集成开关电源1
- 格式:ppt
- 大小:195.00 KB
- 文档页数:10
开关电源并机均流原理小伙伴们!今天咱们来唠唠开关电源并机均流这个超有趣的事儿。
咱先得知道啥是开关电源并机。
你就想象啊,有好几个开关电源,就像一群小伙伴手拉手,它们一起工作来给设备供电呢。
那为啥要并机呢?这就好比一个人搬东西可能有点吃力,多几个人一起搬就轻松多啦。
多个开关电源并机可以提供更大的功率,满足那些对电源需求比较大的设备。
那均流又是啥呢?这可太重要啦。
要是这几个开关电源一起工作的时候,有的特别卖力,有的在那儿偷懒,那可就乱套了。
均流就是要让这些并机的开关电源都能合理地分担电流,就像大家一起分任务一样公平公正。
咱来聊聊均流的原理哈。
有一种是通过硬件电路来实现均流的。
这里面有个很关键的东西叫均流电阻。
你可以把这个均流电阻想象成一个小裁判。
每个开关电源输出的电流都要经过这个均流电阻。
如果哪个电源输出的电流大了,在这个电阻上产生的电压就会高一些。
这个电压信号就会告诉这个电源:“你太猛啦,收敛点。
”然后这个电源就会调整自己的输出,让电流降下来一点。
这样呢,各个电源输出的电流就会慢慢变得差不多啦。
还有一种是通过软件算法来实现均流的哦。
这就更高级啦。
它就像一个超级聪明的大脑在指挥着这些开关电源。
软件会不断地监测每个电源的输出电流情况。
如果发现有电源输出的电流不均匀,它就会根据预先设定好的算法来调整每个电源的工作状态。
比如说,它会给输出电流大的电源发个指令:“你悠着点,分点活给其他小伙伴。
”然后给输出电流小的电源说:“你加把劲呀。
”这个软件算法就像是在协调一群调皮的小朋友,让它们都能好好干活。
你知道吗?均流对开关电源并机系统的稳定性可太重要啦。
如果不均流,有的电源可能会因为负担过重而提前“累垮”,也就是损坏啦。
这就像一群人抬东西,要是有个人一直承担大部分重量,他肯定先受不了。
而如果均流做得好,这些开关电源就可以和谐共处,一起为设备稳定地供电,设备也就可以安心地工作啦。
而且啊,均流还能提高整个电源系统的可靠性呢。
开关电源电路图原理讲解图解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源电路分析
开关管的工作原理是:当控制端的输入信号为高电平时,开关管导通,输入电源与传输装置连接,电流流过,输出电压稳定;当输入信号为低电
平时,开关管截断,输入电源与传输装置断开,电流停止流动,输出电压
为零。
输入滤波电路是用来对输入直流电进行滤波,使得输入电压稳定,减
小输入电压的纹波。
常见的输入滤波电路有电容滤波和电感滤波。
开关变换电路是开关电源电路的核心部分,其工作原理是通过一个开
关管来控制输入电源与传输装置的连接。
开关变换电路的核心是通过调整
开关管的导通和断开时间来改变输出电压。
常用的开关变换电路有单端开
关电源、双端开关电源和反激式开关电源等。
输出滤波电路是将输出的直流电进行滤波,减小输出电压的纹波。
输
出滤波电路通常采用电感滤波和电容滤波的组合,使输出电压更加稳定。
除了以上的基本部分外,开关电源电路还包括保护电路、反馈电路和
调整电路等。
保护电路主要用于检测和保护开关电源工作时的过电流、过
电压等异常情况,防止电路损坏;反馈电路用于对输出电压进行稳定控制,保证输出电压的稳定性;调整电路用于调整输出电压的大小,使得输出电
压能够达到期望值。
开关电源结构和工作原理小伙伴们!今天咱们来唠唠开关电源这个超有趣的东西。
先说说开关电源的结构吧。
开关电源就像是一个小小的电力魔法盒,它有好几个重要的组成部分呢。
咱先聊聊输入部分。
这就像是电源的小嘴巴,它负责把外面的电给吃进来。
不管是从插座来的交流电,还是其他来源的电,都得从这儿进来。
这个输入部分呀,有时候还挺挑剔的呢,得把那些不稳定的电稍微处理一下,就像我们吃东西得先嚼碎了才能咽下去一样。
