光学原子物理 高中物理 知识点 公式 知识体系 集锦
- 格式:doc
- 大小:61.00 KB
- 文档页数:5
高中物理公式总结归纳1500字高中物理是中学物理的高一、高二、高三阶段,主要内容涵盖力学、热学、声学、光学、电学和原子物理等方面的知识。
以下是高中物理中的一些重要公式的总结归纳:力学:1.速度公式:v = s / t2.加速度公式:a = (vf - vi) / t3.位移公式:s = (vi + vf) * t / 24.匀加速运动的位移公式:s = vi * t + 1/2 * a * t^25.力的定义公式:F = m * a6.牛顿第二定律公式:F = m * a7.万有引力定律公式:F = G * (m1 * m2) / r^2热学:1.热量传递公式:Q = mcΔT2.比热容公式:Q = mcΔT3.理想气体状态方程:PV = nRT声学:1.音速公式:v = f * λ2.频率与周期关系公式:f = 1 / T3.波长公式:λ = v / f光学:1.光速公式:c = f * λ2.光程差公式:Δx = nt3.折射定律公式:n1 * sinθ1 = n2 * sinθ24.焦距公式:1 / f = 1 / d0 + 1 / di电学:1.电流公式:I = Q / t2.电压公式:V = W / Q3.电阻公式:R = V / I4.欧姆定律公式:V = I * R5.电功公式:W = V * I * t6.电容公式:C = Q / V7.电场强度公式:E = F / Q8.磁场公式:F = B * I * L * sinθ原子物理:1.质能转换公式:E = mc^22.波粒二象性公式:λ = h / p以上只是高中物理中的一部分公式,还有很多其他的公式和定律在学习中逐渐深入。
要在学习过程中多多练习,掌握这些公式的应用。
高中物理所有公式总结物理是自然科学的重要分支,研究的是物质的运动、能量和力学。
高中物理是培养学生科学素养和科学思维的基础课程,其中的公式更是物理学习的重要内容。
下面是高中物理中常用的公式总结:一、力学1、匀速直线运动公式:v = v₀ + ats = s₀ + v₀t + (1/2)at²2、平抛运动公式:x = v₀xty = v₀yt - (1/2)gt²3、向心加速度公式:a = v²/r4、二力平衡:F₁sinθ₁ = F₂sinθ₂F₁cosθ₁ + F₂cosθ₂ = mg5、牛顿第二定律:F = ma6、弹性力公式:F = kx7、万有引力定律:F = G(m₁m₂/r²)8、动量定理:FΔt = Δp9、功率公式:P = W/Δt10、理想机械功:W = Fs11、机械能守恒定律:E₁ = E₂二、热学1、热传导公式:Q = kA(t₂-t₁)/d2、理想气体状态方程:PV = nRT3、热容公式:Q = mcΔT4、等压热容:Cp = (5/2)R5、等体热容:Cv = (3/2)R6、焓的变化:ΔH = ΔU + PΔV7、卡诺循环效率:η = 1 - (Tc/Th)三、电学1、电流强度公式:I = Q/Δt2、欧姆定律:U = IR3、电功公式:W = UIt4、电功率公式:P = UI5、电阻与导电率:R = ρl/A6、电容与电量、电压关系:C = Q/U7、并联电容:Cp = C₁+C₂+...8、串联电容:1/Ct = 1/C₁+1/C₂+...9、电磁感应:U = -NΔΦ/Δt10、法拉第定律:Q = zF四、光学1、光速公式:v = fλ2、光的折射公式:n₁sinθ₁ = n₂sinθ₂3、光的反射公式:θ₁ = θ₂4、晶体的布拉格公式:λ = 2dsinθ5、光的衍射公式:asinθ = mλ五、原子物理1、能级公式:E = hν2、波粒二象性公式:λ = h/mv3、布洛赫定理:kf = ki + G以上是高中物理中常见的公式,覆盖了力学、热学、电学、光学和原子物理等多个领域。
