开关电源待机损耗
- 格式:doc
- 大小:29.00 KB
- 文档页数:3
开关电源电路各种损耗的分析01输入部分损耗1、脉冲电流造成的共模电感T的内阻损耗加大适当设计共模电感,包括线径和匝数2、放电电阻上的损耗在符合安规的前提下加大放电电阻的组织3、热敏电阻上的损耗在符合其他指标的前提下减小热敏电阻的阻值02启动损耗普通的启动方法,开关电源启动后启动电阻回路未切断,此损耗持续存在。
改善方法:恒流启动方式启动,启动完成后关闭启动电路降低损耗。
03与开关电源工作相关的损耗04钳位电路损耗有放电电阻存在,mos开关管每次开关都会产生放电损耗改善方法:用TVS钳位如下图,可免除电阻放电损耗(注意:此处只能降低电阻放电损耗,漏感能量引起的尖峰损耗是不能避免的)当然最根本的改善办法是,降低变压器漏感。
05供电绕组的损耗电源芯片是需要一定的电流和电压进行工作的,如果Vcc供电电压越高损耗越大。
改善方法:由于IC内部消耗的电流是不变的,在保证芯片能在安全工作电压区间的前提下尽量降低Vcc供电电压!06变压器的损耗由于待机时有效工作频率很低,并且一般限流点很小,磁通变化小,磁芯损耗很小,对待机影响不大,但绕组损耗是不可忽略的。
07变压器绕组引起的损耗绕组的层与层之间的分布电容的充放电损耗(分布电容在开关MOS管关断时充电,在开关MOS管开通时放电引起的损耗。
)当测试mos管电流波形时,刚开启的时候有个电流尖峰主要由变压器分布电容引起。
改善方法:在绕组层与层之间加绝缘胶带,来减少层间分布电容。
08开关管MOSFET上的损耗mos损耗包括:导通损耗,开关损耗,驱动损耗。
其中在待机状态下最大的损耗就是开关损耗。
改善办法:降低开关频率、使用变频芯片甚至跳频芯片(在空载或很轻负载的情况下芯片进入间歇式振荡)09整流管上的吸收损耗输出整流管上的结电容与整流管的吸收电容在开关状态下引起的尖峰电流反射到原边回路上,引起的开关损耗。
另外还有吸收电路上的电阻充放电引起的损耗。
改善方法:在其他指标允许的前提下尽量降低吸收电容的容值,降低吸收电阻的阻值。
降低开关电源待机功耗的电路分析摘要:围绕着物联网的概念,诞生了一些智能家居、无人售货、工业自动化等新领域,需要大量用到使用微电子电路作为检测、监控、控制的手段,这些设备、部件长时间通电待机,要消耗一定无用功的电能。
在现在用电负荷越来越高,用电费用越来越贵的今天,智能家居、物联网智能化的同时,要降低无用功的电能消耗,控制不必要增长的电能消耗。
关键词:开关电源;待机功耗1引言物联网(英语:Internet of Things,缩写:IoT),最早在1999年由工作于宝洁公司的Kevin Ashton创造,他带领和麻省理工学院合作的队伍成立AUTO-ID中心,为宝洁公司研发基于RFID技术的供应链管理技术。
智能电网是一种现代化的输电网络。
利用信息及通信技术,以数字或模拟信号侦测与收集供应端的电力供应状况和使用端的电力使用状况。
再用这些信息来调整电力的生产与输配,或调整家电及企业用户的耗电量,以此达到节约能源、降低损耗、增强电网可靠性的目的。
也是物联网的其中一种形式。
无论物联网、还是智能电网,都离不开一个必要的需要¬--电力,都是基于低压用电的智能设备服务端和终端设备。
电力供应不能简单地从发电站直接连接到这些设备上,电力传输过程中要经过多次升压、降压的转换过程。
因此传统的智能检测控制设备需要经过体积大、发热大、转换效率低的线性电源转换为需要用到的工作电压,造成设备的体积、制造成本等不能适合未来的技术发展,特别是运行时电力消耗成本对于企业的财政造成很大的负担,这时候需要用到开关模式电源,简称开关电源,来提供供电、降压功能,但开关电源不能完全达到100%的转换效率,开关电源电路在转换的过程也会有无功电能消耗,现阶段供电部门也对供电的线路、智能电网设备也提出了最低限度的电能损失做出了严格的要求,这是本文以此为目的作为分析的课题。
