当前位置:文档之家› 复合材料ABAQUS分析___精讲版

复合材料ABAQUS分析___精讲版

复合材料ABAQUS分析___精讲版
复合材料ABAQUS分析___精讲版

复合材料Abaqus仿真分析——精讲版

本文以一个非常简单的复合材料层合板为例,应用Abaqus/CAE对其进行线性静态分析。一块边长为254mm的方形两层层合板,两层厚度均为2.54mm,第一层铺层角45°,第二层铺层角-45°;板的四边完全固支,板的上表面受到689.4kpa的压强。各单层的材料相同,材料属性如下:

E1=276GPa,E2=6.9GPa,E3=5.2GPa,γ12=0.25,G12=3.4GPa,G13=3.4GPa,G23=3.4G。

定义模型的几何形状

创建一个具有平面壳体单元基本特征的三维变形体,在草图环境绘制板的几何形状如下图:

定义材料属性和局部材料方向

Create coordinate system

定义局部坐标系,对于像本例这样的简单几何体,本可以不用另外建立局部坐标系,但笔者还是在本例中用了局部坐标系,主要是考虑到以后再复杂问题中会经常用到这一方法。

创建铺层

或者使用菜单栏

此处使用全局坐标系

使用用户自定义坐标系

Rotation angle depends on the coordinate system

defined by user. Par example, if x-axe in the user

defined system is parallel to the direction of fiber;

we should replace the angles by 0 and 90.

使用全局坐标系和局部坐标系的区别在下面这一步可以查看

如果使用全局坐标系,会有方向指示,如果使用用户自定义坐标系,在层中没有方向指示可以通过’工具——查询’来检查铺层(Tool ---- Q uery----ply stack plot)

Case 1 全局坐标系

使用局部坐标系

生成装配件、定义分析步和输出要求

定义分析步,保留各项默认值即可。

场输出要求和历史输出要求都按默认的输出方式。

为了结果中能查看每个ply的输出情况,应该在场输出中进行一些修改

历史输出默认值即可

(场输出field output和历史输出history output的区别, refer to user’s manual)

规定边界条件和施加载荷 (689.4 KPa and all edges : encastre )

定义完边界条件和载荷后模型会有如下显示

划分网格和定义作业

定义单元类型S8R5( The differences of all element types should be clear for analysis)

划分8X8结构性网格

定义作业并检查提交求解

在作业管理器中,当状态显示成功后点击“结果”可直接进入结果可视化模块。后处理

常用工具 Tool

Display group

Color code

查看各单层的应力

The difference of these two types of field output refer to manual Field output with the option ‘composite layer up’

Field output with the option ‘whole model’

Field output with the option ‘composite layer up’

Different active locations give different results

ABAQUS常用技巧归纳(图文并茂).

ABAQUS学习总结 1.ABAQUS中常用的单位制。-(有用到密度的时候要特别注意) 单位制错误会造成分析结果错误,甚至不收敛。 2.ABAQUS中的时间 对于静力分析,时间没有实际意义(静力分析是长期累积的结果)。对于动力分析,时间是有意义的,跟作用的时间相关。 3.更改工作路径 4.对于ABAQUS/Standard分析,增大内存磁盘空间会大大缩短计算 时间;对于ABAQUS/Explicit分析,生成的临时数据大部分是存储在内存中的关键数据,不写入磁盘,加快分析速度的主要方法是提高CPU的速度。 临时文件一般存储在磁盘比较大的盘符下

提高虚拟内存

5.壳单元被赋予厚度后,如何查看是否正确。 梁单元被赋予截面属性后,如休查看是否正确。 可以在VIEW的DISPLAY OPTION里面查看。 6.参考点 对于离散刚体和解析刚体部件,参考点必须在PART模块里面定义。而对于刚体约束,显示休约束,耦合约束可以在PART ,ASSEMBLY,INTERRACTION,LOAD等定义参考点. PART模块里面只能定义一个参考点,而其它的模块里面可以定义很多个参考点。

