2015浙江台州中考数学考试试题
- 格式:doc
- 大小:206.00 KB
- 文档页数:7
台州市2015年中考模拟名校联考 数学试题时间120分钟 满分140分 2015.5.21一、选择题(每小题3分,共24分。
)1.21-的相反数是( ) A .21- B .21 C .2 D .2- 2.计算322a a ⋅的结果是( )A .52aB .62aC .54aD .64a3.一元二次方程x x 22=的根是( )A .2=xB .0=xC .2,021==x xD .2,021-==x x4.右图是一个几何体的三视图,则这个几何体是( )A .圆锥B .圆柱C .长方体D .球体5.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为)0(≠=hV S ,这个函数的图象大致是6.为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是( )A .某市八年级学生的肺活量B .从中抽取的500名学生的肺活量C .从中抽取的500名学生D .5007.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC 。
其中一定能判断这个四边形是平行四边形的条件共有( )A .1组B .2组C .3组D .4组8.如图,直角三角形纸片ABC 的∠C 为90°,将三角形纸片沿着图示的中位线DE 剪开, 然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能拼出的图形是( )A .平行四边形B .矩形C .等腰梯形D .直角梯形 二、填空题(每小题3分,共30分。
)D A B C9.16的算术平方根是 。
10.分解因式:=-a a 422 。
11.不等式512-+>x 的解集是 。
12.多项式 与22-+m m 的和是m m 22-。
13.点)2,3(-P 关于x 轴对称的点P '的坐标是 。
台州市2015年中考模拟名校命题研究预测数学试题(卷)时间:120分钟 满分130分 2015.5.28一、选择题(每小题3分,共30分)1.-5的倒数是 ( ) A .-15B .15C .-5D . 52.下列运算正确的是 ( )A .(-2x 2)3=-6x 6B .(y +x)(-y +x)=y 2-x 2C .2x +2y =4xyD .x 4÷x 2=x 23.我市深入实施环境污染整治,关停8家化工企业、整改12家,每年排放的污水减少了167000 t .将167000用科学记数法表示为 ( ) A .167×103 B .16.7×104 C .1.67×105 D .0.167×106 4.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的外角,且∠1= ∠2=∠3=∠4=70°,则∠AED 的度数是 ( ) A .100° B .105° C .108° D .110°5.从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张, 下列事件中,必然事件是 ( )A .该卡片标号小于6B .该卡片标号大于6C .该卡片标号是奇数D .该卡片标号是36.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是一个学习小组拟定的方案,其中正确的是 ( )A .测量对角线是否相互平分B .测量两组对边是否分别相等C ,测量对角线是否相等D .测量其中三个角是否都为直角7.如果两圆的半径长分别为6和2,圆心距为3,那么这两圆的位置关系是 ( )A .外离B .相切C .相交D .内含8.如图,∠ACB =60°,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动 的水平距离为( )A .2πB .C .πD .49.快车和慢车同时从A 地出发,分别以速度v 1、v 2(v 1>2v 2)匀速向B 地行驶,快车到达B 地后停留了一段时间,沿原路仍以速度v 1匀速返回,在返回途中与慢车相遇.在上述过程中,两车之间的距离y 与慢车行驶时间x 之间的函数图像大致是 ( )10.周末商场搞促销活动,其中一顾客想购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:如果你购买这三件物品,最少花钱为 ( )A .500元B .600元C .700元D .800元二、填空题(每小题3分,共24分)11.在函数y =2xx -中,自变量x 的取值范围是_______. 12.学校篮球集训队11名队员进行定点投篮训练,11名队员在1分钟内投进篮框的球数和人数如下表:则11名队员投进篮框的球数的中位数是_______个.13.如图,AB 是⊙O 的弦,OC ⊥AB ,垂足为C .若AB =OC =1,则OB 的长为_______.14.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点A 的坐标是(-1,4),则点C 的坐标是_______. 15.已知关于x 的方程242x mx -=+的解是负数,则m 的取值范围为_______. 16.如图是一个几何体的三视图,则这个几何体的表面积为_______.(结果保留π)17.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6 cm ,DE =2 cm ,则BC =_______cm .18.如图,双曲线y =k x经过Rt △OMN 斜边ON 上的点A ,与直角边MN 相交于点B .已知OA =2AN ,△OAB 的面积为6,则k 的值是_______.三、解答题(共76分)19.(本题满分5分)()1122cos454π-⎛⎫-+︒+ ⎪⎝⎭.20.(本题满分5分)21.(本题满分5分)先化简,再求值:21111xx x ⎛⎫+÷ ⎪--⎝⎭,其中x 是方程220x x -=的根.22.(本题满分5分)解不等式组:301332xxx+>⎧⎪⎨-+≥⎪⎩并把解集在数轴上表示出来.23.(本题满分6分)中学生骑电动车上学的现象越来越受到社会的关注,某市记者随机调查了一些家长对这种现象的态度(A:无所谓;B:反对;C:赞成),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,C部分所占扇形的圆心角度数为_______°;(2)将图②补充完整;(3)根据抽样调查结果,请你估计该市50 000名中学生家长中有多少名家长持赞成态度.24.(本题满分6分)一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、-2、3、-4.小明先从布袋中随机摸出一个乒乓球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.(1)共有_______种可能的结果;(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.25.(本题满分8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD 相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=8,AD=16,求MD的长.26.(本题满分8分)如图,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A →D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC =16 km,∠A=53°,∠B=30°.桥DC和AB平行,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1 km 1.73,sin53°≈0.80,cos53°≈0.60)27.(本题满分8分)苏果超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?28.(本题满分10分)在梯形ABCD 中,AD ∥BC ,∠D =90°,以AB 为直径作⊙O . (1)如图①,⊙O 与DC 相切于点E ,试说明:∠BAE =∠DAE ; (2)如图②,⊙O 与DC 交于点E 、F . ①图中哪一个角与∠BAE 相等?为什么?②试探究线段DF 与CE 的数量关系,并说明理由.29.(本题满分10分)如图①,在平面直角坐标系中,二次函数y =-x 2-2x +2的图像与y 轴交于点C ,以OC 为一边向左侧作正方形OCBA .(1)判断点B 是否在二次函数y =-x 2-2x +2的图像上,并说明理由; (2)用配方法求二次函数y =-x 2-2x +2的图像的对称轴; (3)如图②,把正方形OCBA 绕点O 顺时针旋转a 后得到正方形A 1B 1C 1O(0°<α <90°).①当tan α=12时,二次函数y =-x 2-2x +2的图像的对称轴上是否存在一点P ,使△PB 1C 1为直角三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由,②在二次函数y =-x 2-2x +2的图像的对称轴上是否存在一点P ,使△PB 1C 1为等腰直角三角形?若存在,请直接写出此时tan α的值;若不存在,请说明理由.参考答案1—10 ADCAA DDBCB11.x≠212.913.214.(3,0)15.m>-8且m≠-416.24π17.818.27 519.+320.421.x=2时,原式=3.22.-3<x≤1.表示如下:23.(1)54°.(2)略 (3)7500(人). 24.(1) 12 (2)5625.(1)略 (2)10. 26.6.2(km).27.(1)y =-10x +300.(2)每个文具盒的定价是19元时,可获得每星期最高销售利润1210元. 28.略29.(1) (2)x =-1.(3)①存在.P 1 (-1,2) , P 2(-1,-2) , P 3(-1.②存在.tan α。
平行四边形浙江中考真题一. 选择题(共15小题) 1. (2017•丽水)如图,在▱ABCD 中,连结AC ,∠ABC =∠CAD =45°,AB =2,则BC 的长是( )A.B. 2C. D. 42. (2016•绍兴)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( ) A. ①,②B. ①,④C. ③,④D. ②,③3. (2016•衢州)如图,在▱ABCD 中,M 是BC 延长线上的一点,若∠A =135°,则∠MCD 的度数是( ) A. 45° B. 55° C. 65° D. 75°4. (2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为( ) A. 4S 1 B. 4S 2C. 4S 2+S 3D. 3S 1+4S 35. (2016•丽水)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD =8,BD =12,AC =6,则△OBC 的周长为( ) A. 13 B. 17 C. 20 D. 266. (2016•温州)六边形的内角和是( ) A. 540° B. 720° C. 900° D. 1080°7. (2016•舟山)已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A. 6 B. 7 C. 8 D. 98. (2015•杭州)下列图形是中心对称图形的是( )A. B. C. D.M9. (2015•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A. 8cmB. 6cmC. 4cmD. 2cm10. (2015•宁波)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A. ①②B. ②③C. ①③D. ①②③11. (2017•绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E 是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠F AE=∠FEA. 若∠ACB=21°,则∠ECD的度数是() A. 7° B. 21° C. 23° D. 24°12. (2017•嘉兴)如图,在平面直角坐标系xOy中,已知点A0),B(1,1). 若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移(1)个单位,再向上平移1个单位C. 个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位13. (2015•衢州)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A. 米B. 6米C.D. 3米14. (2015•台州)如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O. 当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A. 6.5B. 6C. 5.5D. 515. (2015•安徽)如图,矩形ABCD中,AB=8,BC=4. 点E在边AB上,点F在边CD上,点G、H在对角线AC 上. 若四边形EGFH是菱形,则AE的长是()A. B. C. 5 D. 6二. 填空题(共12小题)16. (2017•湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是.17. (2016•衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=.18. (2015•衢州)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于米.19. (2017•绍兴)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F. 若小敏行走的路程为3100m,则小聪行走的路程为m.20. (2016•绍兴)如图,矩形ABCD 中,AB =4,BC =2,E 是AB 的中点,直线l 平行于直线EC ,且直线l 与直线EC 之间的距离为2,点F 在矩形ABCD 边上,将矩形ABCD 沿直线EF 折叠,使点A 恰好落在直线l 上,则DF 的长为 .21. (2016•杭州)在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为 .22. (2016•丽水)如图,在菱形ABCD 中,过点B 作BE ⊥AD ,BF ⊥CD ,垂足分别为点E ,F ,延长BD 至G ,使得DG =BD ,连结EG ,FG ,若AE =DE ,则_____________EGAB=.23. (2015•丽水)如图,四边形ABCD 与四边形AECF 都是菱形,点E 、F 在BD 上. 已知∠BAD =120°,∠EAF =30°,则_____________ABAE=.24. (2015•温州模拟)如图,在菱形ABCD 中,点E 是AB 上的一点,连接DE 交AC 于点O ,连接BO ,且∠AED =50°,则∠CBO = 度.25. (2015•温州)图甲是小明设计的带菱形图案的花边作品. 该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙). 图乙中67AB BC =,EF =4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为 cm.26. (2016•南京)如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长为 cm.27. (2016•天津)如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则MNPQAEFGS S 正方形正方形的值等于 .三. 解答题(共8小题)28. (2016•舟山)如图1,已知点E ,F ,G ,H 分别是四边形ABCD 各边AB ,BC ,CD ,DA 的中点,根据以下思路可以证明四边形EFGH 是平行四边形:(1)如图2,将图1中的点C 移动至与点E 重合的位置,F ,G ,H 仍是BC ,CD ,DA 的中点,求证:四边形CFGH 是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A ,C ,B 都在格点上,在格点上画出点D ,使点C 与BC ,CD ,DA 的中点F ,G ,H 组成正方形CFGH ; (3)在(2)条件下求出正方形CFGH 的边长.29. (2016•温州)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.30. (2016•温州)如图,在方格纸中,点A,B,P都在格点上. 