2开关电源电路的特性开关电源泛指电路中有电子器件工作在高频开关状态的直流电源,不同于传统的线性电源,开关电源利用的切换晶体管多半是在全开模式(饱和区)及全闭模式(截止区)之间切换,两个模式都有低耗散的特点,切换之间的转换会有较高的耗散,但时间很短,因此比较节省能源,产生废热较少。
开关电源8大损耗,讲的太详细了能量转换系统必定存在能耗,虽然实际应用中无法获得100%的转换效率,但是,一个高质量的电源效率可以达到非常高的水平,效率接近95%。
绝大多数电源IC 的工作效率可以在特定的工作条件下测得,数据资料中给出了这些参数。
一般厂商会给出实际测量的结果,但我们只能对我们自己的数据担保。
图1 给出了一个SMPS 降压转换器的电路实例,转换效率可以达到97%,即使在轻载时也能保持较高效率。
采用什么秘诀才能达到如此高的效率?我们最好从了解SMPS 损耗的公共问题开始,开关电源的损耗大部分来自开关器件(MOSFET 和二极管),另外小部分损耗来自电感和电容。
但是,如果使用非常廉价的电感和电容(具有较高电阻),将会导致损耗明显增大。
选择IC 时,需要考虑控制器的架构和内部元件,以期获得高效指标。
例如,图1 采用了多种方法来降低损耗,其中包括:同步整流,芯片内部集成低导通电阻的MOSFET,低静态电流和跳脉冲控制模式。
我们将在本文展开讨论这些措施带来的好处。
图1. 降压转换器集成了低导通电阻的MOSFET,采用同步整流,效率曲线如图所示。
降压型SMPS损耗是任何SMPS 架构都面临的问题,我们在此以图2 所示降压型(或buck)转换器为例进行讨论,图中标明各点的开关波形,用于后续计算。
降压转换器的主要功能是把一个较高的直流输入电压转换成较低的直流输出电压。
为了达到这个要求,MOSFET 以固定频率(f S),在脉宽调制信号(PWM)的控制下进行开、关操作。
当MOSFET 导通时,输入电压给电感和电容(L 和C OUT)充电,通过它们把能量传递给负载。
在此期间,电感电流线性上升,电流回路如图2 中的回路1 所示。
当MOSFET 断开时,输入电压断开与电感的连接,电感和输出电容为负载供电。
电感电流线性下降,电流流过二极管,电流回路如图中的环路2 所示。
MOSFET 的导通时间定义为PWM 信号的占空比(D)。
开关电源的开关损耗作者:Roger Kenyon 美信公司应用工程部总监Switching loss in switch-mode power supplies基于电感的开关电源(SM-PS)包含一个功率开关,用于控制输入电源流经电感的电流。
大多数开关电源设计选择MOSFET作开关(图1a中Q1),其主要优点是MOSFET在导通状态具有相对较低的功耗。
MOSFET完全打开时的导通电阻(RDS(ON))是一个关键指标,因为MOSFET的功耗随导通电阻变化很大。
开关完全打开时,MOSFET的功耗为ID2与RDS(ON)的乘积。
如果RDS(ON)为0.02W,ID为1A,则MOSFET功耗为0.02*12=0.02W。
功率MOSFET的另一功耗源是栅极电容的充放电。
这种损耗在高开关频率下非常明显,而在稳态(MOSFET连续导通)情况下,MOSFET 栅极阻抗极高,典型的栅极电流在纳安级,因此,这时栅极电容引起的功耗则微不足道。
转换效率是SMPS的重要指标,须选择尽可能低的RDS(ON)。
MOSFET制造商也在坚持不懈地开发低导通电阻的MOSFET,以满足这一需求。
随着蜂窝电话、PDA及其他电子设备的体积要求越来越小,对电子器件,包括电感、电容、MOSFET 等的尺寸要求也更加苛刻。
