDA工具,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机完成,并可以将电子产品从电路设计、性能分析到设计出IC版图或PCB版图的整个过程的计算机上自动处理完成。
现在对EDA的概念或范畴用得很宽。
包括在机械、电子、通信、航空航天、化工、矿产、生物、医学、军事等各个领域,都有EDA的应用。
目前EDA 技术已在各大公司、企事业单位和科研教学部门广泛使用。
例如在飞机制造过程中,从设计、性能测试及特性分析直到飞行模拟,都可能涉及到EDA技术。
本文所指的EDA 技术,主要针对电子电路设计、PCB设计和IC设计。
EDA设计可分为系统级、电路级和物理实现级。
2 EDA常用软件EDA工具层出不穷,目前进入我国并具有广泛影响的EDA软件有:multiSIM7(原EWB的最新版本)、PSPICE、OrCAD、 PCAD、Protel、Viewlogic、Mentor、Graphics、Synopsys、LSIIogic、Cadence、MicroSim 等等。
这些工具都有较强的功能,一般可用于几个方面,例如很多软件都可以进行电路设计与仿真,同进还可以进行PCB自动布局布线,可输出多种网表文件与第三方软件接口。
(下面是关于EDA的软件介绍,有兴趣的话,旧看看吧^^^)下面按主要功能或主要应用场合,分为电路设计与仿真工具、PCB设计软件、IC 设计软件、PLD设计工具及其它EDA软件,进行简单介绍。
2.1 电子电路设计与仿真工具我们大家可能都用过试验板或者其他的东西制作过一些电子制做来进行实践。
但是有的时候,我们会发现做出来的东西有很多的问题,事先并没有想到,这样一来就浪费了我们的很多时间和物资。
而且增加了产品的开发周期和延续了产品的上市时间从而使产品失去市场竞争优势。
EDA是电子设计自动化(Electronic Design AutomaTIc)的简称。
EDA技术是在电子CAD 技术基础上发展起来的计算机软件系统,是指以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果,进行电子产品的自动设计。
1.EDA技术简介EDA是电子设计自动化(Electronic Design AutomaTIc)的简称。
EDA技术是在电子CAD 技术基础上发展起来的计算机软件系统,是指以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果,进行电子产品的自动设计。
利用EDA工具,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机完成,并可以将电子产品从电路设计、性能分析到设计出IC版图或PCB版图的整个过程在计算机上自动处理完成。
现在对EDA的概念或范畴用得很宽。
包括在机械、电子、通信、航空航天、化工、矿产、生物、医学、军事等各个领域,都有EDA的应用。
目前EDA 技术已在各大公司、企事业单位和科研教学部门广泛使用。
例如在飞机制造过程中,从设计、性能测试及特性分析直到飞行模拟,都可能涉及到EDA技术。
通常所指的EDA技术,主要针对电子电路设计、PCB设计和IC设计。
EDA 设计可分为系统级、电路级和物理实现级。
2.EDA技术的特点自顶向下的设计方法。
“自顶向下”(Top-Down)是一种全新的设计方法,这种设计方法从设计的总体要求入手,自顶向下将整个系统设计划分为不同的功能子模块,即在顶层进行功能方划分和结构设计。
这样可以在方框图一级就进行仿真和纠错,并能用硬件描述语言对高层次的系统行为进行描述,从而在系统一级就能进行验证,然后由EDA综合工具完成到工艺库的映射。
由于设计的主要仿真和纠错过程是在高层次上完成的,这种方法有利于在早期发现结构设计上的错误,从而避免设计工作中的浪费,同时也大大减少了逻辑功能仿真的工作量,提高了设计效率。
