专题-带电粒子在有界磁场中的运动
- 格式:doc
- 大小:130.50 KB
- 文档页数:3
磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型1.高考命题中,带电粒子在有界磁场中的运动问题,常常涉及到临界问题或多解问题,粒子运动轨迹和磁场边界相切经常是临界条件。
带电粒子的入射速度大小不变,方向变化,轨迹圆相交与一点形成旋转圆。
带电粒子的入射速度方向不变,大小变化,轨迹圆相切与一点形成放缩圆。
2.圆形边界的磁场,如果带电粒子做圆周运动的半径如果等于磁场圆的半径,经常创设磁聚焦和磁发散模型。
一、分析临界极值问题常用的四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速率v 一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长,(3)当速率v 变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,再根据几何关系求出半径及圆心角等(4)在圆形匀强磁场中,当运动轨远圆半径大于区域圆半径时,入射点和出射点为磁场直径的两个端点时轨迹对应的偏转角最大(所有的弦长中直径最长)。
二、“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP ′上界定方法以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法三、“旋转圆”模型的应用适用条件速度大小一定,方向不同粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上界定方法将一半径为R =mv 0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法四、“平移圆”模型的应用适用条件速度大小一定,方向一定,但入射点在同一直线上粒子源发射速度大小、方向一定,入射点不同,但在同一直线的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则半径R =mv 0qB,如图所示轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行界定方法将半径为R =mv 0qB的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆”法五、“磁聚焦”模型1.带电粒子的会聚如图甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等(R =r ),则所有的带电粒子将从磁场圆的最低点B 点射出.(会聚)证明:四边形OAO ′B 为菱形,必是平行四边形,对边平行,OB 必平行于AO ′(即竖直方向),可知从A 点发出的带电粒子必然经过B 点.2.带电粒子的发散如图乙所示,有界圆形磁场的磁感应强度为B ,圆心为O ,从P 点有大量质量为m 、电荷量为q 的正粒子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行.(发散)证明:所有粒子运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,也是平行四边形,O 1A (O 2B 、O 3C )均平行于PO ,即出射速度方向相同(即水平方向).(建议用时:60分钟)一、单选题1地磁场能抵御宇宙射线的侵入,赤道剖面外地磁场可简化为包围地球一定厚度的匀强磁场,方向垂直该部面,如图所示,O为地球球心、R为地球半径,假设地磁场只分布在半径为R和2R的两边界之间的圆环区域内(边界上有磁场),磷的应强度大小均为B,方向垂直纸面向外。
专题:带电粒子在有界磁场中的运动三维目标:一、知识与技能(1)掌握求解带电粒子在有界磁场中的圆运动的基本方法:找圆心、求半径、求周期、确定圆心角,熟练运用草图描绘带电粒子运动的轨迹,应用几何知识求解问题;(2)培养学生的分析、解决问题的能力,应用数学知识求解物理问题的能力。
二、过程与方法讲解与学生练习相结合三、情感、态度与价值观进行思维方法教育训练,培养辩证唯物主义观点.【重难点】一.处理有界磁场问题的一般方法:①解答有关运动电荷在有界匀强磁场中的运动问题时,可以将有界磁场视为无界磁场让粒子能够做完整的圆周运动。
②根据边界条件确定粒子运动的路径,进而确定粒子圆周运动的圆心。
③作好辅助线,充分利用圆的有关特性和公式定理、 圆的对称性等几何知识表达出粒子运动的半径与偏转角度。
④根据牛顿第二定律,列出动力学方程从而解出有关的物理量。
二.确定圆心常用的方法:①圆心必在洛仑兹力所在的直线上,两个位置洛仑兹力方向的交点即为圆心位置。
②速度方向的垂线一定经过圆心,则任意两条速度垂线的交点既为圆心。
③弦的垂直平分线与速度垂线的交点。
三.粒子在磁场中运动时间的确定:①利用圆心角α与弦切角的关系,或者利用四边形内角和等于2π计算出圆心角α的大小,由公式2t T απ=可求出粒子在磁场中的运动时间. ②利用弧长与线速度的关系确定时间。
【典型例题】一、带电粒子在“单边磁场区域”中的运动例题1:如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面里,磁场的磁感应强度为B ;一带正电的粒子以速度V0从O 点射入磁场中,入射方向在xy 平面内,与x 轴正方向的夹角为θ;若粒子射出磁场的位置与O 点的距离为L 。
求①该粒子的电荷量和质量比②粒子在磁场中的运动时间。
二、带电粒子在“圆形磁场区域”中的运动例题2:在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图所示. 一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿-x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其比荷q/m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为 B ,该粒子仍从 A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度 B 多大?此次粒子在磁场中运动所用时间 t是多少?三、带电粒子在“长方形磁场区域”中的运动例3. 如图所示,一带正电的质子从O 点垂直射入,两个板间存在垂直纸面向里的匀强磁场,已知两板之间距离为d ,板长为d ,O 点是板的正中间,为使粒子能射出两板间,试求磁感应强度B 的大小(质子的带电量为e ,质量为m )。
