数学七年级下册第五章生活中的轴对称
- 格式:ppt
- 大小:1.39 MB
- 文档页数:133
七年级数学第五章生活中的轴对称第一部分知识要点1、轴对称现象如果一个图形沿着一条折叠,直线两旁的部分能够互相,那么这个图形叫作轴对称图形,这条直线叫作它的.对称轴是直线.对于个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成,这条直线就是对称轴.2、简单的轴对称图形(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到的距离相等;到一个角的两边距离相等的点,在上.(2)线段是轴对称图形,线段的是它的一条对称轴.线段的上的点到这条线段两个端点的距离相等.的点,在这条线段的垂直平分线上.轴对称和轴对称图形的区别与联系:区别:(1)轴对称是________个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;(2)轴对称是对两个图形说的,轴对称图形是对_______个图形说的.联系:(1)它们的定义中,都有沿某直线折叠,图形重合;(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.3、探索轴对称的性质轴对称图形的对应点所连的线段被垂直平分.如果对应线段或延长线相交,那么交点在对称轴上.轴对称图形相等,相等.4、等腰三角形的性质(1)对称性:________________________________________________________________________ (2)“三线合一”:________________________________________________________________________ ________________________________________________________________________ (3)“等边对等角”:________________________________________________________________________ ________________________________________________________________________ 5、线段垂直平分线的定义:_________于一条线段,并且__________这条线段的______________.。
第五章生活中的轴对称5.3.1简单的轴对称图形【教学目标】知识与技能探索并掌握等腰三角形的轴对称性及其相关性质。
过程与方法经历探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念。
情感态度与价值观通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念。
行为与创新使学生在积极参与探索、交流的数学活动中,激发学生的求知欲,感受与他人合作的重要性。
【教学重难点】重点等腰三角形的轴对称性及相关的性质难点利用等腰三角形的轴对称性及相关性质解决问题【课前准备】教师:课件学生:练习本.【教学过程】复习回顾一、创设情景引入观察下列各种图形,判断是不是轴对称图形, 能找出对称轴吗?二、应用练习促进深化1. 认识等腰三角形。
给出三种等腰三角形的形状,包括锐角、钝角、直角形状的图形。
2. 介绍等腰三角形的概念及各部分名称。
给出生活中含有等腰三角形的建筑物图片,生活中的实例随处可见,给学生们呈现最直观的现象。
如艾菲尔铁塔、埃及金字塔等。
三、能力再提升等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗?1. 思考(1)等腰三角形是轴对称图形吗?找出对称轴。
(2)顶角的平分线所在的直线是等腰三角形的对称轴吗?(3)底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高呢?(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?2.归纳(1)等腰三角形是轴对称图形。
(2)∠B =∠C(3 )∠BAD=∠CAD,AD为顶角的平分线(4)∠ADB=∠ADC=90°AD为底边上的高(5 )BD=CD,AD为底边上的中线。
等腰三角形的特征:1).等腰三角形是轴对称图形2).等腰三角形的顶角平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
3).等腰三角形的两个底角相等。
第五章生活中的轴对称轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;三、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等.五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。
5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。
6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。
7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。
8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。