简述eda技术EDA技术,即电子设计自动化技术(Electronic Design Automation),是应用计算机技术和软件工具来辅助电子系统的设计、验证和制造的一种技术。
EDA技术在电子系统设计领域起到了重要的作用,大大提高了设计效率和产品质量。
EDA技术主要包括电子系统级设计(ESL)、硬件描述语言(HDL)、逻辑综合、电路仿真、布局布线、测试和制造等方面。
其中,硬件描述语言是EDA技术的核心之一。
硬件描述语言是一种用于描述电子系统结构和行为的高级语言,常用的硬件描述语言有VHDL和Verilog。
通过硬件描述语言,设计工程师可以方便地描述电路的逻辑功能和时序特性,实现电路设计的高效、精确和灵活。
逻辑综合是EDA技术中的重要环节,它将高级语言描述的电路转化为门级电路的表示。
逻辑综合过程中,常常涉及到逻辑优化、时序优化和面积优化等技术。
逻辑综合的目标是使电路满足特定的性能指标,如时序约束、功耗限制和面积约束等,同时尽量减少电路的成本和设计周期。
电路仿真是EDA技术中另一个重要的环节,它通过计算机模拟电路的行为,验证电路的正确性和性能是否满足设计要求。
电路仿真可以分为功能仿真和时序仿真两个层次。
功能仿真主要验证电路的逻辑功能是否正确,而时序仿真则进一步验证电路的时序特性是否满足设计要求。
通过仿真,设计工程师可以及时发现和解决电路设计中的问题,提高设计的可靠性和稳定性。
布局布线是EDA技术中的另一个重要环节,它主要负责将逻辑电路映射到物理布局上,并进行连线。
布局布线过程中,需要考虑到电路的时序约束、功耗和面积等因素,以及避免电路中的时序冲突和信号干扰等问题。
布局布线的目标是使电路在给定的约束条件下,尽量满足性能要求,并达到最佳的物理布局效果。
测试是EDA技术中的另一个重要环节,它主要用于验证电路的正确性和可靠性。
测试过程中,常常需要设计和生成一系列的测试模式,以覆盖电路的所有可能工作状态,并通过测试模式来判断电路的输出是否与预期一致。
第一章EDA概述1.1EDA技术的涵义一、EDA技术的涵义EDA(Electronic Design Automation)即电子设计自动化是指利用计算机完成电子系统的设计。
二、 EDA技术的分类EDA技术分:广义的EDA技术和狭义的EDA技术广义的EDA技术是指以计算机和微电子技术为先导,汇集了计算机图形学、数据库管理、图论和拓扑逻辑、编译原理、微电子工艺与结构学和计算数学等多种计算机应用学科最新成果的先进技术。
狭义的EDA技术是指以大规模可编程逻辑器件为载体,以硬件描述语言HDL为系统逻辑的主要表达方式,借助功能强大的计算机,在EDA 工具软件平台上,对用HDL描述完成的设计文件,自动完成用软件方式设计的电子系统到硬件系统的逻辑编译、逻辑简化、逻辑分割、逻辑综合及优化、逻辑布局布线、逻辑仿真,直至对特定目标芯片的适配编译、逻辑映射、编程下载等工作,最终形成集成电子系统或专用集成芯片ASIC(Application Specific Integrated Circuits)的一门新技术。
本书中提到的EDA技术指的是狭义的EDA技术。
1.2EDA技术的发展历史EDA技术的发展,大致经历了三个发展阶段:1.计算机辅助设计CAD 2.计算机辅助工程设计CAE 3.电子设计自动化EDA1.3 EDA技术的基本特征EDA技术的基本特征主要包括:1.EDA技术采用自顶向下的设计方法2.EDA技术的设计语言是硬件描述语言3.EDA技术具有逻辑综合和优化的功能4.EDA技术采用开放性和标准化的软件框架1.4 EDA的主要内容EDA技术主要这几方面的内容: 1.可编程逻辑器件2.硬件描述语言3.软件开发工具1.可编程逻辑器件可编程逻辑器件是一种由用户编程以实现某种逻辑功能的新型件。