请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°. (注:图甲、乙在答题纸上)31. (2017•杭州)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC 于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.32. (2016•台州)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.33. (2016•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.34. (2016•金华)在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0). 如图1,正方形OBCD的顶点B在x 轴的负半轴上,点C在第二象限. 现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,12tan =,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由35. (2016•广州)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.平行四边形浙江中考真题参考答案与试题解析一. 选择题(共15小题)1. (2017•丽水)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A. B. 2 C. 2 D. 4【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.【点评】本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.2. (2016•绍兴)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A. ①,②B. ①,④C. ③,④D. ②,③【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选:D.【点评】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.3. (2016•衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A. 45°B. 55°C. 65°D. 75°【分析】根据平行四边形对角相等,求出∠BCD,再根据邻补角的定义求出∠MCD即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=135°,∴∠MCD=180°﹣∠DCB=180°﹣135°=45°.故选:A.【点评】本题考查平行四边形的性质、邻补角定义等知识,解题的关键是熟练掌握平行四边形性质,属于基础题,中考常考题型.4. (2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A. 4S1B. 4S2C. 4S2+S3D. 3S1+4S3【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选:A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.5. (2016•丽水)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A. 13B. 17C. 20D. 26【分析】由平行四边形的性质得出OA=OC=3,OB=OD=6,BC=AD=8,即可求出△OBC的周长.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+6+8=17.故选:B.【点评】本题主要考查了平行四边形的性质,并利用性质解题. 平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.6. (2016•温州)六边形的内角和是()A. 540°B. 720°C. 900°D. 1080°【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.【点评】此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2)•180°(n≥3,且n为整数). .7. (2016•舟山)已知一个正多边形的内角是140°,则这个正多边形的边数是()A. 6B. 7C. 8D. 9【分析】首先根据一个正多边形的内角是140°,求出每个外角的度数是多少;然后根据外角和定理,求出这个正多边形的边数是多少即可.【解答】解:360°÷(180°﹣140°)=360°÷40°=9.答:这个正多边形的边数是9.故选:D.【点评】此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确多边形的外角和定理. 8. (2015•杭州)下列图形是中心对称图形的是()A. B. C. D.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称的定义知,绕一个点旋转180°后能与原图重合,则只有选项A是中心对称图形.故选:A.【点评】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.9. (2015•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A. 8cmB. 6cmC. 4cmD. 2cm【分析】由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.10. (2015•宁波)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A. ①②B. ②③C. ①③D. ①②③【分析】首先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,原来大长方形的周长是l,判断出l=2(a+2b+c),a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来大长方形的周长的,所以它们的周长不用测量就能知道,而图形③的周长不用测量无法知道,据此解答即可.【解答】解:如图1,,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,原来大长方形的周长是l,则l=2(a+2b+c),根据图示,可得(1)﹣(2),可得:a﹣b=b﹣c,∴2b=a+c,∴l=2(a+2b+c)=2×2(a+c)=4(a+c),或l=2(a+2b+c)=2×4b=8b,∴2(a+c)=,4b=,∵图形①的周长是2(a+c),图形②的周长是4b,的值一定,∴图形①②的周长是定值,不用测量就能知道,图形③的周长不用测量无法知道.∴分割后不用测量就能知道周长的图形的标号为①②.故选:A.【点评】此题主要考查了中心对称的性质和应用,要熟练掌握,解答此题的关键是要明确中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.11. (2017•绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E 是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠F AE=∠FEA. 若∠ACB=21°,则∠ECD的度数是()A. 7°B. 21°C. 23°D. 24°【分析】由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠F AE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°;故选:C.【点评】本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.12. (2017•嘉兴)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1). 若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移(2﹣1)个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【分析】过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选:D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;13. (2015•衢州)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A. 6米B. 6米C. 3米D. 3米【分析】由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,根据∠BAD=60°得到三角形ABD 为等边三角形,在直角三角形ABO中,利用勾股定理求出OA的长,即可确定出AC的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt△AOB中,根据勾股定理得:OA==3(米),则AC=2OA=6米,故选:A.【点评】此题考查了勾股定理,菱形的性质,以及等边三角形的判定与性质,熟练掌握菱形的性质是解本题的关键.14. (2015•台州)如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O. 当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A. 6.5B. 6C. 5.5D. 5【分析】根据菱形的性质得出AD∥BC,AB∥CD,推出平行四边形ABHF、AEGD、GCHO,得出AF=FO=OE=AE 和OH=CH=GC=GO,根据菱形的判定得出四边形AEOF与四边形CGOH是菱形,再解答即可.【解答】解:∵四边形ABCD是菱形,∴AD=BC=AB=CD,AD∥BC,AB∥CD,∵EG∥AD,FH∥AB,∴四边形AEOF与四边形CGOH是平行四边形,∴AF=OE,AE=OF,OH=GC,CH=OG,∵AE=AF,∴OE=OF=AE=AF,∵AE=AF,∴BC﹣BH=CD﹣DG,即OH=HC=CG=OG,∴四边形AEOF与四边形CGOH是菱形,∵四边形AEOF与四边形CGOH的周长之差为12,∴4AE﹣4(8﹣AE)=12,解得:AE=5.5,故选:C.【点评】此题考查菱形的性质,关键是根据菱形的判定得出四边形AEOF与四边形CGOH是菱形.15. (2015•安徽)如图,矩形ABCD中,AB=8,BC=4. 点E在边AB上,点F在边CD上,点G、H在对角线AC 上. 若四边形EGFH是菱形,则AE的长是()A. 2B. 3C. 5D. 6【分析】连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,即可得到结果.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故选:C.【点评】本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键.二. 填空题(共12小题)16. (2017•湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是5.【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故答案为:5.【点评】本题考查了多边形的外角和等于360°,是基础题,比较简单.17. (2016•衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或﹣2.【分析】分别在平面直角坐标系中确定出A、B、O的位置,再根据两组对边分别平行的四边形是平行四边形可确定C的位置,从而求出x的值.【解答】解:根据题意画图如下:以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣2,1),则x=4或﹣2;故答案为:4或﹣2.【点评】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.18. (2015•衢州)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于 1.2米.【分析】先求出F为AC的中点,根据三角形的中位线求出BC=2EF,代入求出即可.【解答】解:∵EF⊥AC,BC⊥AC,∴EF∥BC,∵E是AB的中点,∴F为AC的中点,∴BC=2EF,∵EF=0.6米,∴BC=1.2米,故答案为:1.2.【点评】本题考查了三角形的中位线性质,平行线的性质和判定的应用,解此题的关键是求出BC=2EF,注意:垂直于同一直线的两直线平行.19. (2017•绍兴)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F. 若小敏行走的路程为3100m,则小聪行走的路程为4600m.【分析】连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE. 在矩形GECF中,EF=CG. 要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,∴△AGD≌△GDC∴AG=CG在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m)故答案为:4600【点评】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质. 解决本题的关键是证明AG=EF,DE=GE.20. (2016•绍兴)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF 的长为2或4﹣2.【分析】当直线l在直线CE上方时,连接DE交直线l于M,只要证明△DFM是等腰直角三角形即可利用DF= DM解决问题,当直线l在直线EC下方时,由∠DEF1=∠BEF1=∠DF1E,得到DF1=DE,由此即可解决问题.【解答】解:如图,当直线l在直线CE上方时,连接DE交直线l于M,∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4,AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE、△ECB是等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°,∵l∥EC,∴ED⊥l,∴EM=2=AE,∴点A、点M关于直线EF对称,∵∠MDF=∠MFD=45°,∴DM=MF=DE﹣EM=2﹣2,∴DF=DM=4﹣2.当直线l在直线EC下方时,∵∠DEF1=∠BEF1=∠DF1E,∴DF1=DE=2,综上所述DF的长为2或4﹣2.故答案为2或4﹣2.【点评】本题考查翻折变换、矩形的性质、等腰直角三角形的性质和判定,解题的关键是正确画出图形,注意有两种情形,属于中考常考题型.21. (2016•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为45°或105°.【分析】如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD右侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,故答案为105°或45°.【点评】本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.22. (2016•丽水)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=.