固体废弃物的预处理
- 格式:pptx
- 大小:1.30 MB
- 文档页数:76
固体废弃物处理与资源化利用作业指导书第1章固体废弃物概述 (4)1.1 固体废弃物的定义与分类 (4)1.2 固体废弃物的来源与特点 (4)1.3 固体废弃物处理与资源化利用的意义 (5)第2章固体废弃物收集与运输 (5)2.1 收集方式与设备 (5)2.1.1 收集方式 (5)2.1.2 收集设备 (5)2.2 运输技术与要求 (5)2.2.1 运输技术 (6)2.2.2 运输要求 (6)2.3 储存与管理 (6)2.3.1 储存 (6)2.3.2 管理 (6)第3章固体废弃物预处理技术 (6)3.1 筛分与破碎 (6)3.1.1 筛分技术 (6)3.1.2 破碎技术 (7)3.2 粉碎与分选 (7)3.2.1 粉碎技术 (7)3.2.2 分选技术 (7)3.3 固液分离技术 (7)3.3.1 沉淀与浮选 (7)3.3.2 过滤与离心 (7)3.3.3 蒸发与干燥 (7)3.3.4 萃取与吸附 (7)第4章固体废弃物处理方法 (8)4.1 填埋处理 (8)4.1.1 预处理 (8)4.1.2 填埋场选址与设计 (8)4.1.3 填埋操作 (8)4.1.4 填埋场管理与监测 (8)4.2 焚烧处理 (8)4.2.1 预处理 (8)4.2.2 焚烧设备 (8)4.2.3 焚烧操作 (8)4.2.4 废气处理 (9)4.3 生物处理 (9)4.3.1 堆肥化处理 (9)4.3.2 厌氧消化 (9)4.3.3 蚯蚓床处理 (9)4.4.1 水解处理 (9)4.4.2 热解处理 (9)4.4.3 化学稳定化处理 (9)4.4.4 化学还原处理 (9)第5章废旧物资回收与资源化利用 (9)5.1 金属回收利用 (9)5.1.1 回收原则 (9)5.1.2 回收方法 (10)5.1.3 利用途径 (10)5.2 塑料回收利用 (10)5.2.1 回收分类 (10)5.2.2 回收方法 (10)5.2.3 利用途径 (10)5.3 纸张回收利用 (10)5.3.1 回收分类 (10)5.3.2 回收方法 (10)5.3.3 利用途径 (10)5.4 玻璃回收利用 (11)5.4.1 回收分类 (11)5.4.2 回收方法 (11)5.4.3 利用途径 (11)第6章固体废弃物能源化利用 (11)6.1 垃圾焚烧发电 (11)6.1.1 概述 (11)6.1.2 工艺流程 (11)6.1.3 关键技术 (11)6.2 生物气发电 (11)6.2.1 概述 (11)6.2.2 工艺流程 (11)6.2.3 关键技术 (12)6.3 沼气利用 (12)6.3.1 概述 (12)6.3.2 工艺流程 (12)6.3.3 关键技术 (12)6.4 其他能源化利用技术 (12)6.4.1 热解与气化 (12)6.4.2 燃料电池 (12)6.4.3 热能利用 (12)6.4.4 纳米材料制备 (13)第7章固体废弃物处理设施与设备 (13)7.1 填埋场设施与设备 (13)7.1.1 填埋场基础设施 (13)7.1.2 填埋场设备 (13)7.2.1 焚烧厂基础设施 (13)7.2.2 焚烧厂设备 (13)7.3 回收处理设施与设备 (13)7.3.1 回收基础设施 (13)7.3.2 回收处理设备 (13)7.4 污泥处理与处置设施 (14)7.4.1 污泥处理设施 (14)7.4.2 污泥处置设施 (14)第8章固体废弃物处理与资源化利用的环境影响评价 (14)8.1 环境影响评价概述 (14)8.2 污染物排放与控制 (14)8.2.1 大气污染物排放 (14)8.2.2 