相转移催化技术在烃化反应中的应用
- 格式:ppt
- 大小:377.50 KB
- 文档页数:24
相转移催化在有机合成中的应用相转移催化是一种常用于有机合成中的重要方法,它能够提高反应速率、改善反应选择性,并减少副反应的生成。
本文将介绍相转移催化在有机合成中的应用,并探讨其原理和优势。
一、相转移催化的原理和优势相转移催化是一种在两相体系中进行的催化反应。
它的基本原理是通过添加相转移剂,将两相中的底物和催化剂有效地转移至反应中心,从而实现反应的进行。
相转移剂通常是一种能够在有机溶剂和水之间形成可溶性离子对的化合物,如季铵盐、季磷盐等。
相转移催化的优势主要体现在以下几个方面:1. 扩大反应底物范围:相转移催化可以使底物在两相体系中均匀分布,从而扩大了反应底物的范围。
许多对水敏感的有机底物,在传统的有机反应中往往无法使用,但在相转移催化条件下,可以通过选择合适的相转移剂来实现反应。
2. 提高反应速率:相转移催化使底物和催化剂之间的质量传递更加快速,从而提高了反应速率。
相比传统的有机反应,相转移催化可以在更温和的条件下进行,从而减少能量消耗和废物产生。
3. 改善反应选择性:相转移催化可以通过调节相转移剂的类型和用量来控制反应的选择性。
相转移剂可以形成离子对,使底物和催化剂之间形成亲疏水性相互作用,从而选择性地催化特定的反应。
相转移催化在有机合成中有广泛的应用,以下将介绍其中几个典型的应用。
1. 酯化反应:酯化反应是有机合成中常见的反应之一。
在传统的酯化反应中,常使用酸性催化剂,但这种反应条件下往往伴随着副反应的生成。
相转移催化可以通过选择合适的相转移剂和催化剂,实现高效、选择性的酯化反应。
2. 羧化反应:羧化反应是合成羧酸的重要方法。
传统的羧化反应常需要高温和高压条件下进行,反应速率较慢,且伴随着副反应的生成。
相转移催化可以在温和条件下实现羧化反应,提高反应速率和选择性。
3. 氨化反应:氨化反应是合成胺类化合物的常用方法。
传统的氨化反应往往需要高温和高压条件下进行,且反应速率较慢。
相转移催化可以在温和条件下实现氨化反应,并提高反应速率和产率。
相转移催化
相转移催化(Phase-transfer catalysis,简称PTC)是一种特殊的催化反应方式,它利用了两个不同相(通常是有机相和水相)之间的化学平衡,在反应体系中引入一个催化剂来促进反应的进行。
在相转移催化中,催化剂具有特殊的结构,通常是带有亲水性和亲油性基团的季铵盐或膦化合物。
这类催化剂能够在有机相和水相之间快速的传递离子或分子,从而使得反应物在两个相中更好地相互作用。
相转移催化主要有以下特点和优势:
1.反应物溶解性增强:相转移催化可以使不溶于水的有机物
溶解于水相中,提高反应底物的有效浓度,从而增加反应速率和产率。
2.催化剂循环利用:相转移催化剂可以多次使用,因为它们
通常与底物反应后会再次回到催化剂形式,从而实现催化剂的循环利用,节约成本。
3.环境友好:相转移催化通常在温和的条件下进行,使用水
作为反应介质,较少产生有害废物,具有较好的环境适应性。
相转移催化在有机合成中得到广泛应用。
它可以用于各种反应类型,如取代、加成、消除、重排等。
常见的反应包括酯化、醇醚化、芳烃炔烃化、丙酮氢异构化等。
此外,相转移催
化也可以应用于有机合成反应的串级和多步骤反应中。
需要注意的是,在相转移催化中,选择合适的催化剂和反应条件非常重要,以确保反应的高效性和选择性。
此外,对于一些有机合成反应来说,“绿色相转移催化”也是重要的研究方向,即通过优化催化剂设计和反应条件,进一步提高反应的可持续性和环境友好性。
2019年08月有机合成中的相转移催化作用探讨韩长进(菏泽家政职业学院,山东菏泽274300)摘要:近年来,我国有机化工行业的发展十分迅速,有机合成是有机化工生产过程中极其重要的环节,为了更好的提高有机化工生产的效率,经过不断研究产生了诸多的方法,其中相转移催化法因特点显著、效率高,逐渐在有机合成中得到了广泛应用,下面,文章就针对有机合成中的相转移催化作用进行探讨。