【分析】连接AC、EF,根据菱形的对角线互相垂直平分可得AC⊥BD,根据线段垂直平分线上的点到线段两端点的距离相等可得AB=BD,然后判断出△ABD是等边三角形,再根据等边三角形的三个角都是60°求出∠ADB=60°,设EF与BD相交于点H,AB=4x,然后根据三角形的中位线平行于第三边并且等于第三边的一半求出EH,再求出DH,从而得到GH,利用勾股定理列式求出EG,最后求出比值即可.【解答】解:如图,连接AC、EF,在菱形ABCD中,AC⊥BD,∵BE⊥AD,AE=DE,∴AB=BD,又∵菱形的边AB=AD,∴△ABD是等边三角形,∴∠ADB=60°,设EF与BD相交于点H,AB=4x,∵AE=DE,∴由菱形的对称性,CF=DF,∴EF是△ACD的中位线,∴DH=DO=BD=x,在Rt△EDH中,EH=DH=x,∵DG=BD,∴GH=BD+DH=4x+x=5x,在Rt△EGH中,由勾股定理得,EG===2x,所以,==.故答案为:.【点评】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,难点在于作辅助线构造出直角三角形以及三角形的中位线.23. (2015•丽水)如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上. 已知∠BAD=120°,∠EAF=30°,则=.【分析】利用菱形的性质对角线平分对角,结合勾股定理以及锐角三角函数关系表示出AB,AE的长,进而求出即可.【解答】解:过点E作EN⊥AB于点N,∵四边形ABCD与四边形AECF都是菱形,点E、F在BD上,∠BAD=120°,∠EAF=30°,∴∠ABD=30°,∠EAC=15°,则∠BAE=45°,∴设AN=x,则NE=x,AE=x,BN==x,∴==.故答案为:.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,表示出AB,AE的长是解题关键.24. (2015•温州模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=50度.【分析】根据两直线平行,内错角相等∠CDO=∠AED,再根据菱形的性质CD=CB,∠BCO=∠DCO,所以△BCO 与△DCO全等,根据全等三角形对应角相等即可求出∠CBO的度数.【解答】解:在菱形ABCD中,AB∥CD,∴∠CDO=∠AED=50°,CD=CB,∠BCO=∠DCO,∴在△BCO和△DCO中,,∴△BCO≌△DCO(SAS),∴∠CBO=∠CDO=50°.故答案为50.【点评】本题考查点较多,有菱形的对边平行,菱形的邻边相等的性质,菱形的对角线平分一组对角的性质,三角形全等的判定和全等三角形对应角相等的性质,熟练掌握各性质是解题的关键.25. (2015•温州)图甲是小明设计的带菱形图案的花边作品. 该作品由形如图乙的矩形图案拼接而成(不重叠、无缝隙). 图乙中,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为cm.【分析】首先取CD的中点G,连接HG,设AB=6acm,则BC=7acm,中间菱形的对角线HI的长度为xcm;然后根据GH∥BC,可得x=3.5a﹣2;再根据上下两个阴影三角形的面积之和为54cm2,可得a(7a﹣x)=18,据此求出a、x的值各是多少;最后根据AM∥FC,求出HK的长度,再用HK的长度乘以4,求出该菱形的周长为多少即可.【解答】解:如图乙,H是CF与DN的交点,取CD的中点G,连接HG,,设AB=6acm,则BC=7acm,中间菱形的对角线HI的长度为xcm,∵BC=7acm,MN=EF=4cm,∴CN=,∵GH∥BC,∴,∴,∴x=3.5a﹣2…(1);∵上下两个阴影三角形的面积之和为54cm2,∴6a•(7a﹣x)÷2=54,∴a(7a﹣x)=18…(2);由(1)(2),可得a=2,x=5,∴CD=6×2=12(cm),CN=,∴DN==15(cm),又∵DH===7.5(cm),∴HN=15﹣7.5=7.5(cm),∵AM∥FC,∴=,∴HK=,∴该菱形的周长为:=(cm).故答案为:.【点评】(1)此题主要考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(2)此题还考查了矩形的性质和应用,要熟练掌握,解答此题的关键是要明确:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形. 它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.26. (2016•南京)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.27. (2016•天津)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN 是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.【点评】本题考查了正方形的性质,等腰直角三角形的性质,正方形的面积的计算,熟练掌握等腰直角三角形的性质是解题的关键.三. 解答题(共8小题)28. (2016•舟山)如图1,已知点E,F,G,H分别是四边形ABCD各边AB,BC,CD,DA的中点,根据以下思路可以证明四边形EFGH是平行四边形:(1)如图2,将图1中的点C移动至与点E重合的位置,F,G,H仍是BC,CD,DA的中点,求证:四边形CFGH 是平行四边形;。
2015年浙江省台州卷中考试题思想品德 试题卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平。
答题时,请注意以下几点: 1. 全卷共8页。
满分100分。
考试时间100分钟。
2. 答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效。
3. 答题前,请认真阅读答题纸上的“注意事项”,按规定答题。
卷 一一、选择题(本大题有20小题,每小题2分,共40分。
每小题只有一个正确选项,不选、多选、错选均不给分)1.2014年11月1日,十二届全国人大常委会第十一次会议决定将12月4日设立为 A .国家公祭日 B .国家宪法日 C .国家扶贫日 D .国家哀悼日2.2015年3月1日,《不动产登记暂行条例》正式实施,其核心价值在于保护 A .智力成果权 B .生命健康权 C .合法财产权 D .人身自由权2015年3月26日起,因安全形势严重恶化,中国政府成功从海外撤离中国公民613人,以及来自15个国家的外国公民279人。
回答3-4题。
3.中国政府这次成功撤侨是在A .叙利亚B .尼泊尔C .伊拉克D .也门4.从海外成功撤离本国及外国公民说明了中国①综合国力日益强大 ②秉持“以人为本”的理念 ③是个负责任的国家 ④已经步入了发达国家行列A .①②③B .①②④C .①③④D .②③④5.漫画“小病大修”中,商家的行为主要侵犯了消费者的 A .依法求偿权 B .知情权C .自主选择权D .安全权6.十二届全国人大三次会议审议通过修改《立法法》,这反映了A .人大是我国的最高国家权力机关B .全国人大享有决定权C .有法必依是依法治国的基本要求D .全国人大享有立法权7. 台州籍大学生江雨佳利用假期帮助孤寡独居老人,其行为①承担了关爱社会的责任 ②体现了不言回报的奉献精神 ③履行了法律要求的义务 ④弘扬了中华民族的传统美德 A.①②③ B.①②④ C.①③④ D.②③④第5题图最近,国家规定了第一批媒体报道禁用词。
2015年浙江省台州市黄岩区中考数学一模试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)﹣2的相反数是()A.﹣B.﹣2C.D.22.(4分)用4个完全相同的小正方体组成如左下图所示的立体图形,那么它的主视图是()A.B.C.D.3.(4分)小星同学参加体育测试的五次立定跳远的成绩(单位:米)是:1.2,1.3,1.2,1.0,1.1.这组数据的众数是()A.1.0B.1.1C.1.2D.1.34.(4分)中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10﹣4吨5.(4分)掷一枚质地均匀的硬币10次,则下列说法正确的是()A.掷2次必有1次正面朝上B.必有5次正面朝上C.可能有5次正面朝上D.不可能10次正面朝上6.(4分)如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A.6sin75°米B.米C.米D.6tan75°米7.(4分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81B.100(1﹣x)2=81C.100(1﹣x%)2=81D.100x2=818.(4分)已知一等腰三角形的腰长为5,底边长为4,底角为α.满足下列条件的三角形与已知三角形不一定全等的是()A.两个角是α,它们的夹边为4B.三条边长分别是4,5,5C.两条边长分别为4,5,它们的夹角为αD.两条边长是5,一个角是α9.(4分)学习了一次函数、二次函数、反比例函数后,爱钻研的小敏尝试用同样的方法研究函数y=,从而得出以下命题:(1)当x>0时,y的值随着x的增大而减小;(2)y的值有可能等于3;(3)当x>0时,y的值随着x的增大越来越接近3;(4)当y>0时,x>0或x<﹣.你认为真命题是()A.(1)(3)B.(1)(4)C.(1)(3)(4)D.(2)(3)(4)10.(4分)如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在圆内,将正方形ABCD沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C运动的路径长为()A.2πB.(+1)πC.(+2)πD.(+1)π二、填空题(本题有6小题,每小题5分,共30分)11.(5分)因式分解:a2﹣9=.12.(5分)函数y=中,自变量x的取值范围是.13.(5分)如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=度.14.(5分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为.15.(5分)已知函数y=kx2﹣2x﹣k﹣2的图象与坐标轴有两个交点,则k的值为.16.(5分)如图,点O为弧AB所在圆的圆心,OA⊥OB,点P在弧AB上,AP 的延长线与OB的延长线交于点C,过点C作CD⊥OP于D.若OP=3,PD =1,则OC=.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(1)计算:2sin45°﹣(﹣1)0;(2)化简:(x﹣1)(x+2)+(x﹣2)2.18.(8分)图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)19.(8分)某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的球类运动,每人只能在这五种球类运动中选择一种,调查结果统计如表、如图所示:解答下列问题:(1)求a和b的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数.20.(8分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.21.(10分)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.(1)求证:AD⊥DC;(2)若AD=2,AC=,求AB的长.22.(12分)某工厂生产的某种产品按质量分为10个等级.第1级(最低级)产品每天能生产95件,每件利润6元.已知每提高一个级别,每件利润增加2元,但每天产量减少5件.(1)若生产第3级产品,则每天产量为件,每件利润为元;(2)若生产第x级产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数解析式;(3)若生产第x级的产品一天的总利润为1120元,求该产品的质量等级.23.(12分)如图,已知抛物线y=x2﹣3x﹣与x轴交于A、B两点.(1)点A的坐标是,点B的坐标是,抛物线的对称轴是直线;(2)将抛物线向上平移m个单位,与x轴交于C、D两点(点C在点D的左边).若CD:AB=3:4,求m的值;(3)点P是(2)中平移后的抛物线上y轴右侧部分的点,直线y=2x+b(b<0)与x、y轴分别交于点E、F.若以EF为直角边的三角形PEF与△OEF相似,直接写出点P的坐标.24.(14分)定义:两组邻边分别相等的四边形叫做筝形.(1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想.(2)筝型ABCD中,对角线AC,BD相交于点O.①如图1,若BD=CO,求tan∠BCD的值.②如图2,若∠DAC=∠BCD=72°,求AD:CD的值.(3)如图3,把△ABD沿着对角线BD翻折,A点落在对角线AC上的E点.如果△AOD中,一个内角是另一个内角的2倍,且阴影部分图形的面积等于四边形ABED的面积,直接写出的值.2015年浙江省台州市黄岩区中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)﹣2的相反数是()A.﹣B.﹣2C.D.2【解答】解:﹣2的相反数是2,故选:D.2.(4分)用4个完全相同的小正方体组成如左下图所示的立体图形,那么它的主视图是()A.B.C.D.【解答】解:从正面看,上面一层最左边有2个正方形,下边一层有2个正方形.故选:B.3.(4分)小星同学参加体育测试的五次立定跳远的成绩(单位:米)是:1.2,1.3,1.2,1.0,1.1.这组数据的众数是()A.1.0B.1.1C.1.2D.1.3【解答】解:这组数据中1.2出现的次数最多,故众数为1.2.故选:C.4.(4分)中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10﹣4吨【解答】解:67500=6.75×104.故选:B.5.(4分)掷一枚质地均匀的硬币10次,则下列说法正确的是()A.掷2次必有1次正面朝上B.必有5次正面朝上C.可能有5次正面朝上D.不可能10次正面朝上【解答】解:A、不是必然事件,故A错误;B、不是必然事件,故B错误;C、是随机事件,故C正确;D、是随机事件,故D错误;故选:C.6.(4分)如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A.6sin75°米B.米C.米D.6tan75°米【解答】解:∵BC⊥AC,AC=6米,∠BAC=α,∴=tanα,∴BC=AC•tanα=6tanα(米).故选:D.7.(4分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81B.100(1﹣x)2=81C.100(1﹣x%)2=81D.100x2=81【解答】解:设两次降价的百分率均是x,由题意得:x满足方程为100(1﹣x)2=81.故选:B.8.(4分)已知一等腰三角形的腰长为5,底边长为4,底角为α.满足下列条件的三角形与已知三角形不一定全等的是()A.两个角是α,它们的夹边为4B.三条边长分别是4,5,5C.两条边长分别为4,5,它们的夹角为αD.两条边长是5,一个角是α【解答】解:A、符合全等三角形的判定定理ASA,能判定两三角形全等,故本选项错误;B、符合全等三角形的判定定理SSS,能判定两三角形全等,故本选项错误;C、符合全等三角形的判定定理SAS,能判定两三角形全等,故本选项错误;D、不符合全等三角形的判定定理,不能判定两三角形全等,故本选项正确;故选:D.9.(4分)学习了一次函数、二次函数、反比例函数后,爱钻研的小敏尝试用同样的方法研究函数y=,从而得出以下命题:(1)当x>0时,y的值随着x的增大而减小;(2)y的值有可能等于3;(3)当x>0时,y的值随着x的增大越来越接近3;(4)当y>0时,x>0或x<﹣.你认为真命题是()A.(1)(3)B.(1)(4)C.(1)(3)(4)D.(2)(3)(4)【解答】解:(1)∵y==3+,∴当x>0时,y的值随着x的增大而减小;(2)∵3x+1≠3x,∴y的值不可能为3,故错误;(3)∵y==3+,∴当x>0时,y的值随着x的增大越来越接近3;(4)当y>0时,可得或,解得:x>0或x<﹣,故正确,∴正确的有(1)、(3)、(4),故选:C.10.(4分)如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在圆内,将正方形ABCD沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C运动的路径长为()A.2πB.