水污染物排放 (14)8.2.3 土壤污染控制 (15)8.3 环境风险评价与管理 (15)8.3.1 环境风险评价 (15)8.3.2 环境风险管理 (15)第9章固体废弃物处理与资源化利用的政策与法规 (15)9.1 我国固体废弃物管理政策 (15)9.1.1 政策背景 (15)9.1.2 主要政策法规 (16)9.1.3 政策措施 (16)9.2 国际固体废弃物处理与资源化利用法规 (16)9.2.1 国际法规概述 (16)9.2.2 主要国际法规 (16)9.2.3 国际法规对我国的启示 (16)9.3 政策与法规对固体废弃物处理的影响 (17)第10章固体废弃物处理与资源化利用发展趋势 (17)10.1 技术创新与产业发展 (17)10.1.1 新型处理技术的研究与应用 (17)10.1.2 资源化利用技术的突破与创新 (17)10.1.3 产业链的延伸与拓展 (17)10.1.4 技术标准与政策法规的完善 (17)10.2 市场分析与投资机会 (17)10.2.1 市场规模及增长趋势 (17)10.2.2 行业竞争格局分析 (17)10.2.3 投资机会与风险分析 (17)10.2.4 政策环境对市场的影响 (17)10.3 可持续发展与环境保护 (17)10.3.1 环保理念的融入与实践 (17)10.3.2 资源利用效率的提升 (18)10.3.3 生态补偿机制的应用 (18)10.3.4 公众参与与环保意识的普及 (18)10.4.1 国际合作与交流的加强 (18)10.4.2 智能化、信息化技术的应用 (18)10.4.3 跨界融合与创新 (18)10.4.4 绿色低碳发展的推进 (18)第1章固体废弃物概述1.1 固体废弃物的定义与分类固体废弃物是指在生产、生活及其他活动中产生的,失去原有使用价值或经过处理后不再具有使用价值的固态物质和物品。
固体废弃物处理中的高温熔融处理技术一、概述随着人们生活水平的提高和工业化的加速,固体废弃物的产生量逐渐增加,严重威胁着环境和人类健康。
目前,固体废弃物的处理方式主要有填埋、焚烧、堆肥等。
其中,焚烧技术逐渐成为固体废弃物处理的重要方式之一,并在此基础上发展出高温熔融处理技术,成为了当前固体废弃物处理的一种先进方式。
二、高温熔融处理技术的原理和流程高温熔融处理技术是指将固体废弃物通过高温熔融形成玻璃状、陶瓷状或石材状的物质,达到处理固体废弃物的目的。
该技术主要分为两个步骤:预处理和熔融处理。
1、预处理:预处理过程主要包括除去有害物质和加入助熔剂两步。
有害物质主要指固体废弃物中的铁、铝、铜等重金属和危险废物等,这些物质在高温熔融过程中不仅会影响熔体质量,而且会引起污染。
加入助熔剂是为了降低熔化温度,促进固体废弃物的熔化,一般选择较稳定的氧化物或碳酸盐作为助熔剂。
2、熔融处理:熔融过程主要发生在垂直电极式高效熔炉中,通过高温热烧垃圾垃圾变熔并进行强制循环,形成的熔融体深度除污效果达标且能达到零废气排放的目的。
同时,垃圾熔融产生的玻璃根据不同的比例,可制成多种规格的玻璃砂、陶瓷物品等。
三、高温熔融处理技术的优势和应用高温熔融处理技术有许多优势,如下:1、高处理效率:高温熔融处理技术可以快速将固体废弃物加热并熔化,处理效率高,每小时能够处理至少10吨的垃圾。
2、稳定性好:高温熔融处理技术可以将固体废弃物加热到达1500℃以上的高温,形成稳定的无机物质。
3、减少排放物:高温熔融处理技术提供了一个没有废气排放的处理环境,相对比之居民生活垃圾垃圾焚烧而言可以将废气排放降低到极小化。
目前,在欧洲、日本等国家和地区已经开始广泛的应用高温熔融处理技术进行固体废弃物的处理。
