数字电压表的设计
- 格式:doc
- 大小:201.00 KB
- 文档页数:14
数字电压表的设计毕业论文数字电压表的设计摘要:本文主要介绍了数字电压表的设计。
首先介绍了数字电压表的基本原理和功能,然后详细讲解了数字电压表的硬件设计和软件设计。
硬件设计包括电路设计和元器件选择,软件设计包括程序设计和界面设计。
最后对数字电压表进行了实验验证,并总结了设计过程中的经验和教训。
1. 引言数字电压表是一种常用的电子测量仪器,广泛应用于工业控制、科研实验和电子维修等领域。
本文将介绍一种基于单片机的数字电压表的设计方案。
2. 基本原理和功能数字电压表的基本原理是通过采集电压信号并将其转换成数字信号,然后通过显示器显示出来。
数字电压表的功能包括测量电压值、显示电压值、单位切换、数据保存等。
3. 硬件设计3.1 电路设计数字电压表的电路设计主要包括信号采集电路、信号转换电路和显示电路。
信号采集电路负责将待测电压信号转换成电压信号,信号转换电路负责将电压信号转换成数字信号,显示电路负责将数字信号显示出来。
3.2 元器件选择在数字电压表的设计中,元器件的选择非常重要。
需要选择合适的电阻、电容、集成电路等元器件,以确保电路的稳定性和精确度。
4. 软件设计4.1 程序设计数字电压表的程序设计主要包括信号采集程序、信号转换程序和显示程序。
信号采集程序负责采集电压信号,信号转换程序负责将电压信号转换成数字信号,显示程序负责将数字信号显示出来。
4.2 界面设计数字电压表的界面设计主要包括显示界面和操作界面。
显示界面负责将数字信号以合适的格式显示出来,操作界面负责提供操作按钮和设置选项。
5. 实验验证为了验证数字电压表的设计方案的准确性和可靠性,进行了一系列实验。
实验结果表明,设计方案能够准确测量电压值并显示出来。
6. 经验总结在数字电压表的设计过程中,我们遇到了一些问题和挑战。
通过实践和总结,我们得出了一些经验和教训。
例如,在硬件设计中,需要注意电路的稳定性和精确度;在软件设计中,需要考虑程序的效率和界面的友好性。
基于单片机的数字电压表设计一、引言在电子测量领域中,电压表是一种常用的测量仪器,用于测量电路中的电压值。
传统的模拟电压表由于精度低、读数不便等缺点,逐渐被数字电压表所取代。
数字电压表具有精度高、读数直观、抗干扰能力强等优点,广泛应用于工业自动化、电子设备检测、实验室测量等领域。
本文将介绍一种基于单片机的数字电压表设计方案,详细阐述其硬件电路设计、软件编程实现以及系统性能测试。
二、系统总体设计方案(一)设计要求设计一款基于单片机的数字电压表,能够测量 0 5V 的直流电压,测量精度为 001V,具有实时显示测量结果的功能。
(二)系统组成本数字电压表系统主要由以下几个部分组成:1、传感器模块:用于将输入的电压信号转换为适合单片机处理的电信号。
2、单片机模块:作为系统的核心,负责对传感器采集到的数据进行处理和计算,并控制显示模块显示测量结果。
3、显示模块:用于实时显示测量的电压值。
三、硬件电路设计(一)传感器模块选用 ADC0809 作为模数转换芯片,它具有 8 个模拟输入通道,可以将 0 5V 的模拟电压转换为 8 位数字量输出。
(二)单片机模块选择 AT89C51 单片机作为控制核心,它具有 4K 字节的 Flash 程序存储器和 128 字节的随机存取数据存储器。
(三)显示模块采用液晶显示屏(LCD1602)作为显示器件,它能够清晰地显示数字和字符信息。
四、软件编程实现(一)编程语言选择使用 C 语言进行编程,C 语言具有语法简洁、可移植性强等优点。
(二)主程序流程主程序首先进行系统初始化,包括单片机端口初始化、LCD1602 初始化、ADC0809 初始化等。
然后启动 ADC0809 进行模数转换,读取转换结果并进行数据处理,计算出实际的电压值。
最后将电压值发送到 LCD1602 进行显示。
(三)模数转换子程序ADC0809 的转换过程通过控制其启动转换引脚(START)和读取转换结束引脚(EOC)来实现。
数字电压表的课程设计一、课程目标知识目标:1. 理解数字电压表的工作原理,掌握其基本组成部分及功能;2. 学会使用数字电压表进行电压测量,并能正确读取测量数据;3. 了解数字电压表在电子测量领域中的应用。