高中物理公式大全高中物理公式是高中物理学科重要的知识部分,它是实验和理论相结合的产物。
高中物理公式是用数学语言描述物理学现象和规律的重要工具。
本文将详细介绍高中物理公式大全,助您更好地理解和掌握高中物理知识。
第一章:力学一、运动学1. 平均速度:v=Δx/Δt2. 瞬时速度:v=lim Δx/Δt3. 平均加速度:a=Δv/Δt4. 瞬时加速度:a=lim Δv/Δt5. 牛顿第一定律:任何物体都会维持其匀速直线运动或静止状态,除非有外力作用于它。
6. 牛顿第二定律:F=ma,物体的加速度与作用在它上面的力成比例。
7. 牛顿第三定律:相互作用的两个物体,它们的作用力大小相等,方向相反。
8. 匀速直线运动:x=x0+vt9. 非匀速直线运动:x=x0+(v0+v)t/210. 速度与加速度之间的关系:v=v0+at11. 距离与加速度之间的关系:x=x0+(v0t+1/2at^2)12. 最终速度与加速度之间的关系:v^2=v0^2+2a(x−x0)13. 抛体运动:x=x0+v0xt+1/2gt^214. 抛体运动:y=y0+v0yt+1/2gt^215. 抛体运动:v=v0+gt16. 抛体运动:v^2=v0^2+2g(y−y0)二、静力学17. 重力:Fg=mg18. 摩擦力:f=μN19. 阿基米德原理:对于在液体或气体中的物体,如果物体的密度低于液体或气体的密度,那么会受到向上的浮力。
20. 压强:P=F/A第二章:热学三、热力学21. 热传递公式:Q=mcΔT21. 热容量:C=q/ΔT22. 内能:U=3/2nRT23. 热量公式:Q=mCΔT24. 理想气体状态方程:PV=nRT25. 等压过程公式:Qp=ΔH26. 等体过程公式:Qt=ΔU27. 等温过程公式:W=-nRTln(Vf/Vi)28. 热力学第一定律:ΔU=Q-W29. 热力学第二定律:热量不可能自行从低温物体转移至高温物体,除非有外界能量参与或者有不可逆过程。
光学一、光的折射1.折射定律:2.光在介质中的光速:3.光射向界面时,并不是全部光都发生折射,一定会有一部分光发生反射。
4.真空/空气的n等于1,其它介质的n都大于1。
5.真空/空气中光速恒定,为,不受光的颜色、参考系影响。
光从真空/空气中进入介质中时速度一定变小。
6.光线比较时,偏折程度大(折射前后的两条光线方向偏差大)的光折射率n大。
二、光的全反射1.全反射条件:光由光密(n大的)介质射向光疏(n小的)介质;入射角大于或等于临界角C,其求法为.2.全反射产生原因:由光密(n大的)介质,以临界角C射向空气时,根据折射定律,空气中的sin角将等于1,即折射角为90°;若再增大入射角,“sin空气角”将大于1,即产生全反射.3.全反射反映的是折射性质,折射倾向越强越容易全反射。
即n越大,临界角C越小,越容易发生全反射。
4.全反射有关的现象与应用:水、玻璃中明亮的气泡;水中光源照亮水面某一范围;光导纤维(n大的内芯,n小的外套,光在内外层界面上全反射)三、光的本质与色散1.光的本质是电磁波,其真空中的波长、频率、光速满足(频率也可能用表示),来源于机械波中的公式。
2.光从一种介质进入另一种介质时,其频率不变,光速与波长同时变大或变小.3.将混色光分为单色光的现象成为光的色散.不同颜色的光,其本质是频率不同,或真空中的波长不同。
同时,不同颜色的光,其在同一介质中的折射率也不同。
4.色散的现象有:棱镜色散、彩虹。
频率f(或ν)真空中里的波长λ折射率n同一介质中的光速偏折程度临界角C红光大大大紫光大大大原因n越大偏折越厉害发生全反射光子能量发生光电效应双缝干涉时的条纹间距Δx发生明显衍射红光大容易紫光容易大容易原因临界角越小越容易发生全反射波长越大越有可能发生明显衍射四、光的干涉1.只有频率相同的两个光源才能发生干涉。