在中国也开始逐步采用该技术,例如松江垃圾焚烧发电厂等。
针对城市生活垃圾垃圾和有害废弃物,高温熔融处理技术都有很好的应用前景。
四、高温熔融处理技术的挑战和展望高温熔融处理技术的实现面临许多挑战。
第三章固体废物的预处理第一节固体废物的压实第二节固体废物的破碎第三节固体废物的分选第四节污泥的浓缩和脱水第五节固体废物的稳定和固化第一节固体废物的压实一、压实的目的和原理二、压实设备三、压实工程设计要点一、压实的原理和目的(一)压实的概述原理:利用机械的方法减少垃圾的空隙率,将空气挤压出来增加固体废物的聚集程度。
压实的目的:1)增加容重和减小体积,便于装卸和运输,确保运输安全与卫生,降低运输成本;2)制取高密度惰性块料,便于贮存、填埋或作建筑材料。
固体废物压实处理的优点:1)减轻环境污染;2)快速安全造地;3)节省填埋或贮存场地。
(二)压实的物理基础固体废物三相物理组成:固体颗粒和颗粒之间的空隙(空气和水分)Vm=Vs+Vv其中Vm为固体废物总体积Vs为固体颗粒体积(包括水分)Vv为固体颗粒之间的空隙体积描述固体废物空隙物理指标空隙比e = Vv/Vs空隙率n= Vv/Vm固体废物总质量Wm=Ws+WwWs:固体颗粒质量,Ww:固体中水分质量固体废物湿密度:ρw= Wm/ Vm固体废物干密度:ρd= Ws/ Vm(三)固体废物的压实表示方法容重:即为固体废物的干密度。
固体废物的密度多采用容重表示,主要因为容重易于测量,并可以用它来比较废物的压实程度。
某种废物的固体废物的压实程度可以用压缩比来表示。
压缩比即固体废物经压实处理后体积减小的倍数,用下式来表示:R=Vf / Vi式中,R为固体废物体积压缩比; Vf为废物压缩后的最终体积; Vi为废物压缩前的原始体积。
所谓压实处理,就是通过消耗压力能来提高废物的容重。
固体废物经压实处理后,体积减小的程度叫压缩比。
废物压缩比决定于废物的种类及施加的压力。
一般压缩倍数为3~5。
同时采用破碎与压实二种技术可使压缩倍数增加到5~10。
生活垃圾的收集都采用压实机械以减少垃圾体积、增加垃圾车的收集量。
一般,生活垃圾压实后,体积可减少60%~70%(压缩倍数为:2.5~3.3)。
关键词:工业固体废弃物;磷石膏;预处理;综合利用引言由于磷石膏本身的特性,使得它在交通、化工、农业等各个领域都能够得到有效的利用,譬如在建材领域,技术人员就开始尝试使用磷石膏来进行石膏板的制作等[1]。
工业废弃物磷石膏对环境具有一定的危害性,严重情况下还会威胁到人类的健康,因此将其通过物理、化学、生物等方式处理后进行再次利用既是对环境的一种保护,也是对人类生存发展的负责。
加强对工业固体废弃物磷石膏预处理技术的研究符合国家对于“清洁生产”的要求,同时也能有效实现“节能、降耗、减污、增效”的目的,需要多方面人员的关注。
1工业固体废弃物磷石膏产生的原因及特征我国之所以会产生大量的废弃临时钢,是因为我国的磷矿石开采过程中,通常都是使用湿法来进行工业磷酸的生产,通过该类方法所生产出的磷酸要进行净化,而进化的过程中会产生磷酸盐,最后磷酸盐会转换为固体废弃物,这类固体废弃物的主要含量就是磷石膏。
除了这一主要原因之外,工业复合肥的大量使用也是现阶段磷石膏大量产生的主要原因。
而相比较其他的工业固体废弃物而言,磷石膏有较为独特的化学性质[2]。
首先磷石膏,多呈白色粉末状,属于单斜晶系结晶度较好的晶体。
但没有经过提纯的工业,固体废弃磷石膏,内部含有较多的杂质,因此不会呈白色粉末状,而大多数情况下会呈浅灰或灰黑色的粉末状。
废弃磷石膏多半含水量在25%左右,没有较好的流动性,重量较轻,并且还有一些其他的微量重金属。