可编程逻辑器件也称为可编程ASIC,它是EDA技术的物质基础。
2.硬件描述语言HDL语言是EDA技术的重要组成部分,它是一种用于描述硬件电子系统的计算机语言,它用软件编程的方式来描述电子系统的逻辑功能、电路结构和连接形式。
EDA技术重要基础知识点1. EDA技术概述- EDA(Exploratory Data Analysis)技术是指通过可视化和统计方法来理解和分析数据的过程。
它通常是数据科学和数据分析中的第一步,用于发现数据的模式、异常和趋势。
2. 数据收集与清洗- 在进行EDA之前,正确而全面地收集数据是十分重要的。
这包括确定需要收集的数据类型、数据源以及收集方式等。
同时,数据清洗是为了过滤掉噪声数据、处理缺失值等,以确保数据的准确性和完整性。
3. 描述性统计分析- 描述性统计分析是EDA过程中常用的方法之一。
它通过计算数据的中心位置、离散程度和分布等统计量,来描述数据的基本特征。
常见的描述性统计分析方法包括平均数、中位数、标准差和频率分布等。
4. 数据可视化- 数据可视化是以图形化的方式展示数据的过程,它能够更直观地呈现数据的分布和趋势。
常用的数据可视化方法包括直方图、散点图、折线图和箱线图等。
5. 缺失值处理- 在数据分析中,经常会遇到一些数据缺失的情况。
处理缺失值是EDA 中必不可少的一部分。
常见的方法包括删除缺失值、用均值或中位数填充缺失值、使用插值等。
6. 异常值检测- 异常值是指与大部分样本不符的数值,它们可能是由于记录错误、测量误差或稀有事件等原因引起。
在EDA中,需要通过异常值检测来排除异常值的影响。
常用的方法包括箱线图、Z分数和3σ原则等。
7. 相关性分析- 相关性分析用于衡量两个或多个变量之间的关系强度。
在EDA过程中,通过计算变量之间的相关系数,可以了解变量之间的相关性程度。
常用的相关性分析方法包括Pearson相关系数、Spearman相关系数和点二列相关等。
8. 探索性数据分析报告- 在完成EDA后,通常会生成一份探索性数据分析报告。
这份报告将展示你对数据的理解和分析结果,包括数据的描述统计、可视化图表和相关性分析等。
它可以为进一步的数据分析和建模提供基础。
以上是EDA技术中的重要基础知识点。
第一章EDA技术概述
1.含义:是指对数字信息进行存储、传输、处理的电子系统。
它的输入和输出都是数字量。
通常把门电路、触发器等称为逻辑器件;将由逻辑器件构成,能执行某单一功能的电路,如计数器、译码器、加法器等,称为逻辑功能部件;把由逻辑功能部件组成的能实现复杂功能的数字电路称数字系统。
2.数字系统和功能部件之间的区别:功能是否单一、是否包含控制电路
1.1 EDA技术及其发展
1.生产制造技术
2.电子设计技术——EDA 技术
(1)EDA技术的含义:指立足于计算机工作平台而开发出来的一整套先进的设计电子系统的软件工具。
(2)三个发展阶段:电子CAD 、电子CAE、EDA阶段(3)EDA技术的特点:(5个)
1.2 数字系统的两种设计思路
1.自顶向下法(Top_down设计)
2.自底向上法(Bottom-up设计)
3.IP复用技术与SoC
(1)IP的含义
(2)IP核分为软核、硬核和固核三部分。
(3)SoC:芯片系统
1.3 数字系统的设计流程
1.设计输入
2.综合
3.适配
4.仿真
5.编程下载和配置
流程图:
1.4 用于开发FPGA和CPLD的EDA工具
1.基于CPLD/FPGA的集成开发环境
2.基于CPLD/FPGA开发环境的专业软件:输入工具、综合工具、仿真工具
1.5 EDA技术的发展趋势
1.高性能的EDA工具将得到进一步发展
2.EDA技术将促进ASIC和FPGA逐步走向融合。