比如说,可能会有一些滤波电路在这儿,把电里的一些小杂质,像是杂波之类的东西给过滤掉,让进来的电稍微干净整齐一点。
然后就是开关部分啦。
这可是开关电源的心脏,超级酷的哦。
这个开关就像一个调皮的小闸门,一会儿开一会儿关。
当它开的时候,电流就像一群欢快的小蚂蚁一样,快速地跑过去;当它关的时候呢,电流就只能在那儿等着啦。
这个开关的速度可快啦,每秒能开关好多次呢。
而且呀,这个开关的状态决定了后面好多事情的发展。
它可不是随便开关的哦,是按照一定的规律来的,就像我们跳舞得跟着音乐的节奏一样。
接着就是变压器部分啦。
变压器就像一个神奇的电力魔术师的帽子。
它能把电的电压变来变去。
比如说,从输入的比较高或者比较低的电压,变成我们需要的电压。
这个变压器有初级绕组和次级绕组,电流在初级绕组里跑来跑去的时候,就像在给次级绕组传递魔法一样,在次级绕组那边就会产生不一样的电压啦。
这就好像是把一个大苹果通过魔法变成了几个小苹果,或者把几个小苹果变成了一个大苹果,超级神奇的。
再就是输出部分啦。
这就是电源的小屁股,把处理好的电送出去给需要的设备。
这个输出部分也很讲究呢,它得保证送出去的电是稳定的、干净的。
这里也有滤波电路,就像给电再做一次美容,让电变得更加平滑、稳定。
就像我们送礼物给朋友,得把礼物包装得漂漂亮亮的一样。
那开关电源是怎么工作的呢?当电源开始工作的时候,输入的电进入到开关部分。
开关开始按照它的节奏快速地开合。
每次开关打开的时候,电就流到变压器的初级绕组。
开关电源的结构及工作原理好嘞,今天咱们聊聊开关电源。
大家可能觉得这东西听上去挺高大上的,其实说白了,它就是把电变得更好用的一种设备。
就像把生鸡蛋变成煎蛋一样,开关电源就是把交流电(AC)变成直流电(DC)。
这玩意儿在我们生活中可真是无处不在,从手机充电器到电脑电源,统统离不开它。
首先说说它的结构。
开关电源的外表看上去没啥特别的,简简单单的箱子,里面可就热闹了。
它主要由几个部分组成,像个乐队一样。
先有变压器,这是个关键角色,负责把电压调高或调低。
然后是整流器,把交流电转变成直流电。
接下来是滤波器,像一个精致的茶滤,把杂质给过滤掉,确保出来的电干干净净。
最后还有一个控制电路,负责管理这些环节,确保一切都在掌控之中。
说白了,这就像是一场精彩的音乐会,各个乐器齐心协力,才能奏出动听的旋律。
再聊聊它的工作原理。
开关电源的工作就像是玩变魔术,变化的过程迅速而神奇。
它会接收输入电压,然后通过开关管(别小看这个开关,它可厉害着呢)把电流快速开关。
你想啊,这种频繁的开关就像是快速翻书,电流在其中来回穿梭,最后变得井井有条。
这一过程就叫“调制”,听上去挺复杂,但其实就是让电压变得适合你的需求。
电流被送到变压器,进行电压的变换。
变压器就像是一个变形金刚,把高电压变成低电压,或者反之。
这个环节很关键,因为不同的设备需要不同的电压,得对症下药。
然后,整流器开始出场,负责把交流电转化为直流电。
整流器就像是把清水过滤出来,去掉那些杂质,留下纯粹的能量。
滤波器就开始工作了。
滤波器可谓是电流的守护神,它把可能存在的波动给抹平,确保电流稳定。
试想一下,要是你正在喝咖啡,突然一阵颠簸,那咖啡肯定洒了。
而滤波器就是防止电流洒出来的那道屏障,保证电能平稳流向每一个角落。
控制电路就像是总指挥,负责调控整个系统。
它根据电流的变化,及时调整开关的状态,确保一切都在预设的范围内。
这个环节非常重要,像是一个灵活的指挥官,时刻关注着战场的动态。
无论发生什么,控制电路都能快速反应,让开关电源保持最佳状态。
●开关电源知多少开关电源可以通过高频开关模式很好的解决这一问题。
对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。
随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。