减小SMPS体积的通用方法是提高它的开关频率,开关频率高容许使用更小的电感、电容,使外部元件尺寸最小。
不幸的是,提高SMPS的开关频率会降低转换效率,即使MOSFET的导通电阻非常小。
工作在高开关频率时,MOSFET的动态特性,如栅极充放电和开关时间变得更重要。
可以看到在较高的开关频率时,高导通电阻的MOSFET反而可以提高SMPS的效率。
为了理解这个现象就不能只看MOSFET的导通电阻。
下面讨论了N沟道增强型MOSFET的情况,其它类型的MOSFET具有相同结果。
图1. 一个典型的升压转换器(a)利用MOSFET控制流经电感至地。
开关电源变压器损耗计算
计算开关电源变压器的损耗,可以采用下面的方法:
1. 计算铁心损耗:开关电源变压器的铁心损耗包括磁滞损耗和涡流损耗,可以通过铁心材料的特性曲线和变压器铁心的磁通密度来计算。
一般情况下,铁心损耗占总损耗的比重较小,通常在5%以下。
2. 计算铜损耗:开关电源变压器的铜损耗是由变压器线圈中的电流通过导线时产生的热量而导致的。
铜损耗的大小取决于变压器的额定电流和绕组的电阻值。
在设计开关电源变压器时,需要根据变压器线圈的截面积和电阻值来计算铜损耗。
3. 计算其他损耗:开关电源变压器还可能存在其他的损耗,如液体绝缘材料的损耗、绝缘损耗以及机械损耗等。
这些损耗的大小往往比较难以估算,可以通过实验来确定。
总的来说,开关电源变压器的损耗计算是一个较为复杂的过程,需要掌握一定的电路和材料知识。
为了确保变压器的工作稳定和可靠,需要对其损耗进行适当的估算和优化设计。
开关电源损耗计算方法开关电源是现代电子设备中常见的一种电源转换装置,其工作原理主要是通过控制开关的通断来调节输出电压。
然而,在开关电源的工作过程中,不可避免地会产生一定的损耗,这些损耗会影响电源的效率和稳定性。
因此,如何计算和降低开关电源的损耗,成为电源设计中的重要问题。
本文将详细探讨开关电源损耗的计算方法。
一、开关电源的基本结构与工作原理开关电源主要包括输入整流滤波电路、功率开关管、变压器、输出整流滤波电路等部分。
工作时,通过控制功率开关管的通断,使得变压器初级线圈上的电流发生变化,进而改变次级线圈上的感应电动势,从而实现电压的变换。
在这个过程中,功率开关管、变压器以及其他元器件都会产生损耗。
二、开关电源的主要损耗类型1. 开关损耗:这是由于功率开关管在导通和截止过程中产生的损耗,主要包括开通损耗和关断损耗。
2. 导通损耗:当功率开关管处于导通状态时,其内部电阻会消耗一部分能量,形成导通损耗。
3. 变压器损耗:包括磁滞损耗、涡流损耗和铜损。
磁滞损耗是由磁性材料的磁滞特性引起的;涡流损耗是由于交变磁场在导体中产生的涡流所消耗的能量;铜损是由于电流通过变压器绕组产生的热量。
4. 整流损耗:这是由整流二极管在反向恢复期间产生的损耗。
5. 其他损耗:如驱动电路的损耗、电容的ESR损耗等。
三、开关电源损耗的计算方法1. 开关损耗的计算:开关损耗主要取决于开关频率、开关速度和电压、电流的变化率。
通常采用SPICE仿真软件进行计算。
2. 导通损耗的计算:导通损耗等于导通电流与导通电阻的乘积。
3. 变压器损耗的计算:磁滞损耗和涡流损耗可以使用B-H曲线和E-J曲线进行计算,铜损则等于电流的平方与电阻的乘积。
4. 整流损耗的计算:整流损耗等于二极管的正向压降与电流的乘积。
5. 其他损耗的计算:需要根据具体的电路参数进行计算。
四、降低开关电源损耗的方法1. 选择低导通电阻的开关管,以降低导通损耗。
2. 提高开关频率,减小变压器的体积和重量,但可能会增加开关损耗。