技能目标:1. 能够正确连接和操作数字电压表,进行电压测量;2. 培养学生观察、分析、解决问题的能力,通过实践操作,提高动手能力;3. 学会对测量数据进行处理,具备初步的数据分析能力。
情感态度价值观目标:1. 培养学生对电子测量的兴趣,激发学习热情;2. 培养学生的合作精神,学会在团队中共同完成任务;3. 增强学生的安全意识,遵守实验室操作规程,爱护实验设备。
分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够明确数字电压表的工作原理,掌握其使用方法;2. 学生能够独立完成电压测量实验,正确读取测量数据,并进行简单的数据处理;3. 学生在课程学习中,表现出积极的合作态度和良好的安全意识,对电子测量产生浓厚兴趣。
二、教学内容根据课程目标,本章节教学内容主要包括以下三个方面:1. 数字电压表基本原理与组成- 电压表的定义及分类- 数字电压表的工作原理- 数字电压表的组成部分及功能2. 数字电压表的使用方法与操作- 数字电压表的选择与连接- 电压测量方法与步骤- 测量数据的读取与处理3. 数字电压表的应用与实践- 数字电压表在电子测量中的应用案例- 实验操作:电压测量实践- 数据分析:处理测量数据,探讨实验现象教学大纲安排如下:1. 引入数字电压表的概念,介绍其工作原理及分类(第1课时)2. 讲解数字电压表的组成部分及功能,进行实物展示(第2课时)3. 指导学生掌握数字电压表的使用方法,进行实践操作(第3-4课时)4. 课堂讨论:数字电压表在电子测量中的应用,分析实验数据(第5课时)教学内容关联教材章节:1. 数字电压表基本原理与组成:教材第X章2. 数字电压表的使用方法与操作:教材第X章3. 数字电压表的应用与实践:教材第X章三、教学方法针对数字电压表的教学内容,选择以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:- 对数字电压表的基本原理、组成部分和功能进行系统讲解,结合教材第X章内容,通过PPT展示,使学生建立完整的理论知识框架。
简易数字电压表设计报告姓名:***班级:自动化1202学号:****************:***2014年11月26日一.设计题目采用C8051F360单片机最小系统设计一个简易数字电压表,实现对0~3.3V 直流电压的测量。
二.设计原理模拟输入电压通过实验板PR3电位器产生,A/D转换器将模拟电压转换成数字量,并用十进制的形式在LCD上显示。
用一根杜邦实验线将J8口的0~3.3V输出插针与J7口的P2.0插针相连。
注意A/D转换器模拟输入电压的范围取决于其所选择的参考电压,如果A/D 转换器选择内部参考电压源,其模拟电压的范围0~2.4V,如果选择外部电源作为参考电压,则其模拟输入电压范围为0~3.3V。
原理框图如图1所示。
图1 简易数字电压表实验原理框图三.设计方案1.设计流程图如图2所示。
图2 简易数字电压表设计A/D转换和计时流程图2.实验板连接图如图3所示。
图3 简易数字电压表设计实验板接线图3.设计步骤(1)编写C8051F360和LCD初始化程序。
(2)AD转换方式选用逐次逼近型,A/D转换完成后得到10位数据的高低字节分别存放在寄存器ADCOH和ADC0L中,此处选择右对齐,转换时针为2MH Z。
(3)选择内部参考电压2.4V为基准电压(在实际单片机调试中改为3.311V),正端接P2.0,负端接地。
四、测试结果在0V~3.3V中取10组测试数据,每组间隔约为0.3V左右,实验数据如表1所示:显示电压(V)0.206 0.504 0.805 1.054 1.406实际电压(v)0.210 0.510 0.812 1.061 1.414相对误差(%) 1.905 1.176 0.862 0.659 0.565显示电压(V) 2.050 2.383 2.652 2.935 3.246实际电压(v) 2.061 2.391 2.660 2.943 3.253相对误差(%)0.421 0.334 0.301 0.272 0.215表1 简易数字电压表设计实验数据(注:其中显示电压指LCD显示值,实际电压指高精度电压表测量值)五.设计结论1.LCD显示模块的CPLD部分由FPGA充当,芯片本身自带程序,所以这个部分不用再通过quartus软件进行编程。