(+1)πC.(+2)πD.(+1)π【解答】解:如图,分别连接OA、OB、OD′、OC、OC′;∵OA=OB=AB,∴△OAB是等边三角形,∴∠OAB=60°;同理可证:∠OAD′=60°,∴∠D′AB=120°;∵∠D′AB′=90°,∴∠BAB′=120°﹣90°=30°,由旋转变换的性质可知∠C′AC=∠B′AB=30°;∵四边形ABCD为正方形,且边长为2,∴∠ABC=90°,AC==2,∴当点D第一次落在圆上时,点C运动的路线长为:=.以D或B为圆心滚动时,每次C点运动,以A做圆心滚动两次,以B和D做圆心滚动三次,所以总路径=×2+×3=(+1)π.故选:D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)因式分解:a2﹣9=(a+3)(a﹣3).【解答】解:a2﹣9=(a+3)(a﹣3).12.(5分)函数y=中,自变量x的取值范围是x≥2.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.(5分)如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=20度.【解答】解:作CE∥l,如图,∵l∥m,∴CE∥m,∴∠1=70°,∠2=α,∵∠BCD=90°,即∠1+∠2=90°,∴70°+α=90°,∴α=20°.故答案为20.14.(5分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为.【解答】解:如图:两次取的小球的标号相同的情况有4种,概率为P==.故答案为:.15.(5分)已知函数y=kx2﹣2x﹣k﹣2的图象与坐标轴有两个交点,则k的值为0或﹣1或﹣2.【解答】解:当k=0时,函数y=﹣2x﹣2,与x轴和y轴各有一个交点,满足条件;当k≠0时,若二次函数不过原点,令y=0可得kx2﹣2x﹣k﹣2=0,由函数与y 轴交于点(0,﹣k﹣2),则与x轴只能有一个交点,∴△=(﹣2)2﹣4k(﹣k﹣2)=0,解得k=﹣1;若二次函数过原点,也满足条件,此时﹣k﹣2=0,解得k=﹣2;综上可知k的值为0或﹣1或﹣2,故答案为:0或﹣1或﹣2.16.(5分)如图,点O为弧AB所在圆的圆心,OA⊥OB,点P在弧AB上,AP 的延长线与OB的延长线交于点C,过点C作CD⊥OP于D.若OP=3,PD=1,则OC=3.【解答】解:∵AO⊥OC,CD⊥OD,∴∠AOC=∠D=90°,∴∠OAP+∠ACO=∠DPC+∠DCP=90°,∵OA=OP,∴∠OAP=∠APO,∵∠APO=∠DPC,∴∠DPC=∠OAC,∴∠ACO=∠ACD,∴AC平分∠OCD,∴=3:1,设OC=3k,CD=k,∵OD2+CD2=OC2,即42+k2=(3k)2,∴k=,∴OC=,故答案为:3.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(1)计算:2sin45°﹣(﹣1)0;(2)化简:(x﹣1)(x+2)+(x﹣2)2.【解答】解:(1)原式=2×﹣1=﹣1;(2)原式=x2+2x﹣x﹣2+x2﹣4x+4=2x2﹣3x+2.18.(8分)图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)【解答】解:(1)有以下答案供参考:.(2)有以下答案供参考:.19.(8分)某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的球类运动,每人只能在这五种球类运动中选择一种,调查结果统计如表、如图所示:解答下列问题:(1)求a和b的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数.【解答】解:(1)∵喜欢排球的有12人,占10%,∴样本容量为12÷10%=120;∴a=120×25%=30,b=120﹣30﹣12﹣36﹣18=24;(2)1000×=300(人).即可以估计上述1000名学生中最喜欢羽毛球运动的人数为300人.20.(8分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.【解答】解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10,b=3;(2)作AC⊥x轴于点C,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),∴OB=3,∵点A的坐标是(2,5),∴AC=5,∴=5=.21.(10分)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.(1)求证:AD⊥DC;(2)若AD=2,AC=,求AB的长.【解答】解:(1)连接OC,∵直线CD与⊙O相切于点C,∴OC⊥CD.∴∠OCA+∠DCA=90°,∵AC平分∠DAB,∴∠DAC=∠OAC,又∵在⊙O中,OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴∠DCA+∠DAC=90°,则∠ADC=90°,即AD⊥DC;(2)连接BC.∵AB为圆O的直径,∴∠ACB=90°,∴∠ADC=∠ACB=90°,又∵AC平分∠DAB,∴∠DAC=∠OAC,∴△ADC∽△ACB,∴,即,则.22.(12分)某工厂生产的某种产品按质量分为10个等级.第1级(最低级)产品每天能生产95件,每件利润6元.已知每提高一个级别,每件利润增加2元,但每天产量减少5件.(1)若生产第3级产品,则每天产量为85件,每件利润为10元;(2)若生产第x级产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数解析式;(3)若生产第x级的产品一天的总利润为1120元,求该产品的质量等级.【解答】解:(1)每天产量95﹣5(3﹣1)=85,每件的利润为6+2×(3﹣1)=10,故答案为:85,10;(2)∵第一级的产品一天能生产95件,每件利润6元,每提高一个级别,每件利润加2元,但一天生产量减少5件.∴第x级别,提高的级别是(x﹣1)档.∴y=[6+2(x﹣1)][95﹣5(x﹣1)],即y=﹣10x2+180x+400(其中x是正整数,且1≤x≤10),(3)由题意可得:﹣10x2+180x+400=1120,整理得:x2﹣18x+72=0,解得:x1=6,x2=12(舍去).答:该产品的质量级别为第6级.23.(12分)如图,已知抛物线y=x2﹣3x﹣与x轴交于A、B两点.(1)点A的坐标是(﹣,0),点B的坐标是(,0),抛物线的对称轴是直线x=;(2)将抛物线向上平移m个单位,与x轴交于C、D两点(点C在点D的左边).若CD:AB=3:4,求m的值;(3)点P是(2)中平移后的抛物线上y轴右侧部分的点,直线y=2x+b(b<0)与x、y轴分别交于点E、F.若以EF为直角边的三角形PEF与△OEF相似,直接写出点P的坐标.【解答】解:(1)∵抛物线y=x2﹣3x﹣与x轴交于A、B两点.∴0=x2﹣3x﹣,解得x1=﹣,x2=,∴A(﹣,0),B(,0),∴抛物线的对称轴是x==.故答案为:(﹣,0),(,0),;(2)如图①,由(1)知,AB=4,∵CD:AB=3:4,∴CD=3,∵y=x2﹣3x﹣向上平移m个单位,∴C(0,0),D(3,0),∴y=x2﹣3x,∴m=;(3)∵直线y=2x+b(b<0)与x、y轴分别交于点E、F.∴E(﹣,0),F(0,b),∴OE=﹣,OF=﹣b,∴=,①当∠PFE=90°时,如图②,作EM⊥x轴,交PF于M,作GM⊥y轴于G,则四边形MGOE是矩形,∴MG=OE,EM=OG,∵∠EFO+∠MFG=90°,∠EFO+∠FEO=90°,∴∠MFG=∠FEO,∵∠EOF=∠MGF=90°,∴△EOF∽△FGM,∴==,∵MG=﹣,∴FG=﹣,∴OG=﹣b﹣=﹣b,∴M(﹣b,b),∵把x=﹣b代入y=x2﹣3x,得y=b,∴M在抛物线上,∴M即为P1点,设P(x,x2﹣3x),∴=﹣,解得x1=0(舍去),x2=,∴P1(,﹣),∴E(,0),F(0,﹣1),∴直线P1F的解析式为y=﹣x﹣1,∴,解得或;∴P(,﹣)或(2,﹣2);②当∠PEF=90°时,∴PE⊥EF,∴设直线PE的解析式为y=﹣x+n,∵E(,0),∴0=﹣×+n,解得n=,∴直线PE的解析式为y=﹣x+,∴P1(,﹣),P2(,﹣),P3(2,﹣2),P4(,﹣).24.(14分)定义:两组邻边分别相等的四边形叫做筝形.(1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想.(2)筝型ABCD中,对角线AC,BD相交于点O.①如图1,若BD=CO,求tan∠BCD的值.②如图2,若∠DAC=∠BCD=72°,求AD:CD的值.(3)如图3,把△ABD沿着对角线BD翻折,A点落在对角线AC上的E点.如果△AOD中,一个内角是另一个内角的2倍,且阴影部分图形的面积等于四边形ABED的面积,直接写出的值.【解答】解:(1)性质:①筝形有一组对角相等;②筝形有一条对角线垂直平分另一条对角线;③筝形有一条对角线平分一组对角.判定:①有一条对角线垂直平分另一条对角线的四边形是筝形;②有一条对角线平分一组对角的四边形是筝形.证明如下:性质①如图1,已知AD=AB,CD=CB,求证:∠ADC=∠ABC,证明:在△ADC与△ABC中,,∴△ADC≌△ABC,∴∠ADC=∠ABC;判定②如图1,已知AC是四边形ABCD的对角线,AC平分∠DAB和∠DCB,求证:四边形ABCD是筝形,证明:∵AC平分∠DAB和∠DCB,∴∠DAC=∠BAC,∠DCA=∠BCA,在△ADC与△ABC中,,∴△ADC≌△ABC,∴AD=AB,BC=CD,∴四边形ABCD是筝形.(2)①设OC=2OD=2OB=a,则CD=BD=a,=CD•CB sin∠BCD=BD•CD,∵S△BCD∴(a)2sin∠BCD=×2a×2a,可得:sin∠BCD=,即tan∠BCD=,②如图2,作∠BDC的平分线交AC于点E.∵∠BCD=72°,∴∠2=∠BCD=36°,∵∠DAC=72°,∴∠ADC=72°,∠1=36°∴△DAE∽△CDA∴,DC=AC,AE=AC﹣CE=CD﹣AD即:,去分母得:AD2+CD•AD﹣CD2=0,解得,(舍去),∴AD:CD=;(3)∵如果△AOD中,一个内角是另一个内角的2倍,①当∠AOD=2∠DAO,由折叠的性质得DB⊥AE,AO=OE,∴∠DAO=45°,∴AD=OD,AO=OD∵阴影部分图形的面积等于四边形ABED的面积,∴AE=CE,OC=3AO=3OD,∴CD==,∴==1:,②当∠DAO=2∠ADO,∴∠DAO=60°,∠AD0=30°,∴AD=OD,AO=,∵AE=CE,OC=3AO=OD,∴CD==2OD,∴==1:,③当∠ADO=2∠DAO,∴∠ADO=60°,∠DAO=30°,∴AD=2OD,AO=OD,∵AE=CE,OC=3AO=3OD,∴CD==2OD,∴==1:,综上所述:如果△AOD中,一个内角是另一个内角的2倍,且阴影部分图形的面积等于四边形ABED的面积,的值为:1:,1:,1:.。
2015年浙江省台州市天台县中考数学模拟试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)与2互为相反数的是()A.﹣2 B.2 C.D.﹣2.(4分)如图,下列水平放置的几何体中,主视图是三角形的是()A. B.C.D.3.(4分)分式方程的解是()A.x=0 B.x=1 C.x=2 D.x=34.(4分)若一批学生的年龄(单位:岁)分别是14,15,16,16,17,17,则这批学生年龄的中位数是()A.14 B.15 C.16 D.175.(4分)下列四个图形中,∠α的度数等于50°的图形个数是()A.1个 B.2个 C.3个 D.4个6.(4分)△ABC是一个任意三角形,用直尺和圆规作出∠A、∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A.点O一定在△ABC的内部B.∠C的平分线一定经过点OC.点O到△ABC的三边距离一定相等D.点O到△ABC三顶点的距离一定相等7.(4分)为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费()A.1元 B.2元 C.3元 D.6元8.(4分)如图,二次函数y=﹣x2+2x+3的图象与x轴交于点A和点B,顶点为C,则sin∠ABC=()A.B.C.2 D.9.(4分)如图,PA,PB分别与⊙O相切于A、B,点C在劣弧AB上(不与A,B重合),若∠APB=70°,则∠ACB=()A.140°B.145°C.110° D.125°10.(4分)如图,矩形ABCD中,BC=1,连接AC与BD交于点E1,过E1作E1F1⊥BC于F1,连接AF1交BD于E2,过E2作E2F2⊥BC于F2,连接AF2交BD于E3,过E3作E3F3⊥BC于F3,…,以此类推,则BF n(其中n为正整数)的长为()A. B. C. D.二、填空题(共6小题,每小题5分,满分30分)11.(5分)不等式组的解集为.12.(5分)如果一个扇形的弧长为2,半径为1,则这个扇形的面积为.13.(5分)将分式化为最简分式,所得结果是.14.(5分)如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,与反比例函数y=(x>0)的图象交于点C,O为坐标原点,连接OC.若△AOC 的面积为1,则k的值为.15.(5分)如图,正六边形ABCDEF的边长为2,它的中心与坐标原点O重合,对角线BE在x轴上,若抛物线y=ax2+bx+c(a>0,b>0)经过正六边形的三个顶点,则该抛物线的解析式为.16.(5分)如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m <360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为.三、解答题(共8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14分,满分80分)17.(8分)计算:﹣|﹣2|+()﹣1﹣20150.18.(8分)如图,抛物线y1=x2+mx+n与直线y2=x﹣1交于点A(a,﹣2)和B (b,2).(1)求a,b的值;(2)观察图象,直接写出当y1<y2时x的取值范围.19.(8分)如图,AB∥CD∥EF,DE∥BC∥AG,FG⊥AG,已知BC=3cm,DE=2cm,AG=12cm,∠BAG=35°,求FG的长.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.(8分)2015年体育中考作出新规定:考试须从“力量素质类”和“运动技能类”中各选考一项,其中“力量素质类”包括掷实心球和立定跳远,“运动技能类”包括篮球运动投篮和排球垫球,我们将掷实心球、立定跳远、篮球运动投篮和排球垫球分别记为A、B、C、D.(1)如果考生随机选考,共有几种不同的选考结果,请一一列举出来;(2)如果考生甲随机选考,求恰好选中掷实心球和篮球运球投篮的概率;(3)若甲、乙两个考生都进行随机选考,请利用树形图法或列表法,求甲、乙两个考生选考结果完全相同的概率.21.(10分)如图,在△ABC中,AB=AC=13,BC=10,以AC为直径画⊙O交BC 于点D,交AB于点E,连接CE.(1)求证:BD=CD;(2)求CE的长.22.(12分)甲乙两家商场以同样的价格出售相同的商品,为了促销,现在两家商场都让利酬宾,其中甲商场所有商品按9折出售,乙商场对一次购物超过200元后的部分打8折.(1)用x(单位:元)表示促销前的商品总价,y(单位:元)表示促销后的购物总金额,就甲乙两家商场的让利方式分别求出y关于x的函数关系式.(2)促销前,小明的妈妈在两家商场的购物原价总和为1000元,若促销后购物金额总和为870元,求促销前小明的妈妈在甲乙两家商场购物的商品原价分别是多少?23.(12分)如果三角形的三条边长中存在一边是另一边两倍关系,则称这样的三角形为“倍边三角形”.例如:边长为a=2,b=3,c=4的三角形就是一个倍边三角形.(1)如果一个倍边三角形的两边长为6和8,那么第三边长所有可能的值有;(2)图1和图2中,△ABC都是倍边三角形,且AB=AC,BC=2,请在图中画出分割线(画图工具不限,标注出每个小三角形的边长,不写画法,不需证明,每个图形画出一种情形即可)①请在图1中画一条分割线,把△ABC分成两个小三角形,使每个小三角形都是倍边三角形;②请在图2中画两条分割线,把△ABC分成三个小三角形,使每个小三角形都是倍边三角形.