eda技术实用教程第六版知识点总结【EDA技术实用教程第六版知识点总结】1. EDA技术概述EDA(Exploratory Data Analysis)技术是指对数据进行探索性分析的方法,旨在发现数据的结构、特征、规律和异常,从而为后续的建模和分析提供更全面和深入的认识。
EDA技术已经成为数据分析领域的重要工具,被广泛运用在统计学、机器学习、商业智能等各个领域。
本文将从深度和广度两个方面对EDA技术进行全面评估和总结。
2. EDA技术的基本原理EDA技术依托于数据可视化、统计分析、模式识别等多种方法,通过观察、整理、分析和解释数据,揭示数据的内在规律和特点。
其中,数据可视化是EDA技术的核心方法之一,通过绘制散点图、直方图、箱线图等图表,可以直观地展示数据的分布、趋势和异常点,为数据的深入理解提供了直观的工具。
3. EDA技术的实际应用在实际应用中,EDA技术可以帮助数据分析人员快速了解数据的特点和问题,发现数据的价值和局限,从而为后续的数据清洗、特征工程、建模和预测提供有力支持。
在金融领域,通过对客户信用评分数据进行EDA分析,可以有效发现信用评分的分布情况、关键影响因素等重要信息,为风险控制和产品设计提供依据。
4. EDA技术的未来发展随着数据量的不断增大和数据类型的不断丰富,EDA技术在未来将面临更多的挑战和机遇。
如何处理大规模数据、多源异构数据,如何结合人工智能、自然语言处理等新技术,将成为EDA技术未来发展的重要方向。
数据隐私和安全的保护也将成为EDA技术重要的议题之一,需要加强相关技术和政策的研究和实践。
结语通过深度和广度兼具的对EDA技术的全面评估和总结,我们可以看到EDA技术在数据分析领域的重要地位和作用,同时也可以发现其未来发展的方向和挑战。
我们相信,在不断的实践和探索中,EDA技术一定会迎来更加美好的发展前景。
个人观点和理解作为一名数据分析人员,我深刻认识到EDA技术的重要性和价值。
什么是EDA技术EDA是电子设计自动化(Electronic Design Automation)缩写,是90年代初从CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。
EDA技术是以计算机为工具,根据硬件描述语言HDL( Hardware Description language)完成的设计文件,自动地完成逻辑编译、化简、分割、综合及优化、布局布线、仿真以及对于特定目标芯片的适配编译和编程下载等工作。
典型的EDA工具中必须包含两个特殊的软件包,即综合器和适配器。
综合器的功能就是将设计者在EDA平台上完成的针对某个系统项目的HDL、原理图或状态图形描述,针对给定的硬件系统组件,进行编译、优化、转换和综合,最终获得我们欲实现功能的描述文件。
综合器在工作前,必须给定所要实现的硬件结构参数,它的功能就是将软件描述与给定的硬件结构用一定的方式联系起来。
也就是说,综合器是软件描述与硬件实现的一座桥梁。
综合过程就是将电路的高级语言描述转换低级的、可与目标器件FPGA/CPLD相映射的网表文件。
适配器的功能是将由综合器产生的王表文件配置与指定的目标器件中,产生最终的下载文件,如JED文件。
适配所选定的目标器件(FPGA/CPLD芯片)必须属于在综合器中已指定的目标器件系列。
硬件描述语言HDL是相对于一般的计算机软件语言,如:C、PASCAL而言的。
HDL语言使用与设计硬件电子系统的计算机语言,它能描述电子系统的逻辑功能、电路结构和连接方式。
设计者可利用HDL程序来描述所希望的电路系统,规定器件结构特征和电路的行为方式;然后利用综合器和适配器将此程序编程能控制FPGA和CPLD内部结构,并实现相应逻辑功能的的门级或更底层的结构网表文件或下载文件。
目前,就FPGA/CPLD开发来说,比较常用和流行的HDL主要有ABEL-HDL、AHDL和VHDL。
EDA技术实用教程EDA是电子设计自动化(Electronic Design Automation)的缩写,指的是利用计算机技术和工具自动辅助设计和验证电子系统的过程。