2.光的干涉原理(同波的干涉原理):真空中某点到两相干光源的距离差即光程差Δs.当时,即光程差等于半波长的奇数倍时,由于两光源对此点的作用总是步调相反,叠加后使此点振动减弱;当时,即光程差等于波长的整数倍,半波长的偶数倍时,由于两光源对此点的作用总是步调一致,叠加后使此点振动加强。
高中物理知识点总结及公式大全高中物理是一门重要的科学学科,主要研究物质的运动、变形和相互作用规律。
下面将介绍高中物理的一些重要知识点及相关的公式。
一、力学1.牛顿三定律(1)第一定律:物体静止或匀速直线运动,当且仅当合外力为零时。
(2)第二定律:物体的加速度与作用力成正比,与物体质量成反比。
(3)第三定律:相互作用力大小相同,方向相反,作用在不同的物体上。
2.动力学(1)速度公式:v=s/t(2)加速度公式:a=(v-u)/t(3)路程公式:s=(u+v)t/2(4) 动量公式:p = mv(5) 动能公式:E_k = 1/2mv^2(6)功的定义:W=Fs(7) 功的公式:W = mas(8)功与能量的转化关系:W=ΔE_k3.平衡力学(1)平衡条件:合外力为零,合力矩为零。
(2)力矩公式:M=Fd(3)杠杆原理:M1/M2=d2/d1二、热学1.热传递(1)热传导:热量通过物质间的分子传递。
(2)热辐射:热能以电磁波的形式传播。
(3)热对流:热量通过流体传递。
2.热力学(1) 比热容公式:Q = mcΔT(2) 比热容的单位:J/(kg·℃)(3)热传导公式:Q=kAΔT/Δx(4)热功定理:ΔU=Q-W(5)热机效率:η=W/Q_h三、光学1.几何光学(1)光的反射定律:入射角等于反射角。
(2)光的折射定律:入射角与折射角的正弦比等于介质的折射率比。
(3)透镜的焦距公式:1/f=1/v-1/u(4)成像公式:m=-v/u(5)光的全反射定律:当光从光密介质射向光疏介质时,入射角大于临界角时发生全反射。
2.波动光学(1)光的干涉:光波的叠加现象。
(2)光的衍射:光波通过孔径或物体的边缘时发生弯曲现象。
(3) 杨氏双缝干涉公式:d*sinθ = mλ(4) 单缝衍射公式:a*sinθ = mλ四、电磁学1.静电学(1)库仑定律:F=k*(q1*q2)/r^2(2)电势能公式:U=k*(q1*q2)/r(3)电场强度公式:E=F/q2.电路(1)欧姆定律:U=IR(2)电功、电功率:P=IV,W=Pt(3) 串联电阻:R_eq = R1 + R2 + ...(4) 并联电阻:1/R_eq = 1/R1 + 1/R2 + ...五、原子物理1.元素周期表(1)元素周期表由水平周期和垂直族组成。
高二物理知识点及公式大全1. 运动学- 位移公式:Δx = v0t + 1/2at²- 速度公式:v = v0 + at- 加速度公式:a = (v - v0) / t- 速度-时间图像:v-t图像斜率表示加速度2. 动力学- 牛顿第二定律:F = ma- 牛顿第三定律:F12 = -F21- 动量定理:FΔt = Δp = mΔv3. 能量与功- 功的定义:W = F·s·cosθ- 功率定义:P = ΔW / Δt- 重力势能:Ep = mgh- 动能公式:Ek = 1/2mv²4. 电学基础- 电流定义:I = Q / Δt- 电流和电荷关系:I = neAvc- 电压定义:V = ΔW / Q- 电阻定律:V = IR- 欧姆定律:I = V / R5. 磁学基础- 磁感应强度公式:B = F / (qVsinθ)- 洛伦兹力公式:F = qvBsinθ- 磁场中圆轨道半径:r = mv / (qB)- 右手定则:拇指表示力,食指表示磁场方向,中指表示运动方向。
6. 光学基础- 光速:c = 3.0 × 10^8 m/s- 光的折射定律:n1sinθ1 = n2sinθ2- 焦距公式:1/f = 1/u + 1/v- 成像规律:物距与像距的比等于物的高度与像的高度的比。