目录一、设计方案 (2)(一)、设计要求 (2)(二)、设计方案 (2)1、由数字电路及芯片构建 (2)2、由单片机系统及A/D转换芯片构建 (2)(三)、系统设计的组成框图 (3)二、单元电路器件的选择 (3)(一)、单片机AT89C51 (3)(二)、A/D芯片的选择 (5)(三)、LED显示器件简介 (6)三、硬件电路系统的设计 (7)(一)、硬件电路系统的接口设计 (7)1、 AT89C51单片机和数码管显示电路的接口设计 (7)2、 A/D转换电路的接口设计 (7)(二)、硬件电路系统模块的设计 (7)1、单片机系统 (7)2、时钟电路 (8)3、复位电路 (8)4、显示电路设计 (9)(三)、总电路图 (10)四、系统软件程序的设计 (10)五、系统调试 (13)六、心得体会 (15)参考文献: (15)数字电压表的设计(电子信息工程技术专业电信09(1)班,xxx)摘要:设计采用AT89C51单片机、A/D转换器ADC0808和共阳极数码管为主要硬件,分析了数字压表Proteus软件仿真电路设计及编程方法。
将单片机应用于测量技术中,采用ADC0808将模拟信号转化为数字信号,用AT89C51实现数据的处理,通过数码管以扫描的方式完成显示。
设计的数字电压表可以测量0~5 V的电压值,AT89C51为8位单片机,当ADC0808的输入电压为5 V时,输出数字量值为+4.99 V。
本设计电路简单、成本低、性能稳定。
关键字:AT89C51单片机;A/D转换器ADC0808;数字电压表;Proteus仿真软件一、设计方案(一)、设计要求利用单片机AT89C51与ADC0808设计一个数字电压表,将模拟信号0~5 V之间的电压值转换成数字量信号,以两位数码管显示,并通过虚拟电压表观察ADC0808模拟量输入信号的电压值,LED数码管实时显示相应的数值量。
(二)、设计方案设计数字电压表有多种的设计方法,方案是多种多样的,由于大规模集成电路数字芯片的高速发展,各种数字芯片品种多样,导致对模拟数据的采集部分的不一致性,进而又使对数据的处理及显示的方式的多样性。
基于单片机的数字电压表设计数字电压表在电子技术中使用非常广泛,可以用来测量电路中的直流电压、交流电压以及各种信号的幅度等等。
基于单片机的数字电压表实现了数字电压的读取和显示,具有精确、稳定、易操作等特点,下面将介绍基于单片机的数字电压表的设计原理及实现方法。
一、系统结构基于单片机的数字电压表主要是由程序控制模块、模数转换模块和数字显示模块组成。
程序控制模块主要用来完成开机、校准、测试、功能选择等功能;模数转换模块主要将电压信号转换成数字量,供数字显示模块使用;数字显示模块主要将转换后的数字量显示在LCD液晶屏上。
二、硬件设计1.电源电路电源电路主要用来为电路提供稳定的电压和电流,本电路采用稳压电源芯片LM7805实现,稳压芯片输入端连接外部DC12V/1A电源,输出端连接电路板上的整个电路。
2.输入电路输入电路主要用来将被测电源的电压传递给单片机,常规情况下采用分压电路实现。
在本电路中,电阻R1和电容C1为RC滤波电路,起到滤波作用,防止干扰信号的影响;电阻R2是分压电路中的电阻,它根据电压值的不同设置不同的值,以保证被测电压在单片机内部转换过程中不会对单片机产生影响。
3.单片机模块单片机模块是系统的核心部分,本电路中选用STM32F103C8T6单片机实现模数转换和数码管控制,使用C 语言编写程序,通过模拟输入端口读取电压并进行模数转换,将得到的数字使用查表法将其转换为数码管控制脉冲,控制数码管的亮灭实现数字显示。
4.数字显示模块数字显示模块主要由七段数码管、LCD液晶屏幕、导线和电容等器组成,七段数码管用于展示测量到的电压大小,LCD 液晶屏用于展示功能选项、单位等信息。
导线是电路板内部连接线路,电容等器用来平滑电压波动。
