MATLAB图形图像处理-
- 格式:ppt
- 大小:2.76 MB
- 文档页数:61
MATLAB技术图像分块处理图像处理是计算机视觉和计算机图形学领域的重要分支之一。
在实际应用中,处理大型图像的挑战成为了一项关键任务。
为了解决这个问题,图像分块处理成为了一种常见的解决方案。
本文将探讨MATLAB技术在图像分块处理中的应用,并介绍其原理和方法。
图像分块处理是指将大型图像划分为若干个较小的图像块,并对这些小图像块进行独立处理。
这种处理方式可以显著减少处理时间和计算资源的消耗,并能够更好地适应不同处理需求。
MATLAB作为一种常用的科学计算工具,在图像处理领域有着广泛的应用。
下面将介绍MATLAB技术在图像分块处理中的具体应用。
首先,MATLAB提供了一系列用于图像分块的函数和工具箱。
其中最重要的是im2col函数,它可以将图像转换为一个由列向量组成的矩阵。
通过指定分块的大小,我们可以将图像划分为若干个小图像块,并通过对这些小图像块进行处理来实现图像的分块处理。
除此之外,MATLAB还提供了一些其他有用的函数,如col2im函数用于将分块的结果还原成原始图像。
其次,MATLAB支持多种图像分块处理方法。
其中最常见的方法是基于滑动窗口的分块处理。
这种方法基于一个滑动窗口,通过将窗口以固定步长在图像上滑动,对每个小图像块进行处理。
例如,我们可以通过计算每个小图像块的均值或方差来实现图像的平滑处理。
此外,MATLAB还支持其他一些更复杂的分块处理方法,如基于小波变换和离散余弦变换的分块处理。
另外,MATLAB还提供了一些用于图像处理的工具箱。
这些工具箱可以帮助我们更方便地进行图像分块处理。
例如,Image Processing Toolbox包含了一些常用的图像处理函数和算法,可以大大简化我们的工作。
除此之外,Computer Vision Toolbox还提供了一些高级的图像处理和计算机视觉算法,如物体识别和目标跟踪等,可以进一步提升图像分块处理的效果和性能。
最后,MATLAB技术在图像分块处理中的应用有着广泛的领域。
Matlab图像处理函数大全目录图像增强 (3)1. 直方图均衡化的Matlab 实现 (3)1.1 imhist 函数 (3)1.2 imcontour 函数 (3)1.3 imadjust 函数 (3)1.4 histeq 函数 (4)2. 噪声及其噪声的Matlab 实现 (4)3. 图像滤波的Matlab 实现 (4)3.1 conv2 函数 (4)3.2 conv 函数 (5)3.3 filter2函数 (5)3.4 fspecial 函数 (6)4. 彩色增强的Matlab 实现 (6)4.1 imfilter函数 (6)图像的变换 (6)1. 离散傅立叶变换的Matlab 实现 (6)2. 离散余弦变换的Matlab 实现 (7)2.1. dct2 函数 (7)2.2. dict2 函数 (8)2.3. dctmtx函数 (8)3. 图像小波变换的Matlab 实现 (8)3.1 一维小波变换的Matlab 实现 (8)3.2 二维小波变换的Matlab 实现 (9)图像处理工具箱 (11)1. 图像和图像数据 (11)2. 图像处理工具箱所支持的图像类型 (12)2.1 真彩色图像 (12)2.2 索引色图像 (13)2.3 灰度图像 (14)2.4 二值图像 (14)2.5 图像序列 (14)3. MATLAB图像类型转换 (14)4. 图像文件的读写和查询 (15)4.1 图形图像文件的读取 (15)4.2 图形图像文件的写入 (16)4.3 图形图像文件信息的查询imfinfo()函数 (16)5. 图像文件的显示 (16)5.1 索引图像及其显示 (16)5.2 灰度图像及其显示 (16)5.3 RGB 图像及其显示 (17)5.4 二进制图像及其显示 (17)5.5 直接从磁盘显示图像 (18)图像处理函数 (18)图像处理函数详解——strel (18)图像处理函数详解——roipoly (19)图像处理函数详解——roifilt2 (20)图像处理函数详解——roifill (20)图像处理函数详解——roicolor (21)matlab图像处理函数详解——rgb2gray (22)Matlab图像处理函数:regionprops (22)图像处理函数详解——padarray (26)图像处理函数详解——nlfilter (27)图像处理函数详解——montage (27)函数详解——mat2gray (28)图像处理函数详解——imclose (29)图像处理函数详解——imopen (29)图像处理函数详解——imerode (30)图像处理函数详解——imdilate (30)图像处理函数详解——imresize (31)图像处理函数详解——imnoise (32)图像处理函数详解——imhist (32)图像处理函数详解——imfinfo (33)图像处理函数详解——imcomplement (34)图像处理函数详解——imapprox (35)图像处理函数详解——imadjust (35)图像处理函数详解——imadd (36)图像处理函数详解——im2uint8 (36)图像处理函数详解——im2bw (37)图像处理函数详解——histeq (37)图像处理函数详解——dither (38)图像处理函数详解——conv2 (38)图像处理函数详解——colfilt (39)图像处理函数详解——bwperim (39)图像处理函数详解——bwlabel (40)图像处理函数详解——bwareaopen (41)图像增强1. 直方图均衡化的Matlab 实现1.1 imhist 函数功能:计算和显示图像的色彩直方图格式:imhist(I,n)imhist(X,map)说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色图像 X 的直方图,map 为调色板。
MATLAB中的图像处理技术详解图像处理是一门涉及数字图像获取、处理、分析和展示的学科,其在各个领域都有重要的应用。
而MATLAB作为一种强大的科学计算软件,提供了丰富的图像处理工具包,可以帮助用户轻松地进行各种图像处理操作。
本文将详细介绍MATLAB中常用的图像处理技术,包括图像读取、图像显示、灰度转换、滤波操作、边缘检测以及图像分割等。
1. 图像读取和显示首先,在MATLAB中进行图像处理的第一步是读取图像。
MATLAB提供了imread函数,可以快速读取各类图像文件,例如JPEG、PNG、BMP等。
读取的图像可以是灰度图像,也可以是彩色图像。
读取之后,我们可以使用imshow函数将图像显示在MATLAB的图像窗口中,便于后续处理和分析。
2. 灰度转换在实际的图像处理应用中,有时候我们需要将彩色图像转换为灰度图像,以方便后续的处理和分析。
MATLAB提供了rgb2gray函数,可以将彩色图像转换为灰度图像。
转换后的灰度图像只包含一个通道,每个像素点的取值范围为0~255,表示灰度级。
3. 滤波操作滤波操作是在图像处理中常用的一种方法,其可以对图像进行平滑或者增强等处理。
MATLAB中提供了丰富的滤波函数,例如均值滤波、中值滤波、高斯滤波等。
这些滤波函数可以通过设置不同的参数来控制滤波效果,比如滤波窗口的大小、滤波核函数等。
4. 边缘检测边缘检测是图像处理中的一个重要任务,其可以帮助我们识别图像中的边缘信息,进而进行物体检测和分割。
MATLAB中提供了多种边缘检测算法,包括Sobel 算子、Canny算子等。
这些算法可以根据不同的应用场景选择合适的边缘检测方法,并根据需要调整相应的参数。
5. 图像分割图像分割是将图像分成若干个不同区域或者物体的过程,其在图像处理和计算机视觉中具有重要的意义。
MATLAB中提供了多种图像分割算法,例如基于阈值的分割、基于区域的分割以及基于边缘的分割等。
这些算法可以根据要求对图像进行有效的分割,以满足用户的实际需求。
基本概念一点通从理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。
空间坐标(x,y)的数字化称为图像采样,而幅值数字化称为灰度级量化。
对一幅图像采样时,若每行(横向)采样数为M,每列(纵向)采样数为N,则图像大小为M*N个像素,f(x,y)表示点(x,y) 处的灰度值,则F(x,y)构成一个M*N 实数矩阵****************************经验分享:“像素”的英文为“pixel”,它是“picture”和“element”的合成词,表示图像元素的意思。
我们可以对“像素”进行如下理解:像素是一个面积概念,是构成数字图像的最小单位。
****************************把采样后所得的各像素灰度值从模拟量到离散量的转换称为图像灰度的量化。
量化是对图像幅度坐标的离散化,它决定了图像的幅度分辨率。
量化的方法包括:分层量化、均匀量化和非均匀量化。
分层量化是把每一个离散样本的连续灰度值只分成有限多的层次;均匀量化是把原图像灰度层次从最暗至最亮均匀分为有限个层次,如果采用不均匀分层就称为非均匀量化。
当图像的采样点数一定时,采用不同量化级数的图像质量不一样。
量化级数越多,图像质量越好;量化级数越少,图像质量越差。
量化级数小的极端情况就是二值图像。
****************************经验分享:“灰度”可以认为是图像色彩亮度的深浅。
图像所能够展现的灰度级越多,也就意味着图像可以表现更强的色彩层次。