一、带电粒子在有界磁场中的运动1.运动电荷所受的洛伦兹力....方向始终与速度方向垂直,所以洛伦兹力只改变速度方向,不改变速度大小,洛伦兹力对带电粒子不做功............。
2.带电粒子沿着与磁场垂直的方向射入磁场,在匀强磁场中做匀速圆周运动。
3.洛伦兹力提供带电粒子做圆周运动所需的向心力。
由牛顿第二定律得2v qvB m R=,则粒子运动的轨道半径mv R qB =,运动周期2πm T qB =。
4.带电粒子在匀强磁场中做匀速圆周运动,确定圆心和运动半径,画出粒子运动的轨迹。
⑴ 圆心..的确定:画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的洛伦兹力的方向,两洛伦兹力延长线的交点即为圆心;或利用一根弦的中垂线,结合一点洛伦兹力的延长线作出圆心位置。
⑵ 半径..的确定和计算:圆心确定以后,利用平面几何关系,求出该圆的半径。
⑶ 在磁场中运动时间....的确定:用几何关系求出运动轨迹所对应的圆心角θ,由公式360t T θ=求出粒子在磁场中运动的时间。
【例1】 如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某初速度垂直左边界射入,穿过此区域的时间为t ,若加上磁感应强度为B 、垂直纸面向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60︒,利用以上数据可求出下列物理量中的A .带电粒子的比荷B .带电粒子在磁场中运动的周期C .带电粒子的初速度D .带电粒子在磁场中运动的半径【答案】 A B【例2】 如图所示,圆柱形区域的横截面内有垂直于纸面向里的匀强磁场,磁感应强度为B 。
一带电粒子(不计重力)以某一初速度沿截面直径方向射入时,穿过此区域所用的时间为t 。
又知粒子飞出此区域时速度方向偏转了60︒角,根据以上条件可求下列物理量中的A .带电粒子的比荷B .带电粒子的初速度C .带电粒子在磁场中运动的周期D .带电粒子在磁场中运动的半径【答案】 A C【例3】 在一个边界为等边三角形的区域内,存在着方向垂直于纸面向里的匀强磁场,在磁场边界上的P 点处有一个粒子源,粒子源发出比荷相同的三个粒子a b c 、、(不计重力)沿同一方向进入磁场,三个粒子在磁场中的运动轨迹如图所示。
第3页
专题 带电粒子在有界匀强磁场中的运动 一.思路方法:明确洛仑兹力提供作匀速圆周运动的向心力 关健:画出运动轨迹图(规范画图,
才有可能找准几何关系)。
物理规律方程:向心力由洛伦兹力提供q B v = m R v 2
T = v
R 2π = qB
m 2π 1、找圆心:(圆心的确定)因f 洛一定指向圆心,f 洛⊥v
①任意两个f 洛的指向交点为圆心;
②任意一弦的中垂线一定过圆心;
③两速度方向夹角的角平分线一定过圆心。
2、求半径:①由物理规律求:q B v = mR v 2 ⇒ R =qB
mv ; ②由图得出的几何关系式求 几何关系:速度的偏向角ϕ=偏转圆弧所对应的圆心角(回旋角)α=2倍的弦切角θ;
相对的弦切角相等,相邻弦切角互补;
3、求粒子的运动时间: T t ⨯=)360(2)(0或回旋角圆心角π
4、圆周运动有关的对称规律:
a、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。
b 、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。
5、带电粒子在有界磁场中运动的极值问题
2ω
=θ=α=ϕ
第3页
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.
(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长. 三.当堂训练:
1. 如图1所示,一束电子(电量e)以速度0V 垂直射入磁感应强度B,宽度d 的匀强磁场中,穿出磁场时速度方向与电子原来的入射方向夹角为30°,则电子的质量为________在磁场中的运动时间是________。
ﻩ
图1
2.如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xOy 平面并指向纸面外,磁感应强度为B,一带正电的粒子以速度v 0从O 点射入磁场,入射方向在xO y平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点距离为L ,求该粒子的电量和质量之比q /m.
3.如图所示,在x 轴上方有垂直于xy 平面向里的匀强磁场,磁场的磁感应强度为B .在x 轴下方有沿y 轴负方向的匀强电场,场强为E .一质量为m 、电量为-q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与点O 的距离为L
,求此粒子射出时的速度v 和运动的总路程s (重力不计).
4. 如图所示,一带正电的质子从O 点垂直射入,两个板间存在垂直纸面向里的匀强磁场,已知两板之间距d N M
O
离为d,板长为d,O点是板的正中间,为使粒子能射出两板间,试求磁感应强度B的大小(质子的带电量为e,质量为m)。
5. 如图8所示,一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,现从矩形区域ad边的中点O处,垂直磁场射入一速度方向与ad边夹角为30°、大小为0v的带电粒子。
已知粒子质量为m,电量为q,ad边长为l,重力影响不计。
(1)试求粒子能从ab边射出磁场的0v值。
(2)在满足粒子从ab边射出磁场的条件下,粒子在磁场中运动的最长时间是多少?
6.如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°.一质量为m、带电荷量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子沿垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场.已知该粒子从射入到射出磁场所用的时间为t,求:
(1)画出粒子在磁场Ⅰ和Ⅱ中的运动轨迹;
(2)粒子在磁场Ⅰ和Ⅱ中的轨道半径R1和R2的比值;
(3)Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力).
第3页。