7. 波动性- 波速公式:v = λf- 波长和频率的关系:λ = v / f- 喇叭塞管共鸣条件:L = λ / 4, λ / 2, 3λ / 4, ...- 杨氏实验公式:d·sinθ = m·λ8. 原子物理- 波粒二象性:光既具有波动性又具有粒子性。
- 普朗克常量:h = 6.626 × 10^-34 J·s- 能量和频率关系:E = hf- 玻尔模型:电子绕原子核只能存在一些特定能级。
以上是高二物理的一些重要知识点和公式大全,希望对你的学习有所帮助。
高中物理公式汇总一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻/s--t图、v--t 图/速度与速率、瞬时速度。
2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高中物理公式知识点总结大全HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-高中物理公式、知识点、规律汇编表一、力学公式1、 胡克定律: F = kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关)2、 重力: G = mg (g 随高度、纬度、地质结构而变化)3 、求F 1、F 2两个共点力的合力的公式:F=θCOS F F F F 2122212++合力的方向与F 1成角:tg=F F F 212sin cos θθ+注意:(1) 力的合成和分解都均遵从平行四边行法则。
(2) 两个力的合力范围: F 1-F 2 F F 1 +F 2(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。
4、两个平衡条件:(1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。
F=0 或Fx =0 Fy=0推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。
[2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向( 2 ) 有固定转动轴物体的平衡条件:力矩代数和为零.力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)5、摩擦力的公式:(1 ) 滑动摩擦力: f= N说明: a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于Gb、为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关.(2 ) 静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关.大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关)说明:a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。
b、摩擦力可以作正功,也可以作负功,还可以不作功。
c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
高三物理部分知识点汇总一、热学知识点1.物体是由大量分子组成的(1)分子大小数量级为10-10m. 分子质量数量级为10-26 kg.2.分子永不停息地做无规则热运动(1)扩散现象:由于分子的无规则运动而产生的物质迁移现象.温度越高,扩散越快.(2)布朗运动:在显微镜下看到的悬浮在液体中的固体颗粒的永不停息地无规则运动,不是固体颗粒内分子的运动.布朗运动反映了液体内部的分子的无规则运动.颗粒越小,运动越明显;温度越高,运动越剧烈.3.分子间存在着相互作用力(1)分子间同时存在引力和斥力,实际表现的分子力是它们的合力.(2)引力和斥力都随分子间距离的增大而减小,但斥力比引力变化得快.(1)当r=r0时,F引=F斥,F=0;(2)当r<r0时,斥力大于引力,F表现为斥力;(3)当r>r0时,引力大于斥力,F表现为引力;注:分子间作用力可能随着分子间距离的增大而增大,也可能随着分子间距离的增大而减小4,内能:物体中所有分子的热运动的动能与分子势能的总和,温度是物体分子热运动的平均动能的标志,温度高,则物体的平均动能大。