EDA 技术的应用广泛,包括芯片设计、电路设计、电子系统设计等。
本文将介绍EDA技术的基本概念和常用工具,以及它们在电子系统设计中的应用。
1.EDA技术概述EDA技术是利用计算机技术和工具实现电子系统设计自动化的一系列技术方法。
它能够大大提高设计效率和设计质量,缩短设计周期,降低成本。
EDA技术包括模拟电路设计、数字电路设计、封装设计、布线设计等多个方面。
2.EDA常用工具常用的EDA工具包括电路仿真工具、逻辑综合工具、版图设计工具、时序分析工具、布局布线工具等。
这些工具在EDA技术中发挥着重要的作用,帮助设计人员完成不同层次的设计任务。
3.电路仿真工具电路仿真是EDA技术中最基础也是最重要的环节之一、它通过建立模型,对电路进行数学分析和计算,模拟电路的工作状态和性能。
常用的电路仿真工具有SPICE、SPECTRE等。
电路仿真工具能够帮助设计人员在设计之前评估电路的性能,并发现潜在的问题,优化设计。
4.逻辑综合工具5.版图设计工具版图设计是将逻辑电路网表进行物理布局和布线的过程。
版图设计工具可以根据约束条件自动进行版图布局和布线,生成满足电路性能和约束条件的版图。
常用的版图设计工具有ICC、Innovus等。
6.时序分析工具7.布局布线工具布局布线是指将版图中的电路元件进行布置和互连的过程。
布局布线工具可以根据电路性能和约束条件进行自动布局和布线,生成满足性能和约束的物理布局和互连。
常用的布局布线工具有Olympus、Innovus等。
8.EDA技术在电子系统设计中的应用EDA技术在电子系统设计中有着广泛的应用。
它可以帮助设计人员设计和验证复杂的电路和系统,提高设计效率和设计质量。
在芯片设计中,EDA技术可以辅助完成电路设计、逻辑综合、版图设计、布局布线等任务。
eda技术第一篇:EDA技术介绍EDA技术,即电子设计自动化技术,是一种在电子设计中使用计算机技术的过程。
在电路和系统设计中,EDA技术主要用于快速而准确地评估设计的可行性,优化电路和系统性能,和验证所设计电路的正确性。
EDA技术通常可以分为两种类型:一是电路级别的EDA,二是系统级别的EDA。
电路级别的EDA主要面向的是集成电路设计,这个设计阶段涵盖电路的物理层实现,包括电路布局、线路与器件的互连、连接的栅极以及多种电路元件。
电路级别的EDA技术可利用模拟分析、电子电路仿真和布局设计等方法对电路进行分析和验证,检查设计是否符合规范、是否能够实现系统的功能要求。
因此,电路级别的EDA技术可以使设计人员加速电路设计周期,降低设计风险。
系统级别的EDA主要面向设计系统,这个设计阶段涵盖硬件和软件,而且可用于企业级应用,比如云计算和大数据的处理。
系统级别的EDA技术可以将各个关键的电路集成到不同的硬件对象中,将运行系统的软件改进,优化系统的总体性能,以确保系统在设计的整个寿命周期内,都能够顺利运行。
EDA技术是一项技术活动,可以将所有与电路、系统和设计有关的过程,自动化和管理在一起,从而大大提高了电子设计的速度和准确性,并降低了电路和系统设计的风险。
EDA技术的发展处于不断更新和进步的状态,并将随着技术和市场需求的不断变化而自动更新。
未来的EDA技术将继续引领电子设计的浪潮,成为现代电子产业中不可或缺的技术支撑。
第二篇:EDA技术应用领域EDA技术是随着计算机技术、信息技术等领域的迅速发展而不断完善和更新的。
在现今的电子设计和制造领域,EDA技术已经成为电子产品制造过程中不可或缺的关键技术,影响了整个电子产品制造领域。
1. 电路芯片设计:EDA技术的初始应用领域就是电路芯片设计,它可以帮助电子设计人员优化电路的结构、布局和互连,比如硬件模拟器和逻辑仿真软件等,加快芯片设计过程,降低生产成本。