三、软件设计1.引脚定义在程序中首先定义STM32F103C8T6单片机内存地址、输入输出引脚和电平状态,其中A0口用来读取被测电压;B0-B7口用来控制七段数码管的亮灭;C0口用来输出PWM,控制风扇的旋转速度;D0口用来控制蜂鸣器的开启和关闭。
数字电压表的设计方案1. 引言数字电压表(Digital Voltmeter,简称DVM)是一种能够直接显示电压值的测量仪器。
它与传统的模拟电压表相比,具有精确度高、稳定性好、便于读取等优势。
本文将介绍一种基于集成电路的数字电压表的设计方案。
2. 设计原理数字电压表的设计基于模数转换技术,通过将输入的模拟电压信号转换为数字形式,并经过一系列处理后显示在数码管上。
通常的设计流程包括采样、量化、编码和显示四个步骤。
2.1 采样采样是将连续的模拟信号转换为离散的数字信号的过程。
在数字电压表中,采样过程通过使用一个模拟-数字转换器(ADC)来完成。
常见的ADC电路有逐次逼近型和闩锁型等,根据需求选择合适的ADC器件。
2.2 量化量化是将采样得到的模拟信号分为若干个不同电平的过程。
量化过程中,转换器将模拟信号映射到一个有限数量的离散值,通常为二进制数。
量化级别的选择会影响数字电压表的精度和分辨率。
2.3 编码编码是将量化后的模拟信号转换为与数码管对应的数字形式的过程。
常用的编码方式有二进制编码、格雷码等。
编码器可以是硬件电路,也可以是通过程序实现的软件算法。
2.4 显示显示是将编码后的数字信号以可读的形式呈现出来的过程。
在数字电压表中,常用的显示器件是七段数码管。
数码管的控制可以通过驱动电路来实现,同时需要考虑亮度控制和多位数显示的问题。
3. 系统组成数字电压表的系统组成主要包括模拟前端、模数转换、显示部分等。
3.1 模拟前端模拟前端是将待测电压信号处理成可以输入到模数转换器的范围内。
模拟前端通常包括电阻分压器、跨导放大器、滤波器等模块,其目的是将输入信号的幅度范围缩放到ADC的输入电压范围内。
3.2 模数转换模数转换是将模拟电压信号转换为数字信号的过程。
在数字电压表中,常用的模数转换器有逐次逼近型和闩锁型。
模数转换器的选择要考虑精度、速度、功耗等因素。
3.3 显示部分显示部分是将数字信号以可读的形式显示出来。
接口技术学生姓名:学号:学院:专业: 电子科学与技术题目: 数字电压表设计指导教师:数字电压表的设计一、设计概念资料1.数字电压表基本概念数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。
目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统智能化测量领域,示出强大的生命力。
与此同时,由DVM 扩展而成各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
2.数字电压表优缺点⑴显示清晰直观,读数准确,缩短读数和记录的时间。
新型数字电压表还增加了标志符显示功能,包括测量项目符号、单位符号和特殊符号。
⑵显示位数显示位数通常为3位~8位判定数字仪表的位数有两条原则:①能显示从0~9所有数字的位是整数值;②分数位的数值是以最大显示值中最高位数字为分子,用满量程时最高位数字做分母。
⑶准确度高。
准确度愈高,测量误差愈小。
数字电压表的准确度远优于模拟式电压表。
⑷分辨率高。
从设计DVM的角度看,分辨力应受准确度的制约,并与之相适应。
⑸测量范围宽。
多量程DVM一般可测0~1000V直流电压,配上高压探头还可测量上万伏的高压。
(6扩展能力强。
在数字电压表的基础上、还可扩展成各种通用及专用数字仪表、数字多用表(DMM)和智能仪器,以满足不同的需要。
⑺测量速率快。
数字电压表在每秒钟内对被测电压的测量次数叫测量速率,单位是“次/秒”。
它主要取决于A/D 转换器的转换速率,其倒数是测量周期。
⑻输入阻抗高。
数字电压表具有很高的输入阻抗,通常为10MΩ~10000MΩ,最高1TΩ。
在测量时从被测电路上吸取的电流极小,不会影响被测信号源的工作状态,减小由信号源内阻引起的测量误差。
数字式电压表的设计(LCD)电子信息工程系1 引言课题的选择的传统的指针式刻度电压表功能单一,精度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需求。