关键词:有机合成;相转移;催化作用在有机合成中,通过相转移进行催化是比较常用的方法,其对化工生产具有着显著的应用价值。
相转移催化主要是在不同相的两种物质发生反应时,使其一种有机分子的一相转移至另一相,使有机反应有机合成呈现出理想的纯度和速度,尽管其自身并不参与反应中,但具有明显的合成促进效果。
1相转移催化概述对于有机合成中相转移催化的原理,主要是于两种类型不相容液体的基础下所发生化学的反应,其一种液体是水相内水溶性盐混合物,而另一种为有机相,其中具有能够发生反应有机物类型。
其有机物的分子和进攻试剂的分子间通过碰撞而发生反应,因为两相是互不相溶的,在水相内进攻试剂和有机相内反应物的分子就不能够彼此有效的碰撞,因此不管两相内要互相发生反应的分子能量存在多大,都是不能有效发生反应的。
2有机合成中的相转移催化作用相转移催化在有机合成中具有着显著的优势,经过不断的研究和发展,相转移催化的效果也是愈加明显。
相转移催化能够有效的提高有机合成反应的速度,对反应的时间实现控制,促使有机合成在较短时间内完成反应,大幅度提高有机合成的效率,较好的满足化工生产要求;同时通过相转移催化还能够有效的提高有机合成的产率。
在传统的有机合成中往往会产生多种类型副产物,还可能造成产物分离难度的增加,对后续使用的效果产生影响,而通过相转移催化就能够明显的实现反应纯度的提升,减少副反应的发生,促进产量提高;相转移催化还能够促进实现新的有机合成。
在传统有机的合成中,诸多有机的分子间由于受到限制,往往合成的效果不理想,而借助相转移催化就可以促进一些不能进行反应物质实现反应,从而提高有机合成价值;另外,相转移催化还具有突出的节能和经济效果,通过对相转移催化的应用,可以降低其有机合成的反应温度,减少对此方面的能源消耗量,实现整体的节能效果,并且在相转移催化后其合成的反应就可以在温和条件才进行,这样就能够使用一些廉价性溶剂材料反应,也不需要进行无水溶剂的环境设置,因此具有较好经济效益[1]。
相转移反应在精细合成中的应用反应物分子彼此接触、碰撞时发生化学反应的基本条件。
如果反应物分子无法彼此接触,则无论其中一种反应物分子活性多大,也不能与另一反应物发生化学反应。
大多数的有机物化学反应都是在溶剂中在均相中容易进行反应。
如果欲进行合成所用的反应物溶解性能不同,形成非均相的反应条件,特别是水相和有机相二相反应,则往往因其中一个反应物在一种溶剂中的溶解度太小,使得反应进行得很慢,甚至根本无法反应。
用搅拌可增加反应物彼此接触的机会,但仍有许多反应进行得不理想。
虽然有时采用极性质子溶剂是反应形成为均相,但因反应物产生溶剂化作用,也影响了反应速度,而且这类溶剂一般较贵,而且要在无水条件下进行,回收溶剂的工作也较困难。
20世纪60年代中后期,一种作为克服非均相体系溶解度的新方法,就是应用相转移催化作用问世。
即在两相体系中加入少量试剂——相转移催化剂,它可以将反应物从相界面使一相转移到另一相,然后发生反应。
由于它的作用,反应进行较为迅速。
相转移催化反应与常规操作相比具有下列突出优点:1.不需要昂贵的无水溶剂或非质子溶剂,不要求无水操作;2.增加反应速度,降低反应温度,反应条件更温和,操作条件简便,后处理简单;3.能进行别的条件下不能进行的反应;4.可选择适当的反应条件进行选择性的反应,抑制副反应进行,提高产率。
由此可见,相转移催化反应与其他有机合成方法相比,具有许多的优点,推广和发展这种技术尤其在精细有机合成中具有非常重要的意义。
目前,相转移催化剂共有三大类型:鎓盐盐类、冠醚类和聚乙二醇等三大类型以及近年来正在发展的三相催化剂,也称为负载型相转移催化剂。
根据催化剂活性基因不同而且有不同的催化剂活性。
以两相(水相-有机相)为例,来说明相转移催化原理。
当用鎓盐作为相催化剂时有两个阶段即萃取和反应。
在两相系统中,将反应物和催化剂作用的原理如下表示:在上述互不反应的两相体系中,亲核试剂M+Nu只溶于水相,而不溶于有机相。