这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。
需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。
事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PWM,Pulse Width Modulation,脉冲宽度调制)。
所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。
反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。
这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。
看图说话:图解开关电源下图3和4描述的是开关电源的PWM反馈机制。
图3描述的是没有PFC(Power Factor Correction,功率因素校正) 电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。
其实很简单开关电源工作原理全面剖析图3:没有PFC电路的电源其实很简单开关电源工作原理全面剖析图4:有PFC电路的电源通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220 V转换器,而且也没有电压倍压电路。
下文我们的重点将会是主动式PFC电源的讲解。
为了让读者能够更好的理解电源的工作原理,以上我们提供的是非常基本的图解,图中并未包含其他额外的电路,比如说短路保护、待机电路以及PG信号发生器等等。
开关电源(1)之BUCK降压变换器⼯作原理及Multisim实例仿真开关电源(Switching Mode Power Supply)即开关稳压电源,是相对于线性稳压电源的⼀种的新型稳压电源电路,它通过对输出电压实时监测并动态控制开关管导通与断开的时间⽐值来稳定输出电压。
由于开关电源效率⾼且容易⼩型化,因此已经被⼴泛地应⽤于现代⼤多数电⼦产品中。
如果说每个现代家庭都⾄少有⼀个开关电源都不为过,如电视机(彩⾊的)、电脑、笔记本、电磁炉等等内部都有开关电源,虾⽶?这些东西你们家都没有?我去!那⼿机有没有?⼿机充电器也是⼀个⼩型的开关电源,中招了吧!⼿机也没有,那就是古代家庭了,忽略之!如下图所⽰为线性稳压电源电路的基本原理图:之所以称其为线性电源,是因为其稳定输出电压的基本原理是:通过调节调整管(如三极管)的压降V D来稳定相应的输出电压V O,也因调整管处于线性放⼤区⽽得名。
如果某些因素使得输出电压V O下降了,则控制环路降低调整管的压降V D,从⽽保证输出电压V o不变,反之亦然,但这样带来的缺点是调整管消耗的功率很⼤,使得该电路转换效率低下,当然,线性电源的优点是电路简单,纹波⼩,但是在很多应⽤场合下,转换效率才是⾄关重要的。
为了进⼀步提升稳压电路中的转换效率,提出⽤处于开关状态的调整管来代替线性电源中处于线性状态中的调整管,⽽BUCK变换器即开关电源基本拓扑之⼀,如下图所⽰:其中,开关K1代表三极管或MOS管之类的开关管(本⽂以MOS管为例),通过矩形波控制开关K1只⼯作于截⽌状态(开关断开)或导通状态(开关闭合),理想情况下,这两种状态下开关管都不会有功率损耗,因此,相对于线性电源的转换效率有很⼤的提升。
开关电源调压的基本原理即⾯积等效原理,亦即冲量相等⽽形状不同的脉冲加在具有惯性环节上时其效果基本相同,如下图所⽰:同样是从输⼊电源10V中获取5V的输出电压,线性稳压电源的有效⾯积为5×T,⽽对应在开关稳压电源的单个有效周期内,其有效⾯积为10×T×50%(占空⽐)=5×T,这样只要在后⾯加⼀级滤波电路,两者的输出电压有效值(平均值)是相似的。