分子势能是由分子间相对位置而决定的势能,它随着物体体积的变化而变化,分子势能可能随分子间距离的增大而增大,也可能随分子间距离的增大而减小。
5.物体内能的改变:做功和热传递是改变物体内能的两种方式。
从外界吸收热量不一定使内能增加,外界对物体做功也不一定使物体的内能增加。
6.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W若过程是绝热的,则Q =0,W=ΔU,外界对物体做的功等于物体内能的增加量.7,微观量:分子体积V0、分子质量m0.宏观量:摩尔体积V m、摩尔质量M、物体的密度ρ.关系:(1)分子的质量:m0=MNA(2)分子的体积:V0=MρNA.二、原子知识点1,汤姆生利用阴极射线管发现了电子,说明原子可分,并提出原子的枣糕模型。
光学原子物理光的反射和折射1. 光的直线传播,本影和半影。
⏹ 2.光的反射、反射定律、平面镜成像的作图法。
* ⏹ 3.光的折射、折射定律、折射率、全反射和临界角。
* ⏹ 4.光导纤维。
⏹ 5.棱镜、光的色散。
光的直线传播⏹ 光的直线传播---同一种均匀介质中宏观上沿直线传播(不考虑光的衍射)。
⏹ 本影---光线完全照射不到的区域。
⏹ 半影---部分光线照射不到的区域。
光的反射⏹ 光的反射---光照射到物体表面的时候,总有一部分光被反射回去的现象。
⏹ 反射定律---三线共面、法线居中、反射角等于入射角(传播方向一定变化,传播速度一定不变)。
⏹ 平面镜成像的作图法---利用光的反射定律,虚像和物体关于平面镜为对称。
光的折射⏹ 光的折射---光从一种介质进入另一种介质中时,传播方向通常发生改变的现象(垂直入射除外)⏹ 折射定律---三线共面、法线居中;垂直入射时,折射角等于入射角等于0度。
斜射时,入射角的正弦与折射角的正弦成正比。
⏹ 折射率---光从真空中射入介质中时,入射角的正弦与折射角的正弦的比值,叫这种介质的折射率。
⏹ 计算:介质真空λλ===v c r i nsin sin 全反射⏹ 全反射---光从光密质(n 大的)射入光疏质(n 小的)时,光全部反射(没有折射)的现象。
⏹ 条件---(1)光从密质进入疏质;(2)入射角 i 大于临界角C 。
⏹ 临界角---刚好发生全反射时的入射角,此时折射角等于90度。
⏹ 计算---真空介质λλarcsin arcsin n 1arcsinC ===c v⏹ 应用---蜃景、光导纤维。
光的色散⏹ 全反射棱镜---截面为等腰直角三角形的棱镜。
⏹ 光的色散---原因棱镜材料对不同色光的的折射率不同。
对红光的折射率最小---偏折较少; 对紫光的折射率最大---偏折较多。
红橙黄绿蓝靛紫七色光的频率越来越大。
光的波动性和微粒性⏹ 1. 光的本性说的发展简史。
⏹ 2.光的干涉现象、双缝干涉、薄膜干涉,双缝干涉的条纹间距与波长的关系。
⏹ 3.光的衍射。
⏹ 4.光的偏振现象。
⏹ 5.光谱和光谱分析,红外线、紫外线、X 射线、γ射线以及它们的应用,光的电磁本性,电磁波谱。
⏹ 6.光电效应、光子、爱因斯坦光电效应方程。
* ⏹ 7.光的波粒二象性,物质波。
⏹ 8.激光的特性及应用。
光的本性说的发展简史⏹ 17世纪---牛顿:光的微粒说;惠更斯:光的波动说。
⏹ 1801英国的托马斯●杨---光的干涉实验成功。
⏹ 19世纪60年代---迈克斯韦的电磁波的预言。
⏹ 19世纪80年代末---赫兹验证了电磁波的存在。
⏹ 19世纪末---光电效应。
⏹ 20世纪初---爱因斯坦的光子说。