工艺与设备化 工 设 计 通 讯Technology and EquipmentChemical Engineering Design Communications·138·第45卷第5期2019年5月1 理论基础1.1 转化原理相转移催化作用的反应过程都是需要相关原理的支持,而相转移催化作用的反应过程需要两种液体进行反应,而且,这两种液体需要满足不相容条件,只有满足不相容的条件才会满足反应的标准。
一种液体是混合物,含有水溶性盐物质。
另一种液体是有机相,是完成相转移催化作用的重要物质。
有机相的作用主要是分解有机物中的有机分子和调节试剂,这二者是促进相转移催化作用的重要条件。
在具体的反应过程中,可以达到降低化学反应的发生率和反应产生量的目的。
1.2 反应原理相转移催化作用需要化学反应进行维持,而溶液和试剂都是满足这种化学反应的重要条件。
如果对应的化学物品为溶液时,相应的反应底物就经常被当做有机相使用,这个过程有很多有机溶液可以被使用,但是他们的水溶较小,发生化学反应的几率较小,从而能够保证离子对不会发生水合作用。
如果对应的相转移离子对有着较强的亲油性,实验者就可以采用正庚烷或是苯作溶剂来进行,防止离子对随着水相进入有机相的量较少的现象发生。
例如:在TBAB 和TCMAC 等相互转移催化剂中发生化学反应的时候,其中的氯仿溶液剂有利于离子对顺利的进入到有机相中,加快了化学反应速度,起到了一定的催化作用。
但是在进行催化的过程中加入了氢氧化钠,为了防止发生其他反应,就应该停止对氯仿溶剂的使用。
之后,要想促进催化作用的产生,就需要对转移催化剂进行选择,对相应的用量进行控制。
要想促进催化作用的产生,就需要对转移催化剂进行选择,对相应的用量进行控制。
对于中性介质来说,它的相转移催化剂需要具有十五个碳原子的物质,在酸性介质中,就要选择四丁基铵盐或是Aliquat336,而较浓的碱性溶液,则可以选用TEBA 或是Aliquat336。
相转移催化技术原理及应用摘要:介绍了相转移催化技术的基本原理, 分别讨论了液一液相转移催化反应、固一液相转移催化反应和三相催化反应的特点。
着重记述了近年来相转移催化技术在医药工业和化工中的应用进展。
采用相转移催化技术具有操作简便、反应条件温和、收率高、质量好等优点, 对于工业生产进行工艺技术改进、降低生产成本, 具有重要现实意义。
关键词:相转移催化技术、原理、医药工业、化工、应用进展相转移催化反应( 简称PTC 反应) 是20 世纪60 年代发展起来的一种异相反应的新理论和方法。
它能使采用传统方法难以实现的异相反应顺利进行,能够加快反应速率,降低反应温度,改变反应的选择性,抑制副反应发生。
同时相转移催化反应无需使用价格昂贵的无水溶剂或非质子溶剂,且对碱的要求低,可以使用碱金属、碱土金属氧化物的水溶液。
因此该技术的研究和应用得到了迅速发展。
现在,相转移催化技术已经应用到了化学合成的绝大多数领域,涉及到医药、农药、香料、造纸、化工、制革、高分子材料等重要领域[1 ]。
1、相转移催化反应的原理相转移催化反应虽然涉及的各种类型化学反应很多, 但概括起来可分为三大类: 液一液相转移催化、固一液相转移催化和三相催化。
1.1 固一液相转移催化在固-液相转移催化反应中,应用较多的络合剂主要有冠醚、穴醚和聚乙二醇类等,其中工业上使用较多的为价格低廉的聚乙二醇等两亲类化合物。
聚乙二醇是一类大众化工产品,结构呈螺旋构象它的催化机理与冠醚等的催化机理相似,均为通过氧原子与金属阳离子络合,将活性阴离子带入有机相,从而达到相转移催化的目的。
聚乙二醇的自动活动的链可以形成与冠醚类似的环,且不受孔穴大小的限制,因此是理想的冠醚取代物,得到了广泛的应用。
1.2 液一液相转移催化液-液相转移催化反应是在一个互不混溶的两相系统中进行。
其中一相( 一般为水相) 为碱或含起亲核试剂作用的盐类,另一相为有机相,其中含与上述盐类起反应的作用物。
第五章相转移催化技术及应用随着新技术、新反应、新材料的不断出现,精细化工产品的合成工艺研究和改进有了更多的技术依托。