(3)如图3,半圆O的直径AB=12,点C在半圆O上,OC⊥AB,P是直径AB 上的动点(不与点O重合),连接CO,CP.随着点P的运动,如果△POC是倍边三角形,求AP的长.24.(14分)如图,在△ABC中,AB=AC=2,BC=4,P是AB边上的动点(不与A,B重合),过P作PE∥BC交AC于E,作PF⊥BC,垂足为F,连接EF,M 是EF上的点,且EM=2FM,设BF=m.(1)直接写出△EMP与△FMP的面积的数量关系;(2)①求PE,PF的长(分别用含m的代数式表示);②设△PEM的面积为S,求S与m的函数关系式,并求S的最大值;③△PEM能否成为等腰三角形?若能,求出相应的m的值;若不能,请说明理由;(3)直接写出PM长度的最小值.2015年浙江省台州市天台县中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)与2互为相反数的是()A.﹣2 B.2 C.D.﹣【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:与2互为相反数的是﹣2,故选:A.2.(4分)如图,下列水平放置的几何体中,主视图是三角形的是()A. B.C.D.【分析】找到从正面看所得到的图形是三角形即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项错误;C、主视图为长方形,故本选项错误;D、主视图为长方形,故本选项错误.故选:B.3.(4分)分式方程的解是()A.x=0 B.x=1 C.x=2 D.x=3【分析】本题考查解分式方程的能力,观察方程可得最简公分母为2x(x+3),把分式方程化成整式方程.【解答】解:去分母得x+3=2•2x,解得x=1,将x=1代入2x(x+3)=8≠0,所以方程的解为:x=1.故选:B.4.(4分)若一批学生的年龄(单位:岁)分别是14,15,16,16,17,17,则这批学生年龄的中位数是()A.14 B.15 C.16 D.17【分析】排序后找到中间位置的两数,然后求其平均数即可.【解答】解:观察发现位于中间的两数为16,16,故中位数为16.故选:C.5.(4分)下列四个图形中,∠α的度数等于50°的图形个数是()A.1个 B.2个 C.3个 D.4个【分析】根据对顶角相等队第1个图进行判断;根据三角形外角性质对第2个图进行判断;根据圆周角定理对第3个图进行判断;根据圆内接四边形对第4个图进行判断.【解答】解:在第1个图中,∵对顶角行等,∴∠α=50°;在第2个图中,∵三角形的一个外角等于和它不相邻的两个内角的和,∴∠α+70°=130°,∴∠α=60°;在第3个图中,∵在同圆或等圆中,同弧或等弧所对的圆周角相等,∴∠α=50°;在第4个图中,∵圆内接四边形的对角互补,∴∠α+130°=180°,∴∠α=50°,∴∠α的度数等于50°的图形个数是3个,故选:C.6.(4分)△ABC是一个任意三角形,用直尺和圆规作出∠A、∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A.点O一定在△ABC的内部B.∠C的平分线一定经过点OC.点O到△ABC的三边距离一定相等D.点O到△ABC三顶点的距离一定相等【分析】根据角平分线的定义与性质即可判断.【解答】解:∵三角形角平分线的性质为:三角形的三条角平分线在三角形内部且相交于一点,到三角形三条边的距离相等,∴A、B、C三个选项均正确,D选项错误.故选:D.7.(4分)为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费()A.1元 B.2元 C.3元 D.6元【分析】根据题意可知,早上9:00到当天11:30一共是2.5个小时,则收费为1+2+3=6元.【解答】解:由题意得:11:30﹣9:00=2.5小时,故第一个小时为1元,第二个小时为2元,第三个不足1小时按1小时计算应该交3元,故小明应付租车费为:1+2+3=6元,故选:D.8.(4分)如图,二次函数y=﹣x2+2x+3的图象与x轴交于点A和点B,顶点为C,则sin∠ABC=()A.B.C.2 D.【分析】过C点作对称轴交x轴于D,根据题意求得AC=BC,根据解析式求得A、B、C的坐标,进而求得CD、BD,然后根据勾股定理求得BC,即可求得sin∠ABC 的值.【解答】解:令y=0,则﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点C(1,4),∵二次函数y=﹣x2+2x+3的图象与x轴交于点A和点B,顶点为C,∴AC=BC,过C点作对称轴交x轴于D,∴CD⊥x轴,CD=4,BD=2,∴BC==2,∴sin∠ABC===.故选:A.9.(4分)如图,PA,PB分别与⊙O相切于A、B,点C在劣弧AB上(不与A,B重合),若∠APB=70°,则∠ACB=()A.140°B.145°C.110° D.125°【分析】连结OA、OB,∠ADB为弧AB所对的圆周角,如图,根据切线的性质得∠OAP=∠OBP=90°,再利用四边形内角和可计算出∠AOB=110°,接着根据圆周角定理得到∠D=∠AOB=55°,然后根据圆内接四边形的性质计算∠ACB的度数.【解答】解:连结OB,∠ADB为弧AB所对的圆周角,如图∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∴∠AOB=180°﹣70°=110°,∴∠D=∠AOB=55°,∴∠ACB=180°﹣∠D=125°.故选:D.10.(4分)如图,矩形ABCD中,BC=1,连接AC与BD交于点E1,过E1作E1F1⊥BC于F1,连接AF1交BD于E2,过E2作E2F2⊥BC于F2,连接AF2交BD于E3,过E3作E3F3⊥BC于F3,…,以此类推,则BF n(其中n为正整数)的长为()A. B. C. D.【分析】此题分别运用矩形的性质和平行线分线段长比例定理,得到BF1、BF2、BF3的长;根据求得的线段的长,发现规律,即可求得BF n(其中n为正整数)的长.【解答】解:∵四边形ABCD是矩形,∴AC、BD相等且互相平分,∴AE1=E1C,∵E1F1⊥BC,∴E1F1∥DC∥AB,∴===∵BC=1,∴BF1=BC=,∴==,∵E2F2⊥BC,∴E2F2∥DC∥AB∥E1F1,∴===,∴BF2=同理求得BF3=,…,以此类推,则BF n=;故选:B.二、填空题(共6小题,每小题5分,满分30分)11.(5分)不等式组的解集为x>2.【分析】大大取大即解集为x>2【解答】解:根据大大取大的原则可知:x>2.故填x>2.12.(5分)如果一个扇形的弧长为2,半径为1,则这个扇形的面积为1.=lR即可得出答案.【分析】根据扇形的面积公式S扇形【解答】解:S=lR扇形=×2×1=1.故答案为:1.13.(5分)将分式化为最简分式,所得结果是.【分析】根据平方差公式和完全平方公式把分子、分母因式分解,再进行约分即可.【解答】解:==;故答案为:.14.(5分)如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,与反比例函数y=(x>0)的图象交于点C,O为坐标原点,连接OC.若△AOC 的面积为1,则k的值为2.【分析】根据直线的解析式求得A点的坐标,根据三角形的面积求得C的纵坐标,代入直线解析式即可求得坐标,然后根据待定系数法求得即可.【解答】解:由一次函数y=x+1可知,A(﹣1,0),B(0,1),∴OA=1,=1,∵S△AOC∴OA•|y C|=1,∴y C=2,代入y=x+1得2=x+1,解得x=1,∴C(1,2),∵C点在反比例函数y=(x>0)的图象上,∴2=,解得k=2.故答案为2.15.(5分)如图,正六边形ABCDEF的边长为2,它的中心与坐标原点O重合,对角线BE在x轴上,若抛物线y=ax2+bx+c(a>0,b>0)经过正六边形的三个顶点,则该抛物线的解析式为y=x2+x﹣.【分析】连接OC,过点C作CH⊥x轴,垂足为H,易知CG=OH=1,在Rt△COH 中,由正六边形的性质可得∠COH=60°,通过解直角三角形即可求得CH的长,也就得到了C点的坐标;同理可求得B、F的坐标,根据题意抛物线y=ax2+bx+c (a>0,b>0)经过正六边形的B、C、F三个顶点,然后用待定系数法即可求得该抛物线的解析式.【解答】解:设CD与y轴交于点G,连接OC,过点C作CH⊥x轴,垂足为H;由已知CD=2,得CG=1,CH=,∠COH=60°(正六边形的性质),∴C(﹣1,﹣);同理F(1,),B(﹣2,0);∵抛物线y=ax2+bx+c(a>0,b>0)经过正六边形的三个顶点,∴抛物线y=ax2+bx+c(a>0,b>0)经过正六边形的B、C、F三个顶点,∴,解此方程组,得;因此所求二次函数解析式是y=x2+x﹣.故答案为y=x2+x﹣.16.(5分)如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m <360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为30°或60°或150°或300°.【分析】分别画出m=30°或60°或150°或300°时的图形,根据图形即可得到答案.【解答】解:如图1,当m=30°时,BP=BC,△BPC是等腰三角形;如图2,当m=60°时,PB=PC,△BPC是等腰三角形;如图3,当m=150°时,PB=BC,△BPC是等腰三角形;如图4,当m=300°时,PB=PC,△BPC是等腰三角形;综上所述,m的值为30°或60°或150°或300°,故答案为30°或60°或150°或300°.三、解答题(共8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14分,满分80分)17.(8分)计算:﹣|﹣2|+()﹣1﹣20150.【分析】首先分别求出、|﹣2|、()﹣1、20150的值各是多少;然后根据实数的运算顺序,从左向右依次计算,求出算式﹣|﹣2|+()﹣1﹣20150的值是多少即可.【解答】解:﹣|﹣2|+()﹣1﹣20150=2﹣2+2﹣1=118.(8分)如图,抛物线y1=x2+mx+n与直线y2=x﹣1交于点A(a,﹣2)和B (b,2).(1)求a,b的值;(2)观察图象,直接写出当y1<y2时x的取值范围.【分析】(1)将点A、B的坐标代入直线解析式求解即可;(2)根据函数图象写出抛物线在直线的下方部分的x的取值范围即可.【解答】解:(1)由﹣2=a﹣1得,a=﹣1,由2=b﹣1得,b=3;(2)由图可知,y1<y2时x的取值范围﹣1<x<3.19.(8分)如图,AB∥CD∥EF,DE∥BC∥AG,FG⊥AG,已知BC=3cm,DE=2cm,AG=12cm,∠BAG=35°,求FG的长.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【分析】延长DC交AG于M,延长FE交AG于N,如图,易得AM=BC=3,MN=DE=2,则GN=AG﹣AM﹣MN=7,然后在Rt△FGN中,利用正切的定义求解.【解答】解:延长DC交AG于M,延长FE交AG于N,如图,∵AB∥CD∥EF,DE∥BC∥AG,∴四边形ABCM、四边形DENM都是平行四边形,∴AM=BC=3,MN=DE=2,∴GN=AG﹣AM﹣MN=12﹣3﹣2=7,∵FG⊥AG,∴∠NGF=90°,∴EN∥AB,∴∠FNG=∠BAG=35°,在Rt△FGN中,∵tan∠FNG=,∴FG=7tan35°≈7×0.70=4.90(cm).20.(8分)2015年体育中考作出新规定:考试须从“力量素质类”和“运动技能类”中各选考一项,其中“力量素质类”包括掷实心球和立定跳远,“运动技能类”包括篮球运动投篮和排球垫球,我们将掷实心球、立定跳远、篮球运动投篮和排球垫球分别记为A、B、C、D.(1)如果考生随机选考,共有几种不同的选考结果,请一一列举出来;(2)如果考生甲随机选考,求恰好选中掷实心球和篮球运球投篮的概率;(3)若甲、乙两个考生都进行随机选考,请利用树形图法或列表法,求甲、乙两个考生选考结果完全相同的概率.【分析】(1)用完全列举法得到选考结果为AC,AD,BC,BD;(2)根据概率公式求解;(3)用1、2、3、4分别表示AC、AD、BC、BD,先利用树状图法展示所有16种等可能的结果数,找出甲、乙两个考生选考结果完全相同的结果数,然后根据概率公式求解.【解答】解:(1)如果考生随机选考,共有4种不同的选考结果,它们是AC,AD,BC,BD;(2)恰好选中掷实心球和篮球运球投篮的概率,即P(AC)=;(3)用1、2、3、4分别表示AC、AD、BC、BD,画树状图为:共有16种等可能的结果数,其中甲、乙两个考生选考结果完全相同的占4种,所以甲、乙两个考生选考结果完全相同的概率==.21.(10分)如图,在△ABC中,AB=AC=13,BC=10,以AC为直径画⊙O交BC 于点D,交AB于点E,连接CE.(1)求证:BD=CD;(2)求CE的长.【分析】(1)连结AD,如图,根据圆周角定理得到∠ADC=90°,而AB=AC,则根据等腰三角形的性质可得BD=CD;(2)先利用勾股定理计算出AD=12,然后利用面积法计算CE的长.【解答】(1)证明:连结AD,如图,∵AC为直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)解:在Rt△ADC中,∵AC=13,CD=BC=5,∴AD==12,∵AC为直径,∴∠AEC=90°,∴CE•AB=AD•BC,∴CE==.22.(12分)甲乙两家商场以同样的价格出售相同的商品,为了促销,现在两家商场都让利酬宾,其中甲商场所有商品按9折出售,乙商场对一次购物超过200元后的部分打8折.(1)用x(单位:元)表示促销前的商品总价,y(单位:元)表示促销后的购物总金额,就甲乙两家商场的让利方式分别求出y关于x的函数关系式.(2)促销前,小明的妈妈在两家商场的购物原价总和为1000元,若促销后购物金额总和为870元,求促销前小明的妈妈在甲乙两家商场购物的商品原价分别是多少?【分析】(1)根据单价乘以数量,可得函数解析式;(2)设在甲商场购物的商品原价为x,乙的为(1000﹣x),列出方程解答即可.【解答】解;(1)甲商场写出y关于x的函数解析式y1=0.9x,乙商场写出y关于x的函数解析式y2=0.8(x﹣200)+200=0.8x+40;(2)设在甲商场购物的商品原价为x,乙的为(1000﹣x),可得:0.9x+0.8(1000﹣x)+40=870,解得:x=300,1000﹣x=700.答:促销前小明的妈妈在甲乙两家商场购物的商品原价分别是300元,700元.23.(12分)如果三角形的三条边长中存在一边是另一边两倍关系,则称这样的三角形为“倍边三角形”.例如:边长为a=2,b=3,c=4的三角形就是一个倍边三角形.(1)如果一个倍边三角形的两边长为6和8,那么第三边长所有可能的值有3,4,12;(2)图1和图2中,△ABC都是倍边三角形,且AB=AC,BC=2,请在图中画出分割线(画图工具不限,标注出每个小三角形的边长,不写画法,不需证明,每个图形画出一种情形即可)①请在图1中画一条分割线,把△ABC分成两个小三角形,使每个小三角形都是倍边三角形;②请在图2中画两条分割线,把△ABC分成三个小三角形,使每个小三角形都是倍边三角形.(3)如图3,半圆O的直径AB=12,点C在半圆O上,OC⊥AB,P是直径AB 上的动点(不与点O重合),连接CO,CP.随着点P的运动,如果△POC是倍边三角形,求AP的长.【分析】(1)根据倍边三角形的意义求出符合条件的所有情况,再根据三角形三边关系定理判断即可;(2)①根据倍边三角形的意义画出即可;②根据倍边三角形的意义画出即可;(3)分为两种情况:当点P在OA上和点P在OB上,有PC=2OP和CO=OP两种情况,根据勾股定理求出OP,即可求出答案.【解答】解:(1)一个倍边三角形的两边长为6和8,那么第三边长所有可能的值有3,4,12,故答案为:3,4,12;(2)①如图所示:;②如图所示:;(3)∵半圆O的直径AB=12,点C在半圆O上,OC⊥AB,∴OC=6,∠AOC=90°,①当点P在AO上时,若PC=2PO,∵OC=6,由勾股定理得:(2OP)2=OP2+62,解得:OP=2,∴AP=6﹣2;若OC=2OP时,∵OC=6,∴OP=3,∴AP=6﹣3=3;②当点P在BO上时,同法可求OP=2或3,即AP=3+6=9或AP=6+2;综合上述:AP的长是3或9或6﹣2或6+2.24.(14分)如图,在△ABC中,AB=AC=2,BC=4,P是AB边上的动点(不与A,B重合),过P作PE∥BC交AC于E,作PF⊥BC,垂足为F,连接EF,M 是EF上的点,且EM=2FM,设BF=m.(1)直接写出△EMP与△FMP的面积的数量关系;(2)①求PE,PF的长(分别用含m的代数式表示);②设△PEM的面积为S,求S与m的函数关系式,并求S的最大值;③△PEM能否成为等腰三角形?