⏹ 光即具有波动性,又具有粒子性。
光的干涉⏹ 光的干涉现象---相干光在屏上出现的明暗相间的条纹。
⏹ 双缝干涉---光线通过单缝,再通过双缝(相干光源)在屏上出现明暗相间的条纹。
⏹ 干涉相长---亮条纹 σ=n λ;⏹ 干涉相消---暗条纹 σ=(2n+1)λ/2 。
⏹ 条纹宽度--- △x=L λ/d⏹ 薄膜干涉---透明物体两个反射面的反射光线的叠加成干涉图样。
⏹ 薄膜干涉应用:检查物体表面的光滑程度;增透膜。
光的衍射⏹ 定义---光绕过障碍物传播的现象。
⏹ 明显衍射的条件---障碍物或小孔的尺寸与光的波长差不多,或比光的波长小。
⏹ 现象---透过纱巾看、通过狭缝观察、光学显微镜、泊松亮斑。
光的偏振现象⏹ 现象---教材第三册光的偏振图片。
⏹ 结论---光是一种横波。
⏹ 应用---偏振镜头、计算器等等。
电磁波谱⏹ 光谱和光谱分析---用来分析物体的组成成分(原子光谱---明显光谱、暗线光谱)⏹满足---E E E h n m ∆=-=γ⏹红外线---波长在770nm~106nm 之间。
一切物体都向外辐射红外线,它是热传递的一种方式。
温度高、颜色深辐射力强。
红外遥感、遥控、红外线频率根接近物体分子的固有频率,所以可以用来加热物体,主要体现热效应。
电磁波谱⏹ 紫外线---波长在400nm~5nm 之间。
有荧光作用、促进人体合成维生素D 、消毒杀菌。
⏹X射线---波长比紫外线还短。
德国物理学家伦琴1895年发现的。
穿透能力强,穿透物质的厚度跟物质的密度有关,工业上检查金属内部是否有砂眼、裂纹等缺陷,在医学上透视人体内的病变及骨骼。
⏹γ射线---波长在10-10nm以下,电离作用非常小,贯穿本领很强,甚至能穿透几厘米厚的铅板。
⏹光的电磁本性---光是一种电磁波。
⏹电磁波谱---频率从低到高的顺序为:无线电波、微波、红外线、可见光、紫外线、x射线、γ射线。
光电效应⏹光电效应---在光的照射下物体发射电子的现象,叫做光电效应。
⏹波动说遇到的困惑---⏹ 1.极限频率的问题,光电效应的条件是入射光的频率高于极限频率,而不是和入射光的强度有关;⏹ 2.光电效应的瞬时性,不超过10-9秒;⏹ 3.光电子的最大初动能只与入射光的频率有关,而与入射光的强度无关。
光子说⏹光子说---爱因斯坦(1879——1955)于1905年提出,在空间传播的光不是连续的,而是一份一份的,每一份叫做一个光量子,它的能量跟光的频率成正比且满足--- E=hγ其中h=6.63×10-34 js---普朗克常量⏹爱因斯坦光电效应方程:E k=hγ—W---其中E k为光电子的最大初动能;W为金属的逸出功。
逸出功---是电子脱离某种金属所做功的最小值。
光的波粒二象性⏹光的波粒二象性---光是一种波,同时也是一种粒子,光具有波粒二象性。
⏹概率波—光子在空间各点出现的可能性的大小(概率)可用波动规律来描述。
⏹物质波---1924年法国物理学家德布罗意(1892——1987)任何一个运动的物体,小到电子、质子,大到星星、太阳都有一种波与它对应,波长是--- λ= h / p⏹物理学把物质分为两大类---实物和场。
激光⏹激光的特性---⏹ 1.激光是一种人工产生的相干光---可调制用来传递信息;⏹ 2.平行度非常好---远距离传播仍能保持一定强度可以用来测远距离、雷达、跟踪运动目标测速度;⏹ 3.聚到很小的一点---读光盘;⏹ 4.高能量---切割物体、焊接(工业、医学);⏹ 5.产生高压---引起核聚变(小颗粒的核燃料用激光从各个方向进行照射)。
原子和原子核1.α粒子散射实验,原子的核式结构。
⏹ 2.氢原子的能级结构,光子的发射和吸收。
*⏹ 3.氢原子的电子云。
⏹ 4.原子核的组成,天然放射现象,α射线、β射线、γ射线,衰变、半衰期。
⏹ 5.原子核的人工转变、核反应方程、放射性同位素及其应用。
⏹ 6.放射性污染和防护。
⏹ 7.核能、质量亏损、爱因斯坦质能方程。