采用单片机的数字电压表,将连续的模拟量如直流电压转化成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC 实时通信。
数字电压表是诸多数字化仪表的核心与基础。
以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。
目前,由各种单片机和 A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域。
显示出强大的生命力。
与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新的水平。
因此对数字电压表作全面深入的了解是很有必要的。
2 设计任务及可行性分析2.1 系统设计要求1、可以测量0-5V的8路输入电压值;2、测量结果可在四位LED数码管上轮流显示后单路选择显示;3、测量最小分辨率为0.019V;4、测量误差约为+0.02V;2.2 系统设计思路1、根据设计要求,选择AT89S51单片机作为核心控制器件。
2、 A/D 转换采用ADC0809 实现。
与单片机的接口为 P0 口和 P2 端口的高四位引脚。
3、电压显示采用4 位一体的LED 数码管。
4、 LED 数码管的段码输入,由并行端口 P1 产生;位码输入,由并行端口 P3 低三位产生。
显示模块主控模块A/D转换模块图2.1设计思路框图3 元器件介绍3.1 单片机的选择20世纪80年代以来,单片机的发展非常迅速,就通用单片机而言,世界上一些著名的计算机厂家已投放市场的产品就有50多个系列,数百个品种尽管单片机的品种很多,但是在我国使用最多的还是Intel公司的MCS—51系列单片机和美国Atmel公司的89C52单片机MCS—51系列单片机包括三个基本型8031、8051、87518031内部包括一个8位CPU、128个字节RAM,21个特殊功能寄存器(SFR)、4个8位并行I/O口、1个全双工串行口、2个16位定时器/计数器,但片内无程序存储器,需外扩EPROM芯片。
数字电压表的设计摘要数字电压表的设计主要由五大部分组成:A/D转换器,MC1413七路达林顿驱动器,CD4511BCD七段锁存-译码-驱动器,基准电源MC1403和共阴极LED发光数码管组成。
其直流电压测量范围应在0—1.999V,0—19.99V,0—199.9V 和0—1999V。
关键词三位半A/D转换器基准电源七段锁存1 引言电综合设计实验正是为了适应这一变化而针对学生开设的一门实验课程。
该课程以特定的设计任务为例,前期进行设计方案的比较与论证,以期提高学生的系统设计能力,建立系统优化概念。
中后期通过多种技术的综合运用及软硬件结合的设计与调试实现任务要求。
同时随着科学技术的发展,新的电子产品几技术的不断更新。
数字化时代的到来,我们每一个家庭都会有许许多多的电器,如何进行简便的维修,如何给电器测体温,这便给生产数字电压表的厂家以极大的商机。
2 设计要求与分析2.1 设计一个三位半数字电压表2.2 直流电压测量范围0—1999V 自动转档2.3 采用DC—9V电源2.4 测量误差≤3% 利用数字显示3 电路设计工作原理数字电压表是将被测模拟量转换为数字量,并进行实时数字显示的系统。
该电压表可由MC14433—3位半A/D转换器、C1413七路达林顿驱动器数组、D4511BCD七段锁存-译码-驱动器、准电源MC1413和共阴极LED发光数码管组成,电路图如(1)所示。
3位半是指进制数0000~9999,所谓3位是指个位、十位、百位,其数字范围均为0~9。
而半位是指千位,它不能由0变化到9,而只能由0变1,即二值状态,故称为半位。
3.1 电路各部分功能MC14433——3位半A/D转换器:将输入的模拟信号转换成数字信号。
MC1403基准电源:提供精密电压,供A/D转换器作参考电压。
CD45511译码——驱动器:将二——十进制BCD转换成七段信号,驱动显示器的a,b,c,d,e,f,g七个发光段,推动发光管进行显示。