7.刚体部件(离散刚体和解析刚体),刚体约束,显示体约束 离散刚体:可以是任意的形状,无需定义材料属性,要定义参考点,要划分网格。 解析刚体:只能是简单形状,无需定义材料属性,要定义参考点,不需要划分网格。 刚体约束的部件:要定义材料属性,要定义参考点,要划分网格。显示体约束的部件:要定义材料属性,要定义参考点,不需要要划分网格(ABAQUS/CAE会自动为其要划分网格)。 刚体与变形体比较:刚体最大的优点是计算效率高,因为它在分析作业过程中不参与所在基于单元的计算,此外,在接触分析,如果主面是刚体的话,分析更容易收敛。 刚体约束和显示体约束与刚体部件的比较:刚体约束和显示体约束的优点是去除约束后,就可以立即变为变形体。 刚体约束与显示体约束的比较:刚体约束的部件会参与计算,而显示约束的部件不会参与计算,只是用于显示作用。 8.一般分析步与线性摄动分析步 一般分析步:每个分析步的开始状态都是前一个分析步结束时刻的模型状态; 如果不做修改的话,前一个分析步所施加的载荷,边界条件,约束都会延续到当前的分析步中;所定义的载荷,边界条件以及得到的分析结果都是总量。

abaqus复合材料

复合材料不只是几种材料的混合物。它具有普通材料所没有的一些特性。它在潮湿和高温环境,冲击,电化学腐蚀,雷电和电磁屏蔽环境中具有与普通材料不同的特性。 复合材料的结构形式包括层压板,三明治结构,微模型,编织预成型件等。 复合材料的结构和材料具有同一性,并且可以在结构形成时同时确定材料分布。它的性能与制造过程密切相关,但是制造过程很复杂。由于复合结构不同层的材料特性不同,复合结构在复杂载荷作用下的破坏模式和破坏准则是多种多样的。 在ABAQUS中,复合材料的分析方法如下 1,造型 它的结构形式决定了它的建模方法,并且可以使用基于连续体的壳单元和常规壳单元。复合材料被广泛使用,但是复合材料的建模是一个困难。铺设复杂的结构光需要一个月 2,材料

使用薄片类型(层材料)建立材料参数。材料参数可以工程参数的形式给出,或者材料强度数据可以通过子选项给出。这种材料仅使用平面应力问题。 ABAQUS可以通过两种方式定义层压板:复合截面定义和复合层压板定义 复合截面定义对每个区域使用相同的图层属性。这样,我们只需要建立壳体组合即可将截面属性分配给二维(在网格中定义的常规壳体元素)或三维(三维的大小应与壳体中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合材料分析方法介绍 复合叠加定义是由复合布局管理器定义的,它主要用于在模型的不同区域中构造不同的层。因此,应在定义之前对区域进行划分,并且应将不同的层分配给不同的区域。可以根据常规外壳的元素和属性进行定义。 传统的壳单元定义了每个层的厚度,并将其分配给二维模型。应该给基于连续体的壳单元或实体单元提供3D模型(厚度是相对于单元长度的系数,因此厚度方向可以分为一层单元)。

Abaqus针对复合材料优势

四Abaqus在复合材料领域的优势 4.1 复合材料介绍 4.1.1 复合材料的应用 复合材料有许多特性: 1、制造工艺简单 2、比强度高,比刚度大 3、具有灵活的可设计性 4、耐腐蚀,对疲劳不敏感 5、热稳定性能、高温性能好 由于复合材料的上述优点,在航空航天、汽车、船舶等领域,都有广泛的应用。复合材料的大量应用对分析技术提出新的挑战。

4.1.2 复合材料的结构 复合材料是一种至少由两种材料混合而成的宏观材料,其中的一种材料被称作基体,其它的材料称作纤维。其中纤维可以包含很多不同的 形式:离散的宏观粒子,任意方向的短纤维,规则排列的纤维和织物。 4.1.3 典型的复合材料 1)单向纤维层合板----冲击分析