* ⏹ 8.重核的裂变、链式反应、核反应堆。
⏹ 9.轻核的聚变,可控热核反应。
⏹ 10.人类对物质结构的认识。
原子的核式结构⏹ α粒子散射实验---装置及实验⏹ 现象---绝大多数α粒子穿过金箔后基本上仍沿原路的方向前进,但是有少数α粒子发生了较大的偏转,极少数发生大角度散射甚至达到了180度。
⏹ 结论---原子的核式结构:在原子的中心有一个很小的核,叫原子核,原子的全部正电和几乎全部的质量都集中在原子核里,带负电的电子在核外的空间运动。
⏹ 原子核:组成---质子:带正电1.6 ×10-19c ;质量为1.67×10-27kg 中子:不带电,质量比质子稍大。
统称为核子。
大小--- 10-15m氢原子的能级结构、光子的发射和吸收 能级---各状态对应的能量也是不连续的。
基态---能量的最低状态。
激发态---其他能量状态。
各能级的能量关系---E n =E 1/n 2光子的发射和吸收--- h γ=E m — E n原子光谱---光谱和光谱分析---用来分析物体的组成成分(原子光谱---明显光谱、暗线光谱) 波尔理论的局限性---经典电磁学理论的制约。
氢原子的电子云⏹ 对于宏观质点,如果知道它在某一时刻的位置、速度和受力情况,就可以用牛顿运动定律算出以后任意时刻的位置和速度。
⏹ 对于电子等微观粒子,由于不能用确定的坐标描述它们在原子中的位置,因此轨道的说法毫无意义,我们只能知道电子在原子和附近各点出现概率的大小,用疏密不同的点表示出现的概率---称为电子云(教材图) 。
α射线、 β射线、 γ射线⏹ 实质分别为---氦核、高速电子流、电磁波。
⏹ 电离能力由强到弱--- α射线、β射线、 γ射线。
⏹ 穿透能力由弱到强---α射线、β射线、 γ射线。
⏹ 在真空中的传播速度分别为---0.1c 、接近c 、c 。
⏹α 衰变的实质---原子核失去一个氦核------He Y X m n m n 4242+→--⏹ β衰变的实质---原子核的一个中子变成质子同时释放一个电子------e Y X mn mn 011-++→⏹衰变---原子核放出α 或β粒子就变成新核。
⏹ 半衰期---放射性元素的原子核有半数发生衰变所需的时间。
放射性污染和防护 ⏹ 应用---射线:可以用γ射线探伤、 α射线消除静电、保存食物、育种(使DNA 发生突变)、放疗、利用半衰期不随物理化学性质而改变的特点进行考古、示踪原子。
⏹ 污染---1945年广岛、长崎两枚原子弹;1987年切尔诺贝利核电站泄漏;2001年9月2日开始的“小小钥匙链放倒13人”。
⏹ 和防护---核电站的厚厚水泥墙;核废料防灾很厚很厚的金属箱内,并埋在深海里;加强防范意识;核不扩散。
核反应方程⏹ 原子核的人工转变---⏹ 1919年卢瑟福用α粒子轰击氮核产生氧17和质子------------H O He N 1117842147+→+⏹ 中子的发现-------------n C He Be 101264294+→+⏹ 核反应方程---表示原子核反应的方程质量数和电荷数都守恒。
核能、质量亏损、爱因斯坦质能方程 ⏹ 核能---核反应中释放出来的能量。
⏹ 质量亏损--- -核反应中释放出能量筒是质量减少。
⏹质能方程--- E=mc 2⏹ 质能方程演变为--- △E= △mc 2 裂变⏹ 定义---把重核分裂成质量较小的核,释放出核能的反应。
⏹ 铀核的裂变---n Kr Ba n U 1092361415610235923++→+⏹链式反应---一般说来,铀核的裂变时总是要放出2~3个中子这些种子又会引起其他的铀核裂变,这样裂变就会不断地进行下去,释放出越来越多的能量。
⏹ 核电站---控制核裂变的速度(临界体积)。
聚变⏹ 定义---把轻核合成质量较大的核,释放出核能的反应------n He H H 10423121+→+⏹热核反应---使轻核发生聚变时,必须使它们的距离十分接近,达到10-15m 的近距离。