在BUCK型开关电源中,如果没有损耗,那效率就是100%,但这是不可能的,BUCK型开关电源中主要的损耗是导通损耗和交流开关损耗,导通损耗主要是指MOS管导通后的损耗和肖特基二极管导通的损耗(是指完全导通后的损耗,因为导通不是瞬间导通,有个从线性区到非线性区的过程),在MOS管导通时,由于存在导通电阻,那么流过电流就必然存在导通损耗,而肖特基导通损耗是指在MOS 管关闭期间,由于电感的电流不能突变加上电感反冲现象,会产生与MOS管导通时的相反电压方向,从而使肖特基导通,流过的电流会在肖特基上产生损耗。
由于MOS管在导通的时候,流过其的电流不是瞬间达到最大,此时电流有个从零逐渐上升到最大的过程,此时MOS管漏源(DS)之间的电压也是从Vdc逐渐下降到零,MOS管关闭的时候也存在此情况,只是与打开的时候过程相反,那么在这逐渐的过程中就会产生损耗,这就是交流开关损耗,交流开关损耗包括MOS管打开和关闭损耗,交流开关损耗与开关的频率成正比,因为一开一关的次数越多,损耗自然就大了。
在忽略交流开关损耗的情况下,假设输入电压Vdc,输出电压为V o,MOS管导通时间为Ton,关闭时间为T off,整个周期为T,即T=Ton+Toff。
在MOS管导通期间流过的平均电流为Io,由于电感电流不能突变,那么在MOS管关闭期间流过肖特基的平均电流也为Io,在MOS管和肖特基导通期间产生的压差基本为1V,那么导通损耗=P(mos管)+P(肖特基)=1*Io*Ton/T+1*Io*Toff/T=1*Io。
那么此时的效率E=Po/(Po+Plosse)=(Vo*Io)/(Vo*Io)+(1*Io)=Vo/Vo+1。
在考虑交流开关损耗的时候,基本交流开关损耗可以分两种情况来考虑,第一种情况是MOS管导通期间,电流开始上升的时候电压同时开始下降,MOS管关闭期间电流开始下降的时候电压同时上升,此种情况也是最理想的情况(一般实际情况很难达到),那么在此情况下,交流开关损耗=整个开关周期的导通损耗+整个开关周期的关断损耗=(时间从0到T on,流过电流和电压剩积的积分)*(Ton/T)+(时间从0到T off,流过电流和电压剩积的积分)*(Toff/T)=Io*Vdc/6*(Ton/T)+Io*Vdc/6*(Toff/T)。
开关电源功耗分析
首先要分析开关电源损耗的构成。
以反激式电源为例,其工作损耗主要表现为:MOSFET 导通损耗,MOSFET寄生电容损耗,开关交叠损耗,PWM控制器及其启动电阻损耗,输出整流管损耗,箝位保护电路损耗,反馈电路损耗等。
其中前三个损耗与频率成正比关系,即与单位时间内器件开关次数成正比。
在待机状态,主电路电流较小,MOSFET导通时间ton 很小,电路工作在DCM模式,故相关的导通损耗,次级整流管损耗等较小,此时损耗主要由寄生电容损耗和开关交叠损耗和启动电阻损耗构成。
提高待机效率的方法
根据损耗分析可知,切断启动电阻,降低开关频率,减小开关次数可减小待机损耗,提高待机效率。
具体的方法有:降低时钟频率;由高频工作模式切换至低频工作模式,如准谐振模式(QuasiResonant,QR)切换至脉宽调制(PulseWidthModulation,PWM),脉宽调制切换至脉冲频率调制(PulseFrequencyModulation,PFM);可控脉冲模式(BurstMode)。
(一)切断启动电阻
对于反激式电源,启动后控制芯片由辅助绕组供电,启动电阻上压降为300V左右。
设启动电阻取值为47kΩ,消耗功率将近2W.要改善待机效率,必须在启动后将该电阻通道切断。
TOPSWITCH,ICE2DS02G内部设有专门的启动电路,可在启动后关闭该电阻。
若控制器没有专门启动电路,也可在启动电阻串接电容,其启动后的损耗可逐渐下降至零。
缺点是电源不能自重启,只有断开输入电压,使电容放电后才能再次启动电路。