如果把黑——灰——白连续变化的灰度值量化为256个灰度级,灰度值的范围为0~255,表示亮度从深到浅,对应图像中的颜色为从黑到白。
****************************因此,对数字图像进行处理,也就是对特定的矩阵进行处理。
在C语言中,对M×N数字图像处理的核心代码如下:for (j=1;j<N+1;j++)for(i=1;i<M+1;i++){对I(i,j)的具体运算};在Matlab中,对M×N数字图像处理的核心代码如下:for i=1:Nfor j=1:M对I(i,j)的具体运算endend一幅数字图像可以用一个矩阵来表示,对数字图像进行处理,实质上就是对特定的图像矩阵进行变换的过程,因此,图像变换是数字图像处理技术的基础。
使用Matlab进行图像配色与调整的技巧与实例一、引言图像处理是计算机视觉和图形学中的一个重要领域。
在这个数字时代,我们面临着大量的图像内容,因此需要通过技术手段对这些图像进行优化和调整,以满足用户需求。
本文将介绍如何使用Matlab对图像进行配色和调整的技巧,并通过实例进行说明。
二、Matlab在图像处理中的作用Matlab是一种功能强大的高级编程语言和交互式环境,广泛应用于科学和工程领域。
它提供了丰富的图像处理工具箱,以及各种函数和算法,可以方便地进行图像的加载、处理和保存等操作。
借助Matlab强大的功能,我们可以在图像处理中更加高效和便捷地实现我们的目标。
三、图像色彩空间的基本概念在进行图像配色和调整之前,我们首先需要了解色彩空间的基本概念。
色彩空间是描述图像颜色的一种数学模型。
常见的色彩空间有RGB、HSV、Lab等。
其中,RGB是最常用的色彩空间,它是通过红、绿、蓝三个通道的强度值来描述颜色的。
HSV色彩空间则将颜色分为色调(Hue)、饱和度(Saturation)和明度(Value)三个分量,更符合人类对颜色的感知。
Lab色彩空间则将颜色分为亮度(Lightness)、a 和b两个颜色分量,可以准确地描述颜色的特征。
四、图像配色的技巧1. 色调映射色调映射是一种常用的图像配色技巧,它可以改变图像的整体色调,从而产生不同的视觉效果。
在Matlab中,可以使用imadjust函数来实现该技巧。
通过调整色调映射函数的参数,我们可以改变图像的对比度和亮度,从而达到所需的效果。
例如,如果想要增强图像的对比度,可以使用imadjust函数提高图像的对比度参数。
2. 色彩转换色彩转换是将图像从一种色彩空间转换到另一种色彩空间的过程。
在Matlab中,可以使用rgb2hsv和hsv2rgb函数来实现RGB和HSV色彩空间之间的相互转换。
通过进行色彩转换,我们可以更加方便地对图像的色调、饱和度和明度等属性进行调整。
MATLAB图像处理基础2.2.1图像文件格式及图像类型1.MATLAB支持的几种图像文件格式:⑴JPEG(Joint Photogyaphic Expeyts Group):一种称为联合图像专家组的图像压缩格式。
⑵BMP(Windows Bitmap):有1位、4位、8位、24位非压缩图像,8位RLE (Run length Encoded)的图像。
文件内容包括文件头(一个BITMAP FILEHEADER数据结构)、位图信息数据块(位图信息头BITMAP INFOHEADER 和一个颜色表)和图像数据。
⑶PCX(Windows Paintbrush):可处理1位、4位、8位、16位、24位等图像数据。
文件内容包括文件头、图像数据和扩展色图数据。
⑷TIFF(Tagged Iamge File Format):处理1位、4位、8位、24位非压缩图像,1位、4位、8位、24位packbit压缩图像,1位CCITT压缩图像等。
文件内容包括文件头、参数指针表与参数域、参数数据表和图像数据四部分。
⑸PNG(Portable Network Graphics):包括1位、2位、4位、8位和16位灰度图像,8位和16位索引图像,24位和48位真彩色图像。
⑹GIF(Graphics Interchange Format):任何1位到8位的可交换的图像。
⑺HDF(Hierarchial Data Format):有8位、24位光栅图像数据集。
⑻ICO(Windows Icon resource):有1位、4位、8位非压缩图像。
⑼CUR(Windows Cursor resource):有1位、4位、8位非压缩图像。
⑽XWD(X Windows Dump):包括1位、8位Zpixmaps,XYBitmaps,XYPixmmmaps。
⑾RAS(Sun Raster image):有1位bitmap、8位索引、24位真彩色和带有透明度的32位真彩色。