专家系统简介
- 格式:docx
- 大小:33.66 KB
- 文档页数:3
专家系统的概述专家系统呢,整体来看是一种很有趣也很有用的计算机程序系统。
我给你讲讲我理解的这个系统的框架哈。
大致分这几个主要部分吧。
首先得有知识库,这个知识库就像是专家的大脑存储的知识,它里面包含了特定领域大量的事实和规则。
比如说,要是一个医疗专家系统,那知识库里头就有很多疾病的症状、病因、诊断方法和治疗方案这些内容。
然后就是推理机了,这可是核心内容之一。
它就像是一个思维的引擎,能根据知识库中的知识对输入的问题进行推理。
举个例子,如果是上面说的医疗专家系统,你输入一系列身体不舒服的症状,像头痛、发热、咳嗽,推理机就从知识库中找与之匹配的疾病知识,通过分析推理得出可能的疾病诊断。
还有用户接口也很重要,这个部分主要是让用户能方便地和专家系统交互的通道。
用户可以把自己的问题通过这个接口输入进去,得到系统给的答案。
就像是咱们去医院前台挂号之后,然后跟医生叙述病情这个互动过程,用户接口就是这个桥梁。
除了这几个,还有数据库负责存储中间结果和相关数据,知识获取机构负责更新和扩充知识库。
比如说随着医学研究不断有新的疾病或者治疗方法被发现,知识获取机构就把这些新内容添加到知识库当中。
不过在我理解这个专家系统的过程中,也遇到过困惑。
比如说这个推理机的工作逻辑有时候是很复杂的,很难一下子完全清楚到底是怎样在那么多的知识里准确判断和推理的。
领悟的话,就是后来明白了这些部分之间相互依赖相互配合,少了哪个部分这个专家系统都不能很好地工作。
主要脉络就是这样的知识进入知识库,推理机利用知识库应对用户输入,交互过程中的各种数据存储在数据库,新知识不断更新知识库,然后这些流程都通过用户接口一个环节拉通,这就是专家系统大概的情况啦。
专家系统名词解释
专家系统是一种人工智能系统,旨在模拟人类专家在特定领域
的知识和推理能力。
这种系统利用专家的知识来解决复杂的问题,
通常通过规则、推理和逻辑推断来进行决策和问题求解。
专家系统
通常包括知识库、推理引擎和用户接口三个主要部分。
知识库存储
了领域专家的知识和经验,推理引擎利用这些知识进行推理和决策,用户接口则使用户能够与系统进行交互并得到解决方案。
专家系统
被广泛应用于医疗诊断、工程设计、金融分析、客户服务等领域,
以辅助人类专家进行决策和问题解决。
专家系统的发展使得人们能
够利用计算机技术来处理复杂的知识和问题,为各种领域的专业人
士提供了强大的工具和支持。
随着人工智能技术的不断发展,专家
系统也在不断演进和完善,成为了现代智能化应用中的重要组成部分。
专家系统及其应用计算机12班马洪旭 01055050一.专家系统的基本概念1.何谓专家系统专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
专家系统内部含有大量的某个领域的专家水平的知识与经验,能够运用人类专家的知识和解决问题的方法进行推理和判断,模拟人类专家的决策过程,来解决该领域的复杂问题。
专家系统是人工智能应用研究最活跃和最广泛的应用领域之一,涉及到社会各个方面,各种专家系统已遍布各个专业领域,取得很大的成功。
根据专家系统处理的问题的类型,把专家系统分为解释型、诊断型、调试型、维修型、教育型、预测型、规划型、设计型和控制型等10种类型。
具体应用就很多了,例如血液凝结疾病诊断系统、电话电缆维护专家系统、花布图案设计和花布印染专家系统等等。
为了实现专家系统,必须要存储有该专门领域中经过事先总结、分析并按某种模式表示的专家知识(组成知识库),以及拥有类似于领域专家解决实际问题的推理机制(构成推理机)。
系统能对输入信息进行处理,并运用知识进行推理,做出决策和判断,其解决问题的水平达到或接近专家的水平,因此能起到专家或专家助手的作用。
开发专家系统的关键是表示和运用专家知识,即来自领域专家的己被证明对解决有关领域内的典型问题有用的事实和过程。
目前,专家系统主要采用基于规则的知识表示和推理技术。
由于领域的知识更多是不精确或不确定的,因此,不确定的知识表示与知识推理是专家系统开发与研究的重要课题。
此外,专家系统开发工具的研制发展也很迅速,这对扩大专家系统的应用范围,加快专家系统的开发过程,将起到积极地促进作用。
随着计算机科学技术整体水平的提高,分布式专家系统、协同式专家系统等新一代专家系统的研究也发展很快。
在新一代专家系统中,不但采用基于规则的推理方法,而且采用了诸如人工神经网络的方法与技术。
2.专家系统的基本结构专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。
三专家系统简介专家系统是一种以知识推理的定性方式辅助决策的智能技术,利用专家知识进行推理的过程。
专家系统是具有大量专门知识,并能运用这些知识解决特定领域中实际问题的计算机程序系统。
(大量的专家知识,运用知识推理的方法,解决特定问题。
)知识处理的特点:知识包括事实与规则(状态转变过程);适合于符号处理;推理过程是不固定形式的;能得出未知的事实。
1. 专家系统的定义及构成专家系统是人工智能的一个最活跃的分支,产生于60年代中期,DENDRAL专家系统的出现标志着专家系统的诞生,短短的30多年时间内发展迅速。
目前同自然语言理解、机器人学并列为人工智能的三大研究方向。
至于专家系统的定义,有以下几种说法:(1)专家系统是一个智能程序系统;(2)专家系统能利用仅人类专家可用的知识和解决问题的方法来解决问题;(3)专家系统是一种计算机程序,它可以以人类专家的水平完成专门的一般是困难的问题。