若能,求出相应的m的值;若不能,请说明理由;(3)直接写出PM长度的最小值.【分析】(1)如图1,过点P作PK⊥EF,垂足为K.,根据三角形的面积公式可=2S△PMF;知:,,又因为EM=2FM,故此S△EMP(2)①过点A作AG⊥BC于G,交PE于H,则BG=GC=2,AG=4,由PF∥AG,得,可知PF=2m,由PE∥BC得,可知:PE=4﹣2m;②S==﹣,利用二次函数的性质求得最值即可;③能成为等腰三角形.当PM=ME时,则M为EF的中点,与已知ME=2MF 矛盾;当PE=ME,则,所以,可求得m=10﹣4;若PM=ME,过点P作PK⊥EF与K,则K为ME的中点,故此.,由相似三角形的面积比等于相似比的平方得:,即:,解得m=4﹣2,综上所述可求得△PEM为等腰三角形时m的值;(3)如图3所示:过点A作AG⊥BC于G,交PE于H,连接PG,首先证明点P、M、G在一条直线上,然后由PE∥FG,可知,即PM=PG,故此当GP⊥AB时,PM有最小值,先证明△PBG∽△GBA,从而可求得PG=,所以PM=.【解答】解:(1)如图1,过点P作PK⊥EF,垂足为K.,,又∵EM=2FM.=2S△PMF;∴S△EMP(2)如图2所示.①过点A作AG⊥BC于G,交PE于H,则BG=GC=2,AG=.由PF∥AG,得,∴.∴PF=2m.由PE∥BC得,∴.∴PE=4﹣2m.②∵EM=2FM,∴S=2S△PMF.△EMP∴S==﹣.∵,∴S有最大值,最大值为.③能成为等腰三角形.当PM=ME时,则M为EF的中点,与已知ME=2MF矛盾;若PE=ME,则,∴,即.解得:m=10﹣4.若PM=PE,过点P作PK⊥EF与K,则K为ME的中点,∴.∵△PFK∽△EPK,由相似三角形的面积比等于相似比的平方得:,即:,∴m=4﹣2或m=4+2.∵BC=4,∴m≤4.∴m=4﹣2.综上所述,当m=10﹣4或m=4﹣2时,△PEM为等腰三角形;(3)如图3所示:过点A作AG⊥BC于G,交PE于H,连接PG.∵PE∥BC,AG⊥BC,∴AG⊥PE.∴∠PHG=90°.∴∠HGP+∠HPG=90°.∵AG⊥BC,PF⊥BC,∴PF∥AG.∴∠HGP=∠GPF.∴∠HPG+∠GPG=90°.又∵∠HPG+MPF=90°,∴∠MPF=∠GPF.∴点P、M、G在一条直线上.∵PE∥FG,∴.∴,即PM=PG.∴当GP⊥AB时,PG有最小值,即PM有最小值.∵∠B=∠B,∠BGA=∠BPG,∴△PBG∽△GBA.∴,即.∴PG=.∴PM=.。
2015年浙江省中考试卷汇编浙江省杭州市2015年中考数学试卷 (2)浙江省湖州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省湖州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省金华市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省金华市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省宁波市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省衢州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
浙江省绍兴市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。
2015年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,请选出各题中符合题意的正确选项,不选、多选、错选,均不得分).4.(4分)(2015•台州)若反比例函数y=的图象经过点(2,﹣1),则该反比例函数的图象在())2﹣(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐7.(4分))9.(4分)(2015•台州)如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH 的周长之差为12时,AE的值为()10.(4分)(2015•台州)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:)二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2015•台州)不等式2x﹣4≥0的解集是.12.(5分)(2015•台州)有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是.13.(5分)(2015•台州)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是.14.(5分)(2015•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是.15.(5分)(2015•台州)关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是(填序号).16.(5分)(2015•台州)如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ 绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为.三、解答题(本题有8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14,共80分)17.(8分)(2015•台州)计算:6÷(﹣3)+|﹣1|﹣20150.18.(8分)(2015•台州)先化简,再求值:﹣,其中a=﹣1.19.(8分)(2015•台州)如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.(8分)(2015•台州)图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示.(3)根据图中的信息,请写出摩天轮的直径.21.(10分)(2015•台州)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.22.(12分)(2015•台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.23.(12分)(2015•台州)如图,在多边形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E 作EF∥CB交AB于点F,FB=1,过AE上的点P作PQ∥AB交线段EF于点O,交折线BCD于点Q,设AP=x,PO•OQ=y.(1)①延长BC交ED于点M,则MD=,DC=;②求y关于x的函数解析式;(2)当a≤x≤(a>0)时,9a≤y≤6b,求a,b的值;(3)当1≤y≤3时,请直接写出x的取值范围.24.(14分)(2015•台州)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE 分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHC的数量关系,并说明理由.2015年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,请选出各题中符合题意的正确选项,不选、多选、错选,均不得分).4.(4分)(2015•台州)若反比例函数y=的图象经过点(2,﹣1),则该反比例函数的图象在()y=()2﹣7.(4分)(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐)根据勾股定理对角线长为:=9.(4分)(2015•台州)如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH 的周长之差为12时,AE的值为()10.(4分)(2015•台州)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:)二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2015•台州)不等式2x﹣4≥0的解集是x≥2.12.(5分)(2015•台州)有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是.∴从中任意抽出一张,则抽出的数字是奇数的概率是:=.故答案为:.13.(5分)(2015•台州)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是3.14.(5分)(2015•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是(10,8)..815.(5分)(2015•台州)关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是①③(填序号).216.(5分)(2015•台州)如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ 绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为﹣.为AC=×=﹣故答案为﹣.三、解答题(本题有8小题,第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14,共80分)17.(8分)(2015•台州)计算:6÷(﹣3)+|﹣1|﹣20150.18.(8分)(2015•台州)先化简,再求值:﹣,其中a=﹣1.==a==.19.(8分)(2015•台州)如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.(8分)(2015•台州)图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示.(3)根据图中的信息,请写出摩天轮的直径.21.(10分)(2015•台州)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.×=14.4)22.(12分)(2015•台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.23.(12分)(2015•台州)如图,在多边形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E 作EF∥CB交AB于点F,FB=1,过AE上的点P作PQ∥AB交线段EF于点O,交折线BCD于点Q,设AP=x,PO•OQ=y.(1)①延长BC交ED于点M,则MD=2,DC=1;②求y关于x的函数解析式;(2)当a≤x≤(a>0)时,9a≤y≤6b,求a,b的值;(3)当1≤y≤3时,请直接写出x的取值范围.(×=9a,得到≤x=,当,而≤,,,,OP=OP=,∴,≤×=9a,;≤≤≤,,,而的取值范围为24.(14分)(2015•台州)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE 分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHC的数量关系,并说明理由.BN==;BN==,BN=或===1,DH=HN=c,,,c a△DMN△ACM△ENB。
(第6题)台州市黄岩区2015年中考一模数学试卷温馨提示:1.全卷共6页,满分150分,考试时间120分钟.2.答案必须写在答题卷相应的位置上,写在试题卷、草稿纸上 无效.3.答题前,请认真阅读答题卷上的《注意事项》,按规定答题. 一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符 合题意的正确选项,不选、多选、错选,均不给分) 1.2-的相反数是 ( ▲ ) A .2B .2-C .12D .12-2.用4个完全相同的小正方体组成如左下图所示的立体图形,那么它的主视图是( ▲ )AB C D3.小星同学参加体育测试的五次立定跳远的成绩(单位:米)是: 1. 2,1.3,1.2,1.0,1.1.这组数据的众数是 ( ▲ )A .1.0B .1.1C .1.2D .1.3 4.中国航母辽宁舰(如图)是中国人民海军第一艘可以 搭载固定翼飞机的航空母舰,满载排水量为67500吨, 这个数据用科学记数法表示为 ( ▲ ) A .6.75×103吨 B .6.75×104吨C .6.75×105吨D .6.75×10-4吨5.掷一枚质地均匀的硬币10次,则下列说法正确的是 ( ▲ ) A .掷2次必有1次正面朝上 B .必有5次正面朝上 C .可能有5次正面朝上 D .不可能10次正面朝上6.如图,在地面上的点A 处测得树顶B 的仰角α=75º,若AC =6米,则树高BC 为 ( ▲ ) A .6 sin75º米 B . 6cos 75︒米C .6tan 75︒米 D .6 tan75º米7.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的 百分率都为x ,那么x 满足的方程是 ( ▲ )A .81)1(1002=+xB . 81)1(1002=-xC .81)21(100=-xD . 811002=x8.已知一等腰三角形的腰长为5,底边长为4,底角为α.满足下列条件的 三角形与已知三角形不一定...全等的是( ▲) 第4题A .两个角是α,它们的夹边为4B .三条边长分别是4,5,5C .两条边长分别为4,5,它们的夹角为αD .两条边长是5,一个角是α9.学习了一次函数、二次函数、反比例函数后,爱钻研的小敏尝试用同样 的方法研究函数y=xx 13+,从而得出以下命题: (1)当x >0时,y 的值随着x 的增大而减小;(2)y 的值有可能等于3; (3)当x >0时,y 的值随着x 的增大越来越接近3; (4)当y >0时,0>x 或31-<x . 你认为真命题是 ( ▲ )A .(1)(3)B .(1)(4)C .(1)(3)(4)D .(2)(3)(4) 10.如图,边长为2的正方形ABCD 的顶点A 、B 在一个半径为2的圆上,顶点C 、D 在圆内,将正方形ABCD 沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C 运动的路径长为 ( ▲ ) A .π22B .()π12+C .()π22+D .π⎪⎭⎫⎝⎛+1232二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:a 2﹣9= ▲ . 12.在函数2-=x y 中,自变量x 的取值范围是 ▲ .13.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α= ▲ 度.14.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸取一个小球然后放回,再随机地摸出一个小球,则两次取出的小球的标号相同的概率是 ▲ .15.已知函数222---=k x kx y 的图象与坐标轴...有两个交点,则k 的值 为 ▲ .16.如图,点O 为弧AB 所在圆的圆心,OA ⊥OB ,点P 在弧AB 上,AP 的延长线与OB的延长线交于点C ,过点C 作CD ⊥OP 于D .若OP=3,PD=1,则OC= ▲ . 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12 分,第24题14分,共80分)17.(1)计算:0)12(45sin 2--︒; (2)化简:2)2()2)(1(-++-x x x .ABCD 第10题第13题 PO DC BA 第16题18.图①、图②均为7×6的正方形网格,点A 、B 、C 在格点上.(1)在图①中确定格点D ,并画出以A 、B 、C 、D 为顶点的四边形, 使其为轴对称图形.(画一个即可)(2)在图②中确定格点E ,并画出以A 、B 、C 、E 为顶点的四边形, 使其为中心对称图形.(画一个即可)19.某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的球类运动,每人只能在这五种球类运动中选择一种,调查结果统计如图1、图2所示:解答下列问题: (1)求a 和b 的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数.20.