采用新技术、新反应、新材料研究产品制备工艺,改进旧工艺,提高产品收率和质量,减少“三废”产生的产生,是精细化工领域的长期课题(应用研究,工程比研究更重要)。
一、概述PTC是20世纪70年代初发展起来的催化技术,40年来有了巨大的发展。
由于PTC能使反应速度加快,产率提高,反应条件温和,以及能在非均相系统中进行,因此近年来PTC技术发展很快。
目前,已广泛应用于有机反应的绝大多数领域,同时相转移催化反应在工业上也广泛应用于化工、无机化工等行业。
近年来,相转移催化发展迅速,逆相转移催化技术,相转移催化与微波技术联用,以及相转移催化氧化脱除汽油中含硫化合物的研究,成为人们研究的一些焦点。
采用PTC技术具有如下几大优点:(1)可节约昂贵的非质子极性溶剂。
(2)在很多反应中可用NaOH、KOH等代替昂贵的NaH、LiR实现反应。
(3)具有反应快、条件温和产品产率高的优点。
(4)操作简便、安全。
实例:黄莲素生产中的甲基化反应。
采用TEBA PCT后,收率提高25%,单耗下降37%,三废减少1/3。
相转移催化剂的概念:非均相反应中,能使反应物从水相转入有机相,从而改变离子的溶剂化,增大离子的活性,加速反应的试剂,称为相转移催化剂(phase transfer catalust)。
二、相转移催化的原理分子间发生反应的前提条件——发生碰撞。
相转移催化剂的典型实例如下。
例如:溴辛烷和NaCN加热作用15天无任何反应;采用非质子极性溶剂(DMSO,DMF等)上述反应可以进行;采用相转移催化剂则上述反应容易进行。
相转移催化原理:互不混溶的二相系统,其中一相为含亲核试剂相(如NaOH,NaCN,KOH,KCN,KCl等盐、碱,多为水相),体系中会产生两个转移和平衡:A.离子交换平衡:Q+X-(水相)+M+Nu-+Nu-(水相)+M+X-(水相)B.相转移平衡:Q+Nu-+Nu-(有机相)上述平衡促进了相间物质离子(原子)的转移,从而促进了反应的进行。
相转移催化反应及其在有机合成中的应用摘要:我国经济增长带动工业、医药等重要领域取得巨大进步,包括理论研究与实践经验,都成为提升国民经济重要工具,对于人们生活水平提升也贡献巨大力量。
本文针对相转移催化反应及其在有机合成中的应用进行研究,旨在提升我国工业发展水平,为我国经济从工业低端产品生产大国,转向工业高端产业设计制造大国提供可行性参考。
关键词:相转移催化反应;有机合成;应用前言:作为20世纪70年代的有机合成方法,相转移催化反应选择一些物质作为(相转移催化剂)使用,主要负责承载反应物工具,将反应物利用相界面迁移方法,转移至便于顺利反应的另一相。
因为该方法不需要太多等待时间,有机物合成产率相对较高,对于传统合成方法是重大技术革新,所以在目前有机合成中具有良好应用前景。
1相转移催化反应原理1.1季铵盐类催化反应原理有机合成的非均相反应是常见类型,其原因液相互不相溶,无法进一步反应。
例如水相与有机相在常规条件下,会因为水相与有机相不能充分接触,导致有机合成反应相较缓慢,加入适合催化反应的季铵盐类()的(相转移催化剂),对水相进行离子交换,以为渠道,与有机相结合,生成[1]。
反应过程可以利用图1所示。
图1季铵盐类催化反应过程作为使用的,拥有季铵盐的阳离子,而是与水相溶反应物,拥有代表亲核基团阴离子。
从图1可以看出,产物获得除在水相与有机相直接进行(4)反应,从(1)到(2)再到(3)的反应也同样可以拥有同样效果。
并且在获得产物时也可以在反应中再生。
但是具有活性剂性能,融入水相与有机相,以萃取形式完成相转移催化反应。
借助,将水相中以离子交换形式进行萃取,并使用扩散作用使其融入有机相中,在经过相转移催化反应后,将亲核基团中重新带回水相,将其萃取至有机相反应位置,让催化反应持续进行。
目前应用在电解反应的季铵盐类有(四丁基硫酸氢铵)等,应用在有机取代反应的季铵盐类有TBAI(四丁基碘化铵),应用在杂环反应的季铵盐类有(三乙基苄基氯化铵)、TBAB(四丁基溴化铵)等。