2. PCB设计与制造:EDA技术使得电路板制造过程中的元件选择、电路布局、网络连接和元器件的适应性与性能评测等过程得以自动化。
EDA技术的基础知识目录一、EDA技术概述 (2)1. EDA技术定义与发展历程 (3)2. EDA技术应用领域及重要性 (4)二、EDA工具软件介绍 (5)1. EDA软件分类与特点 (6)2. 常用EDA软件工具及其功能介绍 (8)三、数字电路设计基础 (9)1. 数字电路概述及特点 (11)2. 数字电路基本原理与器件类型 (12)3. 数字逻辑代数及逻辑设计基础 (14)四、模拟电路设计基础 (15)1. 模拟电路概述及特点 (17)2. 模拟电路基本原理与器件参数分析 (18)3. 模拟电路设计与仿真分析 (19)五、EDA设计流程与实现方法 (20)1. 设计需求分析 (22)2. 设计原理框图与功能验证 (23)3. 逻辑设计与仿真验证 (24)4. 物理设计与布局布线优化 (26)5. 测试验证与可靠性分析 (27)六、EDA技术中的关键概念与技术点解析 (28)1. 原理图输入与混合信号仿真技术解析 (29)2. 布局布线优化算法与技巧探讨 (30)3. 自动化测试生成与验证技术介绍 (32)4. EDA设计中的知识产权保护问题探讨等)进一步深入介绍不同章节内容34七、设计流程详细解析 (36)一、EDA技术概述EDA技术,即电子设计自动化(Electronic Design Automation),是电子工程领域的一门重要技术。
它利用计算机辅助设计(CAD)软件,来完成超大规模集成电路(VLSI)芯片的功能设计、综合、验证、物理设计等一系列流程。
EDA技术能够大大提高电子设计的效率和可靠性,降低设计成本,缩短产品上市时间。
随着半导体技术的飞速发展,集成电路(IC)的设计越来越复杂,传统的硬件描述语言(如Verilog HDL和VHDL)已经无法满足设计需求。
EDA技术应运而生,成为电子设计领域的重要工具。
EDA技术涵盖了数字电路设计和模拟电路设计两个方面。
数字电路设计主要关注逻辑电路的设计和实现,包括组合逻辑电路、时序逻辑电路等。
EDA技术概述EDA技术概述1 EDA和PLD发展概况2 可编程逻辑器件的设计EDA技术概述1 EDA和PLD发展概况1.1 EDA技术发展概况电子设计自动化(EDA,Electronic Design Automation)是指利用计算机完成电子系统的设计。
EDA技术是以计算机和微电子技术为先导,汇集了计算机图形学、拓扑、逻辑学、微电子工艺与结构学和计算数学等多种计算机应用学科最新成果的先进技术。
EDA技术以计算机为工具,代替人完成数字系统的逻辑综合、布局布线和设计仿真等工作。
EDA技术概述设计人员只需要完成对系统功能的描述,就可以由计算机软件进行处理,得到设计结果,而且修改设计如同修改软件一样方便,可以极大地提高设计效率。
从20世纪60年代中期开始,人们就不断开发出各种计算机辅助设计工具来帮助设计人员进行电子系统的设计。
电路理论和半导体工艺水平的提高,对EDA技术的发展起了巨大的推进作用,使EDA作用范围从PCB 板设计延伸到电子线路和集成电路设计,直至整个系统的设计,也使IC芯片系统应用、电路制作和整个电子系统生产过程都集成在一个环境之中。
根据电子设计技术的发展特征,EDA技术发展大致分为三个阶段。
EDA技术概述1. CAD阶段(20世纪60年代中期~20世纪80年代初期)第一阶段的特点是一些单独的工具软件,主要有PCB(Printed Circuit Board)布线设计、电路模拟、逻辑模拟及版图的绘制等,通过计算机的使用,从而将设计人员从大量繁琐重复的计算和绘图工作中解脱出来。
例如,目前常用的Protel早期版本Tango,以及用于电路模拟的SPICE软件和后来产品化的IC版图编辑与设计规则检查系统等软件,都是这个阶段的产品。