图1专家系统结构1) 专家系统的核心是知识库和推理机。
专家系统=知识库+推理机。
2) 知识获取是把专家的知识按照一定的知识表示形式深入到专家系统的知识库中3) 人机接口将用户的咨询和专家系统推出的建议、结论进行人机间的翻译和转换。
4) 产生式规则知识的推理机。
产生式规则的推理机=搜索+匹配推理过程中边搜索边匹配。
匹配就是找事实,事实一是来自规则库中别的规则,另一是来自向用户提问。
搜索过程中包含回溯。
5) 产生式规则推理的解释。
跟踪和显示推理过程中的搜索和匹配过程就是解释机制。
一般说来,专家系统由下述几个部分构成:(1) 知识库 存储专家的知识、经验及书本上的知识和常识,简称领域(Domain)知识库,包括:领域的专门知识和启发性知识(经验),要求知识库具有完备性和可用性,即知识要全面,同时不能有冗余,即不能存放多余的或无用的知识。
(2)动态数据库存贮专家系统当前要处理的对象的一些事实,包括该领域内的初始论据(初始状态),推理过程得到的各种中间信息,推理的最终结果也在其中。
专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力的建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。
这种基于知识的系统设计方法是以知识库和推理机为中心而展开的,即
专家系统 = 知识库 + 推理机
它把知识从系统中与其他部分分离开来。
专家系统强调的是知识而不是方法。
很多问题没有基于算法的解决方案,或算法方案太复杂,采用专家系统,可以利用人类专家拥有丰富的知识,因此专家系统也称为基于知识的系统(Knowledge-Based Systems)。
一般说来,一个专家系统应该具备以下三个要素:(1)具备某个应用领域的专家级知识;
(2)能模拟专家的思维;
(3)能达到专家级的解题水平。
专家系统与传统的计算机程序的主要区别如表7.1所示。
表7.1 专家系统与传统的计算机程序的主要区别
列项传统的计算机程序专家系统
适用范围无限制封闭世界假设
建造一个专家系统的过程可以称为“知识工程”,它是把软件工程的思想应用于设计基于知识的系统。
知识工程包括下面几个方面:
(1)从专家那里获取系统所用的知识(即知识获取)
(2)选择合适的知识表示形式(即知识表示)
(3)进行软件设计
(4)以合适的计算机编程语言实现。
专家系统的发展史
1965年斯坦福大学的费根鲍姆(E.A. Feigenbaum)和化学家勒德贝格(J. Lederberg)合作研制DENDRAL 系统,使得人工智能的研究以推理算法为主转变为以知识为主。
20世纪70年代,专家系统的观点逐渐被人们接受,许多专家系统相继研发成功,其中较具代表性的有医药专家系统MYCIN、探矿专家系统PROSPECTOR等。
20世纪80年代,专家系统的开发趋于商品化,创造了巨大的经济效益。
1977年美国斯坦福大学计算机科学家费根鲍姆 (E.A.Feigenballm)在第五届国际人工智能联合会议上提出知识工程的新概念。
他认为,“知识工程是人工智能的原理和方法,对那些需要专家知识才能解决的应用难题提供求解的手段。
恰当运用专家知识的获取、表达和推理过程的构成与解释,是设计基于
知识的系统的重要技术问题。
”知识工程是一门以知识为研究对象的学科,它将具体智能系统研究中那些共同的基本问题抽出来,作为知识工程的核心内容,使之成为指导具体研制各类智能系统的一般方法和基本工具,成为一门具有方法论意义的科学。
20世纪80年代以来,在知识工程的推动下,涌现出了不少专家系统开发工具,例如EMYCIN、CLIPS(OPS5, OPS83)、G2、KEE、OKPS等。
早在1977年,中国科学院自动化研究所就基于关幼波先生的经验,研制成功了我国第一个“中医肝病诊治专家系统”。
1985年10月中科院合肥智能所熊范纶建成“砂姜黑土小麦施肥专家咨询系统”,这是我国第一个农业专家系统。
经过20多年努力,一个以农业专家系统为重要手段的智能化农业信息技术在我国取得了引人瞩目的成就,许多农业专家系统遍地开花,将对我国农业持续发展发挥作用。
中科院计算所史忠植与东海水产研究所等合作,研制了东海渔场预报专家系统。
在专家系统开发工具方面,中科院数学研究所研制了专家系统开发环境“天马”,中科院合肥智能所研制了农业专家系统开发工具“雄风”,中科院计算所研制了面向对象专家系统开发工具“OKPS”。
专家系统的基本结构
专家系统的基本结构如图7.1所示,其中箭头方向为信息流动的方向。
专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。
图
7.1 专家系统的基本结构
知识库是问题求解所需要的领域知识的集合,包括基本事实、规则和其他有关信息。
知识的表示形式可以是多种多样的,包括框架、规则、语义网络等等。
知识库中的知识源于领域专家,是决定专家系统能力的关键,即知识库中知识的质量和数量决定着专家系统的质量水平。
知识库是专家系统的核心组成部分。
一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。
推理机是实施问题求解的核心执行机构,它实际上是对知识进行解释的程序,根据知识的语义,对按一定策略找到的知识进行解释执行,并把结果记录到动态库的适当空间中。
推理机的程序与知识库的具体内容无关,即推理机和知识库是分离的,这是专家系统的重要特征。
它的优点是对知识库的修改无须改动推理机,但是纯粹的形式推理会降低问题求解的效率。
将推理机和知识库相结合也不失为一种可选方法。