通常情况下,废弃磷石膏一旦加热到100℃左右,就会完全脱离自由水的状态,一旦加入到175℃左右,就会完全变成半水石膏,倘若加热到200℃左右,那么就会成为无水石膏。
没有经过处理的磷石膏,虽然有能够为多个领域与行业使用的潜质,但这种潜质却无法实现。
因此想要使得磷石膏的堆积问题得到解决,就需要对磷石膏进行预处理。
2工业固体废弃物磷石膏的预处理方式想要使得工业固体废弃物磷石膏能够获得质量更佳的预处理,就需要对现阶段经常使用到的预处理方式进行一个深入的了解与分析。
固废处置技术方案
固体废物的处理有多种技术方案,包括但不限于以下几种:
1. 压实处理:通过对废物进行压实,以实现减容化、降低运输成本、延长填埋寿命。
这是一种常见的预处理技术。
2. 破碎处理:为了使固体废物能够更好地进入焚烧炉、填埋场、堆肥系统等,需要先进行破碎处理,以减小废物的尺寸。
破碎后的废物不仅尺寸均匀,质地也均匀,有利于后续的填埋处理。
3. 分选处理:通过分选将有用的固体废物充分选出来加以利用,将有害的部分分离出来。
分选的基本原理是利用物料的某些性质差异进行分离。
4. 固化处理:通过向固体废物中添加固化基材,使有害的固体废物被固定或包容在惰性固化基材中,从而实现对废物的无害化处理。
5. 焚烧处理:焚烧法是固体废物高温分解和深度氧化的综合处理过程,可以将大量有害的废料分解成无害的物质。
6. 等离子体处理技术:利用高温热等离子体将危险废物快速分解破坏。
其中有机物热解为可燃性的小分子物质,无机物被高温熔融后生成类玻璃体残渣。
以上方案仅供参考,具体采用哪种方案还需要根据实际情况来决定。
固体废弃物处理处置与资源化固体废弃物是指生活垃圾、工业废料、农业废弃物等由人类活动产生的固体废弃物。
固体废弃物的处理处置与资源化是指对固体废弃物进行有效处理和利用,以减少对环境的负面影响,并将其转化为可再利用的资源,实现循环经济和可持续发展的目标。
固体废弃物的处理处置包括预处理、分类、转运、处理和处置等环节。
首先,对废弃物进行预处理,包括去除水分、油脂等有害物质,同时将大件废弃物进行粉碎。
然后,对废弃物进行分类,将可回收物、有害物、易腐物等分开收集。
接下来,进行转运,将各类废弃物运送到相应的处理设施。
在处理环节,对不同类型的废弃物采用相应的处理技术,包括焚烧、填埋、堆肥、厌氧消化等。
最后,对残渣进行处置,如焚烧后的灰渣进行填埋或利用于道路建设。
然而,单纯的废弃物处理处置无法达到循环经济和可持续发展的要求,因此需要进行资源化利用。
资源化利用是指将废弃物转化为可再利用的资源,如能源、有机肥料、再生材料等。
在废弃物处理的过程中,需要对可回收物进行回收和再利用。
例如,将废纸纤维进行再生加工,生产成再生纸,循环利用纸张资源。
将废塑料经过加工处理,转化为再生塑料粒子,用于生产塑料制品。
此外,可以通过焚烧废弃物产生能源,如电力、热能等。
废弃物中的有机物可以通过堆肥、厌氧消化等技术转化为有机肥料,用于农业生产。
固体废弃物处理处置与资源化的重要性不言而喻。
首先,固体废弃物对环境造成的污染问题日益严重,处理处置是保护环境的必要手段。
其次,资源化利用可以将废弃物转化为资源,减少对自然资源的消耗和环境的破坏。
再者,废弃物处理处置和资源化利用有助于推动循环经济的发展,促进可持续发展。
为了实现固体废弃物处理处置与资源化的目标,需要采取一系列措施。
首先,建立健全的废弃物治理法律法规体系,加强对废弃物管理的监管。
其次,加强废弃物分类回收体系的建设,提高可回收物的回收率。
同时,推广使用环保型产品,减少废弃物的产生。
此外,应加大科研力度,推动废弃物处理技术的创新和进步。