(二)降低时钟频率
时钟频率可平滑下降或突降。
平滑下降就是当反馈量超过某一阈值,通过特定模块,实现时钟频率的线性下降。
POWER公司的TOPSwitch-GX和SG公司的SG6848芯片内置了这样的模块,能根据负载大小调节频率。
(三)切换工作模式
1.QR→PWM对于工作在高频工作模式的开关电源,在待机时切换至低频工作模式可减小待机损耗。
例如,对于准谐振式开关电源(工作频率为几百kHz到几MHz),可在待机时切换至低频的脉宽调制控制模式PWM(几十kHz)。
IRIS40xx芯片就是通过QR与PWM切换来提高待机效率的。
当电源处于轻载和待机时候,辅助绕组电压较小,Q1关断,谐振信号不能传输至FB端,FB电压小于芯片内部的一个门限电压,不能触发准谐振模式,电路则工作在更低频的脉宽调制控制模式。
2.PWM→PFM
对于额定功率时工作在PWM模式的开关电源,也可以通过切换至PFM模式提高待机效率,即固定开通时间,调节关断时间,负载越低,关断时间越长,工作频率也越低。
图5是采用NS公司的LM2618控制的Buck转换器电路和分别采用PWM和PFM控制方法的效率比较曲线。
由图可见,在轻载时采用PFM模式的电源效率明显大于采用PWM模式时的效率,且负载越低,PFM效率优势越明显。
将待机信号加在其PW/引脚上,在额定负载条件下,该引脚为高电平,电路工作在PWM模式,当负载低于某个阈值时,该引脚被拉为低电平,电路工作在PFM模式。
实现PWM和PFM的切换,也就提高了轻载和待机状态时的电源效率。
通过降低时钟频率和切换工作模式实现降低待机工作频率,提高待机效率,可保持控制器一直在运作,在整个负载范围中,输出都能被妥善的调节。
即使负载从零激增至满负载的情况下,能够快速反应,反之亦然。
输出电压降和过冲值都保持在允许范围内。
(四)可控脉冲模式(BurstMode)
可控脉冲模式,也可称为跳周期控制模式(SkipCycleMode)是指当处于轻载或待机条件时,由周期比PWM控制器时钟周期大的信号控制电路某一环节,使得PWM的输出脉冲周期性的有效或失效,如图6所示。
这样即可实现恒定频率下通过减小开关次数,增大占空比来提高轻载和待机的效率。
该信号可以加在反馈通道,PWM信号输出通道,PWM芯片的使能引脚(如LM2618,L6565)或者是芯片内部模块(如NCP1200,FSD200,L6565和TinySwitch系列芯片)。
NCP1200的内部跳周期模块结构,当反馈检测脚FB的电压低于1.2V(该值可编程)时,跳周期比较器控制Q触发器,使输出关闭若干时钟周期,也即跳过若干个周期,负载越轻,跳过的周期也越多。
为免音频噪音,只有在峰值电流降至某个设定值时,跳周期模式才有效。
而FSD200则是通过控制内部驱动器实现可控脉冲模式,即将脚的反馈电压与0.6V/0.5V 迟滞比较器比较,由比较结果控制门极驱动输出。
我们可根据此原理用分立元件实现普通芯片的BurstMode功能。
控制反馈通道是实现一般PWM控制器的可控脉冲模式的方法之一。
另外对于有使能脚的PWM控制器,如L6565等,用可控脉冲信号控制使能脚使控制芯片有效或失效,也可以实现BurstMode,上述BurstSignal可由图1中所示的迟滞比较器产生。
总结:存在的问题
以上介绍的降频和BurstMode方法在提高待机效率的同时,也带来一些问题,首先是频率降低导致输出电压纹波的增加,其次如果频率降至20kHz以内,可能有音频噪音。
而在BurstMode的OFF时期内,如果负载激增,输出电压会大大降低,如果输出电容不够大,电压甚至可能降低至零。
如果增大输出电容,以减小输出电压纹波,则会导致成本增加,并会影响系统动态性能。
因此必须综合考虑。