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数ky x=的图象上,过点A 的 直线b x y +=交x 轴于点B . (1)求k 和b 的值; (2)求△OAB 的面积.21.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于点C ,AC 平 分∠DAB .(1)求证:AD ⊥CD ;(2)若AD =2,AC =5,求AB 的长.· (第21题)ABCDO(第20题)图222.某工厂生产的某种产品按质量分为10个等级.第1级(最低级)产品每天能生产95件,每件利润6元.已知每提高一个级别,每件利润增加2元,但每天产量减少5件. (1)若生产第3级产品,则每天产量为 ▲ 件,每件利润为 ▲ 元;(2)若生产第x 级产品一天的总利润为y 元(其中x 为正整数,且1≤x ≤10),求出y 关于x 的函数解析式;(3)若生产第x 级的产品一天的总利润为1120元,求该产品的质量等级.23.如图,已知抛物线4732--=x x y 与x 轴交于A 、B 两点. (1)点A 的坐标是 ▲ ,点B 的坐标是 ▲ ,抛物线的对称轴是直线 ▲ ; (2)将抛物线向上平移m 个单位,与x 轴交于C 、D 两点(点C 在点D 的左边).若CD :AB=3:4,求m 的值;(3)点P 是(2)中平移后的抛物线上y 轴右侧部分的点,直线y=2x+b (b <0)与 x 、y 轴分别交于点E 、F .若以EF 为直角边 的三角形PEF 与△OEF 相似,直接写出点P 的坐标.24. 定义:两组邻边分别相等的四边形叫做筝形.(1)请写出除定义外的性质和判定猜想各一条,并从定义出发证明你的判定猜想.(2)筝型ABCD 中,对角线AC ,BD 相交于点O . ①如图1,若BD=CO ,求tan ∠BCD 的值. ②如图2,若∠DAC=∠BCD=72º,求AD :CD 的值.(3)如图3,把△ABD 沿着对角线BD 翻折,A 点落在对角线AC 上的E 点.如果△AOD 中,一个内角是另一个内角的2倍,且阴影部 分图形的面积等于四边形ABED 的面积,直接写出CDAD的值.AC第23题图1图3数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11. (3)(3)a a +- 12.2x ≥ 13. 20 14. 4115. 0或-1或-2 16. 23三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17. 解: (1)0)12(45sin 2--︒解:原式=21-……………………………………2分1- ……………………………………2分(2)2)2()2)(1(-++-x x x解:原式=222244x x x x x +--+-+ …………………2分 = 2232x x -+ ………………………2分18. 解:(1)略 ……………………4分(2)略 ……………………4分 19.解:(1)a=30 ……………………2分b=24 ……………………2分(2) 300120361000=⨯……………………4分 20.解:(1)把x =2,y =5代入ky x=,得 k =2×5=10 ……………2分把x =2,y =5代入b x y +=,得 3=b …………2分 (2)3+=x y∴当y =0时,x =-3,∴OB=3 ……………1分S ∴=5321⨯⨯=7.5 ……………3分21.(1)证:连接OC∵OA=OC∴∠OAC=∠OCA ………………1分∵AC 平分∠DAB ∴∠OAC=∠DAC ∴∠OCA=∠DAC∴AD ∥OC …………………2分∵直线CD 与⊙O 相切 ∴OC ⊥CD …………………1分 ∴AD ⊥CD ………………1分 (2) 连接CB∵AB 是⊙O 直径∴∠ACB=090 …………………1分 由(1)知AD ⊥CD ∴∠ADC=090∴∠ADC=∠ACB ∵∠DAC=∠CAB∴△DAC ∽△CAB …………………2分 ∴ABACAC DA =∴AB552=…………………1分 ∴AB=2.5 …………………1分22.解:(1)10 85…………………2分(2)∵第一级的产品一天能生产95件,每件利润6元,每提高一个级别,每件利润加2元,但一天生产量减少5件.∴第x 级别,提高的级别是(x ﹣1)档. ∴y =[6+2(x ﹣1)][95﹣5(x ﹣1)],即y =﹣10x 2+180x +400(其中x 是正整数,且1≤x ≤10)…………………5分(3)由题意可得:﹣10x 2+180x +400=1120· ABC D(第21题)O· ABCD(第21题) O整理得:x 2﹣18x +72=0 解得:x 1=6,x 2=12(舍去).答:该产品的质量级别为第6级.…………………5分23.解:(1)A (-21,0), B (27,0) 23=x …………………………3分(2)由(1)知,AB=4 ∵CD:AB=3:4 ∴CD=3∵个单位向上平移m x x y 4732--=∴C (0,0), D(3,0) …………………………3分x x y 32-=∴∴47=m …………………………2分 (3)⎪⎭⎫⎝⎛-45,21、⎪⎭⎫⎝⎛-1611,411、 ()2,2-、⎪⎭⎫ ⎝⎛-2526,513……4分24.(1)性质:①筝形有一组对角相等;…………………………………………… 1分②筝形有一条对角线垂直平分另一条对角线; ③筝形有一条对角线平分一组对角.判定:①有一条对角线垂直平分另一条对角线的四边形是筝形;②有一条对角线平分一组对角的四边形是筝形.……………………………1分证明略…………………………………………………………………………………4分 (2)①解:设OC=2OD=2OB=a ,则CD=BD ,第23(3)题第23(2)BCD 211S =CD CBsin 2211)sin 2222BCD BD COBCD a a ∆⋅∠=⋅∴∠=⨯⨯可得:sin ∠BCD=45,即:tan ∠BCD=43.…………………………………………2分 ②作∠BCD 的平分线交AC 于点E . ∵∠BCD=72º, ∴∠2=12∠BCD=36º, ∵∠DAC=72º, ∴∠ADC=72º,∠1=36º ∴△DAE ∽△CDA ∴AD DCAE DA=, DC=AC,AE=AC-CE=CD-AD即:AD CDCD AD AD=-,去分母得:AD 2+CD·AD-CD 2=0,解得AD =,AD=(舍去),∴AD :CD分 ③或或分AC。
2015年浙江省台州市中考数学一模试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)计算﹣4×2的结果是()A.﹣6B.﹣2C.8D.﹣82.(4分)据旅游局统计,2013年雁荡山风景区全年共接待国内外游客275.3万人次万.数据275.3万用科学记数法表示为()A.2753×106B.2.753×106C.2.753×107D.2.753×105 3.(4分)如图所示的几何体的左视图是()A.B.C.D.4.(4分)如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°5.(4分)两圆的半径分别为3和8,圆心距为10,则两圆的位置关系是()A.内切B.相交C.外切D.外离6.(4分)不等式组的解集在数轴上表示如图,则该不等式组是()A.B.C.D.7.(4分)如图,圆锥形烟囱帽的底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.450πcm2D.600πcm2 8.(4分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+39.(4分)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2).(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3).(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4).(4)连结AE、AF、BE、BF,如图(5).经过以上操作,小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S四边形AEBF:S扇形BEMF=3:π.以上结论正确的有()A.1个B.2个C.3个D.4个10.(4分)如图,Rt△OAB直角边OA在x轴正半轴上,∠AOB=60°,反比例函数y=的图象与Rt△OAB两边OB,AB分别交于点C,D.若点C是OB边的中点,则点D的坐标是()A.(1,)B.(,1)C.(2,)D.(4,)二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:x2﹣9=.12.(5分)已知函数y=,则自变量x的取值范围是.13.(5分)如图,A,D,F,B在同一直线上,AE=BC,且AE∥BC.添加一个条件,使△AEF≌△BCD.14.(5分)为了估计县城空气质量情况,某同学在30天里做了如下记录:其中w<50时空气质量为优,50≤w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为天.15.(5分)将△ABC绕点A按逆时针方向旋转θ度,并将各边长变为原来的n倍得△AB′C′,即如图①,∠BAB′=θ,===n,我们将这种变换记为[θ,n].如图②,在△DEF中,∠DFE=90°,将△DEF 绕点D旋转,做变换[60°,n]得△DE′F′,如果点E、F、F′恰好在同一直线上,那么n=.16.(5分)如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(,0),作点A关于直线y=kx(k>0)的对称点P,△POB 为等腰三角形,则点P的坐标为.三、解答题(第17、18题,每题8分,第19、20、21、22题10分,第23、24题,每题12分共80分)17.(8分)计算:﹣3tan60°+|﹣3|.18.(8分)解不等式组并在所给的数轴上表示出其解集.19.(10分)如图,Rt△ABE与Rt△DCF关于直线m对称,若∠B=90°,∠C =90°,连结EF,AD,点B,E,F,C在同一条直线上.求证:四边形ABCD 是矩形.20.(10分)为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:30分;B:29﹣27分;C:26﹣24分;D:23﹣18分;E:17﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;(2)如果把成绩在24分以上(含24分)定为优秀,估计该市今年6000名九年级学生中,体育成绩为优秀的学生人数有多少人?21.(10分)某商店第一次用600元购进某品牌的笔记本若干本,第二次又用600元购进同样品牌的笔记本,但这次每本的进价是第一次的,购进数量比第一次少了30本.(1)求第一次每本笔记本的进价是多少元?(2)商店以同一价格全部销售完毕后获利不低于420元,问每本笔记本的售价至少多少元?22.(10分)李明乘车从永康到某景区旅游,同时王红从该景区返回永康.线段OB表示李明离永康的路程S1(km)与时间t(h)的函数关系;线段AC表示王红离永康的路程S2(km)与时间t(h)的函数关系.行驶1小时,李明、王红离永康的路程分别为100km、280km,王红从景区返回永康用了 4.5小时.(假设两人所乘的车在同一线路上行驶)(1)分别求S1,S2关于t的函数表达式;(2)当t为何值时,他们乘坐的两车相遇;(3)当李明到达景区时,王红离永康还有多少千米?23.(12分)在平面直角坐标系中,抛物线y=ax2﹣x+2过点B(1,0).(1)求抛物线与y轴的交点C的坐标及与x轴的另一交点A的坐标;(2)以AC为边在第二象限画正方形ACPQ,求P、Q两点的坐标;(3)把(2)中的正方形ACPQ和抛物线沿射线AC一起运动,当运动到点Q 与y轴重合时,求运动后的抛物线的顶点坐标.24.(12分)已知△ABC的顶点A,B在抛物线y=x2+kx+5的对称轴l上,三个顶点坐标分别为A(3,5),B(3,1),C(7,5).点P从A出发,沿A→B →C→A运动一周,点P在AB或CA上运动时,运动速度为每秒2个单位;点P在BC上运动时,运动速度为每秒个单位.设运动时间为t秒,x轴与抛物线围成的封闭区域记作M(阴影部分,含边界).(1)求k的值及抛物线与x轴的交点坐标;(2)在点P的运动过程中,用含t的代数式表示点P的坐标;(3)如果在点P开始运动的同时,△ABC也开始沿对称轴l以每秒1个单位的速度向下平移(当点P停止运动时,△ABC也停止运动).经过几秒时,点P 第一次刚好进入区域M?并求出使点P在区域M的t的取值范围.2015年浙江省台州市中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)计算﹣4×2的结果是()A.﹣6B.﹣2C.8D.﹣8【解答】解:原式=﹣(4×2)=﹣8,故选:D.2.(4分)据旅游局统计,2013年雁荡山风景区全年共接待国内外游客275.3万人次万.数据275.3万用科学记数法表示为()A.2753×106B.2.753×106C.2.753×107D.2.753×105【解答】解:将275.3万用科学记数法表示为:2.753×106.故选:B.3.(4分)如图所示的几何体的左视图是()A.B.C.D.【解答】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.故选:D.4.(4分)如图,a∥b,将三角尺的直角顶点放在直线a上,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°【解答】解:∵∠1=50°,∴∠3=90°﹣50=40°,∵直线a∥直线b,∴∠2=∠3=40°,故选:B.5.(4分)两圆的半径分别为3和8,圆心距为10,则两圆的位置关系是()A.内切B.相交C.外切D.外离【解答】解:∵两圆的半径分别为3和8,∴半径和为:11,半径差为7,∵圆心距为10,∴两圆的位置关系是:相交.故选:B.6.(4分)不等式组的解集在数轴上表示如图,则该不等式组是()A.B.C.D.【解答】解:由数周上表示的不等式的解集:﹣1<x≤2,故D符合题意;故选:D.7.(4分)如图,圆锥形烟囱帽的底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.450πcm2D.600πcm2【解答】解:烟囱帽所需要的铁皮面积=×20×2π×15=300π(cm2).故选:B.8.(4分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+3【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选:C.9.(4分)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2).(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3).(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4).(4)连结AE、AF、BE、BF,如图(5).经过以上操作,小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S四边形AEBF:S扇形BEMF=3:π.以上结论正确的有()A.1个B.2个C.3个D.4个【解答】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°﹣30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=r,∴EF=2EN=r,∴S四边形AEBF :S扇形BEMF=(×r×2r):(πr2)=3:π,故④正确;综上所述,结论正确的是①②③④共4个.故选:C.10.(4分)如图,Rt△OAB直角边OA在x轴正半轴上,∠AOB=60°,反比例函数y=的图象与Rt△OAB两边OB,AB分别交于点C,D.若点C是OB边的中点,则点D的坐标是()A.(1,)B.(,1)C.(2,)D.(4,)【解答】解:设OA=a,∵∠AOB=60°,∴AB=a,∴B(a,a),∵点C是OB边的中点,∴C(,),∵点C在反比例函数y=上,∴=,解得a=2,∵点D在反比例函数y=上,∴当x=2时,y=,∴D(2,).故选:C.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).12.(5分)已知函数y=,则自变量x的取值范围是x>1.【解答】解:由题意得,x﹣1>0,解得x>1.