这个时期的EDA一般称为CAD(Computer Aided Design)。
EDA技术概述20世纪80年代初,随着集成电路规模的增大,EDA技术有了较快的发展。
EDA技术与VHDL 第1章EDA技术概述1.1 EDA技术现代电子设计技术的核心已日趋转向基于计算机的电子设计自动化技术EDA(Electronic Design Automation)技术。
20世纪70年代EDA技术雏形20世纪80年代EDA技术基础形成20世纪90年代EDA技术成熟和实用1.1 EDA技术21世纪后●在FPGA上实现DSP应用成为可能。
●在一单片FPGA中实现一个完备的可随意重构的嵌入式系统成为可能。
●在仿真和设计两方面支持标准硬件描述语言的功能强大的EDA软件不断推出。
●电子领域各学科的界限更加模糊,更互为包容。
●用于ASIC设计的标准单元已涵盖大规模电子系统及复杂IP核模块。
●软硬IP核在电子行业的产业领域广泛应用。
●SoC高效低成本设计技术的成熟。
●复杂电子系统的设计和验证趋于简单。
1.2 EDA技术应用对象1. 可编程逻辑器件2. 半定制或全定制ASIC3. 混合ASIC1.3 硬件描述语言VHDLHDLVHDLVerilog HDLSystemVerilogSystem C在EDA设计中使用最多,也得到几乎所有的主流EDA工具的支持这两种HDL语言还处于完善过程中,主要加强了系统验证方面的功能。
1.4 EDA技术的优势1.保证设计过程的正确性,大大降低设计成本,缩短设计周期。
2.有各类库的支持。
3.极大地简化设计文档的管理。
4.日益强大的逻辑设计仿真测试技术。
5.设计者拥有完全的自主权,再无受制于人之虞。
6.良好的可移植与可测试性,为系统开发提供了可靠的保证。
7.能将所有设计环节纳入统一的自顶向下的设计方案中。
8.EDA不但在整个设计流程上充分利用计算机的自动设计能力,而且在各个设计层次上利用计算机完成不同内容的仿真模拟,在系统板设计结束后仍可利用计算机对硬件系统进行完整的测试。
1.5 面向FPGA的EDA开发流程1.5.1 设计输入1. 图形输入2. 硬件描述语言代码文本输入1.5 面向FPGA的EDA开发流程1.5.2 综合(1)自然语言综合(2)行为综合(3)逻辑综合(4)版图综合或结构综合1.5 面向FPGA的EDA开发流程1.5.2 综合1.5.3 适配(布线布局)1.5 面向FPGA的EDA开发流程1.5.4 仿真1.5.5 RTL描述(1) 时序仿真(2) 功能仿真1.6 可编程逻辑器件1.6.1 PLD 的分类以集成度分低集成度芯片高集成度芯片从结构上分乘积项结构器件查找表结构器件从编程工艺上划1.熔丝(Fuse)型器件2.反熔丝(Anti-fuse)型器件3.EPROM 型4.EEPROM 型5.SRAM 型6.Flash 型1.6 可编程逻辑器件1.6.2 PROM可编程原理1.6 可编程逻辑器件1.6.2 PROM可编程原理1.6 可编程逻辑器件1.6.2 PROM可编程原理1.6 可编程逻辑器件1.6.2 PROM可编程原理1.6 可编程逻辑器件1.6.3 GAL1.7 CPLD的结构与可编程原理1.7 CPLD的结构与可编程原理1.逻辑阵列块1.7 CPLD的结构与可编程原理2.逻辑宏单元3.可编程连线阵列1.7 CPLD的结构与可编程原理4.I/O控制块1.8 FPGA的结构与工作原理1.8.1 查找表逻辑结构1.8.2 Cyclone III系列器件的结构原理1.8 FPGA 的结构与工作原理1.8 FPGA的结构与工作原理1.8.2 Cyclone III系列器件的结构原理1.9 硬件测试技术1.9.1 内部逻辑测试1.9.2 JTAG边界扫描测试1.10 编程与配置基于电可擦除存储单元的EEPROM或Flash技术基于SRAM查找表的编程单元。