故答案为:x>1.13.(5分)如图,A,D,F,B在同一直线上,AE=BC,且AE∥BC.添加一个条件AF=DB,使△AEF≌△BCD.【解答】解:AF=DB,理由是:∵AE∥BC,∴∠A=∠B,在△AEF和△BCD中∴△AEF≌△BCD(SAS),故答案为:AF=DB.14.(5分)为了估计县城空气质量情况,某同学在30天里做了如下记录:其中w<50时空气质量为优,50≤w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为292天.【解答】解:该城市在一年中空气质量达到良以上(含良)的天数为:2+6+9+7=24,×365=292天.故答案为:292.15.(5分)将△ABC绕点A按逆时针方向旋转θ度,并将各边长变为原来的n倍得△AB′C′,即如图①,∠BAB′=θ,===n,我们将这种变换记为[θ,n].如图②,在△DEF中,∠DFE=90°,将△DEF 绕点D旋转,做变换[60°,n]得△DE′F′,如果点E、F、F′恰好在同一直线上,那么n=2.【解答】解:∵∠DFE=90°,将△DEF绕点D旋转,做变换[60°,n]得△DE′F′,∴∠DFF′=90°,θ=∠FDF′=60°,在Rt△FDF′中,∠DFF'=90°,∠FDF′=60°,∴∠DF′F=30°,∴n==2;故答案为:2.16.(5分)如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为(,),(,﹣),(2,﹣2)或(2,2).【解答】解:∵矩形AOBC的顶点A,B的坐标分别是A(0,4),B(,0),∴OA=4,OB=4,∵点P关于直线y=kx(k>0)与点A对称,∴OP=OA=4,∵△POB为等腰三角形∴BP=BO,OP=PB,OB=OP(不成立,因为OA=4,OB=4)当BP=BO=4时,如图,作PH⊥OB,BG⊥OP垂足分别为H、G,∴OG=PG=OP=2∴BG==2∵×OP×BG=×OB×PH即4×2=4×PH∴PH=∴OH==,∴点P坐标为(,),(,﹣),当OP=PB=4时,如图,作PF⊥OB垂足为F∴OF=FB=OB=2∴PF==2∴点P坐标为(2,2),(2,﹣2);综上所知点P坐标为(,),(,﹣),(2,﹣2)或(2,2).故答案为:(,),(,﹣),(2,﹣2)或(2,2).三、解答题(第17、18题,每题8分,第19、20、21、22题10分,第23、24题,每题12分共80分)17.(8分)计算:﹣3tan60°+|﹣3|.【解答】解:原式=2﹣3+3=3﹣.18.(8分)解不等式组并在所给的数轴上表示出其解集.【解答】解:解不等式3x﹣1<2(x+1),得x<3解不等式≥1,得x≥﹣1∴不等式组的解集为﹣1≤x<3.在数轴上表示解集如图:19.(10分)如图,Rt△ABE与Rt△DCF关于直线m对称,若∠B=90°,∠C =90°,连结EF,AD,点B,E,F,C在同一条直线上.求证:四边形ABCD 是矩形.【解答】证明:∵Rt△ABE与Rt△DCF关于直线m对称,∴AB=CD,∵∠B=90°,∠C=90°,点B,E,F,C在同一条直线上,∴AB∥CD,∴四边形ABCD是平行四边形,∵∠B=90°,∴平行四边形ABCD是矩形.20.(10分)为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:30分;B:29﹣27分;C:26﹣24分;D:23﹣18分;E:17﹣0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;(2)如果把成绩在24分以上(含24分)定为优秀,估计该市今年6000名九年级学生中,体育成绩为优秀的学生人数有多少人?【解答】解:(1)根据题意得:=200(人),则B组的人数是:200﹣70﹣40﹣30﹣10=50(人),补图如下:(2)根据题意得:×6000=4800(人),答:体育成绩为优秀的学生人数有4800人.21.(10分)某商店第一次用600元购进某品牌的笔记本若干本,第二次又用600元购进同样品牌的笔记本,但这次每本的进价是第一次的,购进数量比第一次少了30本.(1)求第一次每本笔记本的进价是多少元?(2)商店以同一价格全部销售完毕后获利不低于420元,问每本笔记本的售价至少多少元?【解答】解:(1)设第一次每本笔记本的进价为x元.根据题意得,,解得x=4,经检验x=4是原方程的解.答:第一次每本笔记本的进价为4元;(2)第一次买进笔记本150本,第二次买进笔记本120本,共270本.设每本笔记本的售价为y元,根据题意得,270y﹣600×2≥420,∴y≥6,答:每本笔记本的售价至少为6元.22.(10分)李明乘车从永康到某景区旅游,同时王红从该景区返回永康.线段OB表示李明离永康的路程S1(km)与时间t(h)的函数关系;线段AC表示王红离永康的路程S2(km)与时间t(h)的函数关系.行驶1小时,李明、王红离永康的路程分别为100km、280km,王红从景区返回永康用了 4.5小时.(假设两人所乘的车在同一线路上行驶)(1)分别求S1,S2关于t的函数表达式;(2)当t为何值时,他们乘坐的两车相遇;(3)当李明到达景区时,王红离永康还有多少千米?【解答】解:(1)设S1=k1t,代入点(1,100)解得k1=100,所以S1=100t;S2=k2t+b,代入点(1,280)、(4.5,0)得,,解得k2=﹣80,b=360所以S2=﹣80t+360;(2)由题意得100t=﹣80t+360解得t=2,当t=2时,两车相遇;(3)由S2=﹣80t+360可知从永康到某景区路程为360km,李明的速度100km/h,李明到达景区时的时间t=360÷100=3.6小时,当t=3.6时,王红离永康S2=﹣80t+360=72千米.23.(12分)在平面直角坐标系中,抛物线y=ax2﹣x+2过点B(1,0).(1)求抛物线与y轴的交点C的坐标及与x轴的另一交点A的坐标;(2)以AC为边在第二象限画正方形ACPQ,求P、Q两点的坐标;(3)把(2)中的正方形ACPQ和抛物线沿射线AC一起运动,当运动到点Q 与y轴重合时,求运动后的抛物线的顶点坐标.【解答】解:(1)把B(1,0)代入抛物线y=ax2﹣x+2,得a﹣+2=0,解得a=﹣.所以y=﹣x2﹣x+2,当x=0时,y=2,所以抛物线与y轴交点C的坐标为(0,2).当y=0时,﹣x2﹣x+2=0,解得x1=1,x2=﹣3,所以抛物线与x轴的另一个交点A的坐标为(﹣3,0);(2)过P点作PE⊥y轴于E,过点Q作QF⊥x轴于F.∵四边形ACPQ是正方形,∴AC=CP=AQ,∠QAC=∠ACP=90°,∴∠ACO+∠PCE=90°,∵∠AOC=90°,∴∠ACO+∠OAC=90°,∴∠OAC=∠PCE,在△AOC与△PCE中,,∴△AOC≌△PCE(AAS),∴PE=OC=2,CE=AO=3,∴OE=OC+CE=5,∴点P的坐标为(﹣2,5).同理△AOC≌△QF A,∴QF=AO=3,AF=OC=2,∴OF=AF+OA=5,∴点Q的坐标为(﹣5,3);(3)设直线PQ的解析式为y=kx+b把P(﹣2,5),Q(﹣5,3)代入y=kx+b得解,得.∴,∴当x=0时,∴直线PQ与y轴的交点Q′,∴点Q(﹣5,3)运动到点Q′.∴向右平移了5个单位长度,向上平移了个单位长度.∵抛物线的顶点为∴运动后的抛物线的顶点坐标为(4,6).24.(12分)已知△ABC的顶点A,B在抛物线y=x2+kx+5的对称轴l上,三个顶点坐标分别为A(3,5),B(3,1),C(7,5).点P从A出发,沿A→B →C→A运动一周,点P在AB或CA上运动时,运动速度为每秒2个单位;点P在BC上运动时,运动速度为每秒个单位.设运动时间为t秒,x轴与抛物线围成的封闭区域记作M(阴影部分,含边界).(1)求k的值及抛物线与x轴的交点坐标;(2)在点P的运动过程中,用含t的代数式表示点P的坐标;(3)如果在点P开始运动的同时,△ABC也开始沿对称轴l以每秒1个单位的速度向下平移(当点P停止运动时,△ABC也停止运动).经过几秒时,点P 第一次刚好进入区域M?并求出使点P在区域M的t的取值范围.【解答】解:(1)∵A(3,5),B(3,1),∴直线AB的方程为x=3,∵抛物线y=x2+kx+5的对称轴为x=﹣,∴﹣=3,∴k=﹣6,∴y=x2﹣6x+5,令y=0,x2﹣6x+5=0,解得x1=1,x2=5,∴抛物线与x轴的交点坐标为(1,0),(5,0);(2)设AB与x轴交于点Q.∵A(3,5),B(3,1),C(7,5),∴AB=AC=4,BC==4,∴∠BAC=90°,∠ACB=∠ABC=45°.①当点P在AB上运动时,0≤t≤2,∵P A=2t,A(3,5),∴PQ=AQ﹣AP=5﹣2t,∴此时点P的坐标(3,5﹣2t);②当点P在BC上运动时,2<t≤4,如图,过点P作PD⊥x轴于点D,PE⊥AB于点E.∵PB=2(t﹣2),∴PE=BE=2(t﹣2)=2t﹣4,∴OD=OQ+QD=OQ+PE=3+2t﹣4=2t﹣1,PD=EQ=BE+BQ=2t﹣4+1=2t﹣3,∴此时点P的坐标(2t﹣1,2t﹣3);③当点P在CA上运动时,4<t≤6时,∵CP=2(t﹣4)=2t﹣8,∴点P的横坐标=OQ+AP=OQ+AC﹣CP=3+4﹣(2t﹣8)=15﹣2t,点P的纵坐标=AQ=5,∴点P的坐标(15﹣2t,5);(3)设经过t秒时,点P运动到点Q,即第一次刚好进入区域M,由题意,得(2+1)t=5,解得t=,即当t=时,点P第一次刚好进入区域M;设抛物线与x轴的交点坐标为G(1,0),F(5,0),则QG=QF=2.分两种情况:①当点P在AB和BC上运动,从点P运动到Q点开始进入区域M,到运动到F点离开区域M.当△ABC平移到△A′B′C′的位置时,点P运动到F点,∵△PQB′是等腰直角三角形,∴QB′=PQ=2,∴t==1+2=3,∴≤t≤3;②当点P在CA上运动,从点P运动到F点开始进入区域M,一直到A点.当△ABC平移到△A″B″C″的位置时,点P运动到F点,∵A″P=QF=2,∴C″P=A″C″﹣A″P=4﹣2=2,∴t=4+=5,∴5≤t≤6.综上所述,符合条件的t值是≤t≤3或5≤t≤6.。
2015年初中毕业升学考试(台州卷)数 学 试 题 卷
一、选择题(本题有10小题,每小题4分,共40分) 1. 单项式a 2的系数是( )
A. 2
B. a 2
C. 1
D. a 2. 下列四个几何体中,左视图为圆的是( )
3. 在下列调查中,宜采用全面调查的是( )
A. 了解我省中学生的视力情况
B. 了解九(1)班学生校服的尺码情况
C. 检测一批电灯泡的使用寿命
D. 调查台州《600全民新闻》栏目的收视率 4. 若反比例函数x
k
y =
的图象经过点(2,-1),则该反比例函数的图象在( ) A. 第一、二象限 B. 第一、三象限 C. 第二、三象限 D. 第二、四象限 5. 若一组数据3,x ,4,5,6的众数是6,则这组数据的中位数为( )
A. 3
B. 4
C. 5
D. 6 6. 把多项式822
-x 分解因式,结果正确的是( )
A. )8(22
-x B. 2
)2(2-x C. )2)(2(2+-x x D. )4(2x
x x -
7. 设二次函数4)3(2
--=x y 图象的对称轴为直线l ,若点M 在直线l 上,则点M 的坐标可能是( )
A.(1,0)
B.(3,0)
C.(-3,0)
D. (0,-4)
8. 如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能...
是( ) A. 8cm B. 25cm C. 5.5cm D. 1cm 9. 如图,在菱形ABCD 中,AB=8,点E ,F 分别在AB ,AD 上,
且AE=AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O 。
当四边形AEOF 与四边 形CGOH 的周长之差为12时,AE 的值为( )
A. 6.5
B. 6
C. 5.5 5
D.
10. 某班有20位同学参加围棋、象棋比赛。
甲说:“只参加一项的人数大于14人。
”乙说:“两项都参加的
人数小于5人。
”对于甲乙两人的说法,有下列四个命题,其中为真命题的是( )
二、填空题(本题有6小题,每小题5分,共30分) 11. 不等式42-x ≥0的解集是
12. 有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4.现它们的正面向下,
随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是
13. 如图,在Rt △ABC 中,∠C=90°,AD 是△ABC 的角平分线,DC=3,则点D 到AB 的距离是 14. 如图,这是台州市地图的一部分,分别以正东、正北方向为x 轴、y 轴的正方向建立直角坐标系,规定一个单位长度表示1km 。
甲乙两人对着地图如下描述路桥区A 处的位置:则椒江区B 处的坐标是
15. 关于x 的方程012
=+-+m x mx ,有以下三个结论:①当=0时,方程只有一个实数解;②当0≠m 时,方程有两个不等的实数解;③无论m 取何值,方程都有一个负数解。
其中正确的是 (填序号)
16. 如图,正方形ABCD 的边长为1,中心为O ,有一大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正 方形的边)。
当这个正六边形的边长最大时,AE 的最小值为 三、解答题(本题有8小题,共80分) 17.(本题8分)
计算:0
20151)3(6--+-÷
18.(本题8分)
先化简,再求值:2
)1(11+-+a a
a ,其中12-=a
如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A 到调节器点O 处的距离为80cm ,AO 与地面垂直。
现调整靠背,把OA 绕点O 旋转35°到OA ’处,求调整后点A ’比调整前点A 的高度降低了多少厘米(结果取整数)?
(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
20.(本题8分)
图1中的摩天轮可抽象成一个圆,圆周上一点离地面的高度)(m y 与旋转时间(min)x 之间的关系如图2所示。
(1)根据图2填表:
(2)变量y 是x 的函数吗?为什么? (3)根据图中的信息,请写出摩天轮的直径。
某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图。
根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图;
(2)求扇形统计图中m的值和“E”组对应的圆心角度数;
(3)请估计该校3000名学生中每周课外阅读时间不小于6小时的人数。
22.(本题12分)
如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC。
(1)若∠CBD=39°,求∠BAD的度数;
(2)求证:∠1=∠2。
如图,在多边形ABCDE 中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3。
过点E 作EF ∥CB 交AB 于点F ,FB=1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q 。
设AP=x ,
y OQ PO =⋅。
(1)①延长BC 交ED 于点M ,
则MD= ▲ ,DC= ▲ ; ②求y 关于x 的函数解析式; (2)当时a ≤x ≤
2
1
(a >0)时,a 9≤y ≤b 6,求a ,b 的值; (3)当1≤y ≤3时,请直接写出x 的取值范围。
定义:如图1,点M,N把线段AB分割成线段AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点。
(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求的长;
(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连结AD,AE,分别交FG于点M,N。
求证:点M,N是线段FG的勾股分割点;
(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C,D是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);
(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H。
若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHG的数量关系,并说明理由。
2015浙江台州中考数学考试试题。