2)编织复合材料---- 挤压分析 3)蜂窝夹心复合材料----不可见冲击损伤分析

基体和纤维的存在形式以及材料属性对于复合材料的力学行为有 着很大的影响。改变纤维和基体的属性目的就是在于生成一种复合材料具有如下性质: 1)低成本:原型,大规模生产,零件合并,维修,技术成熟。 2)期望的重量:轻重量,比重分配合理。 3)改进的强度和刚度:高强度/高刚度比。 4)改进的表面属性:良好的耐腐蚀性,表面抛光性好。 5)期望的热属性:较低的热传导性,热膨胀系数较低。 6)独特的电属性:具有较高的绝缘强度,无磁性。 7)空间适应性:大部件,特殊的几何构型。 4.1.4 复合材料的有限元模拟 根据不同的分析目的,可以采用不同的复合材料模拟技术: 1)微观模拟:将纤维和基体都分别模拟为可变形连续体。 2)宏观模拟:将复合材料模拟为一个正交各向异性体或是完全各向

abaqus常用技巧总结

a b a q u s常用技巧总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Abaqus常用技巧总结 本手册是由simwe等论坛上精华帖以及本人下载的其他资料整理,由于很多资料搜集已经很久,而且时间有限,都没有注明原作者,也没有最资料进行分类整理,见谅。如需要,请PM给我。 Shelly31 Python.tzy@https://www.doczj.com/doc/6611801695.html, 2007.8.1 建议阅读方式:

目录 ABAQUS常用技巧总结 (2) 目录 (3) 1.对TIME INCREMENT的根本理解 (5) 2.ABAQUS 请问 MOMENT的加载 (5) 3.ABAQUS计算时C盘的临时文件太大了,怎么改目录? (6) 4.CAE中如何加预应力 (6) 5.HYPERMESH里面看到ABAQUS分析的结果 (6) 6.X-Y PLOTS (6) 7.把上一次的分析结果作为下一次分析的初始条件该怎么做 (7) 8.材料方向与增量步 (8) 9.多个INP文件如何实现批处理 (9) 10.关于ABAQUS的任务管理 (10) 11.关于数据的输入输出 (12) 12.后处理积分 (12) 13.接触分析激活杀死 (13) 14.利用QUEUE的功能由本地机器向远程UNIX机器提交ABAQUS作业的方法[精华] (14) 15.利用命令进行计算时如何设置调用内存量 (17) 16.清华大学BBS的ABAQUS精华 (17) 17.请问怎么实现双曲线 (55)

18.取消坐标系等的显示 (56) 19.如何在计算中修改材料特性 (57) 20.输出计算过程中的总质量和总刚度矩阵 (60) 21.先张预应力: (61) 22.用户子程序的使用 (61) 23.怎样设定用双CPU机器进行ABAQUS计算 (61) 24.中途停止正在运算的JOB (62) 25.自适应网格技术 (62) 26.ABAQUS计算与内存 (63) 27.质量缩放 (64) 28.ABAQUS多处理器进行并行计算的效果研究 (79) 29.YAHOO讨论组摘录--CONTACT+OVERCLOSURE (81) 30.原创:无限元建立方法,希望得到加分 (95) 31.[分享]ABAQUS 使用问答 (102) 32.[转帖]ABAQUS6.4导入外来模型的几点小经验! (122) 33.ABAQUS的多图层绘图 (125) 34.子结构 (125) 35.如何在不同的分析步改变材料的参数 (126) 36.模型的重启动分析-RESTART (127) 37. ABAQUS的单位心得 (128)

abaqus复合材料薄壁圆筒建模流程

1,建立模型Part Module :类型三维,solid,旋转;按尺寸绘图,done,设置旋转角此处为360度。 2,建立参考面,将圆筒分成两半 3,Assembly Module :类型Independent 分区partition截面 4,Mesh module : 点击remove空二,选择cells消隐分区 X Select entities to remove: Cells Undo 撒种子时,需要分几层就在边缘上撒多少个种子,在每条边上尽量都撒相同数量的种子, 生成结构网格,生成的网格才比较规整。 (注意,此处的mesh,对象为assembly,而不是part) 生成网格后,Mesh: Create Mesh Part Module I- Mesh * Model:j Model-1 abject: * Awembly Part「 4,Job Module : Create Job,例如job-007-01,运行生成job-007-01.inp 文件,保存成007-01.cae 文件。 5,File: New打开新窗口

6,File: Import : Model 选择job-007-01.inp 打开 7,Mesh Module: Tools: Surface manager: create: by angle 定义surface 集合 Tools: Set manager: create: Element: by angle 定义Element 集合 用以下三个命令操作,选择恰当的面。 丄i Select the Entity Closest to the Screen, ---- Select From Exterior En tities '包i 一 J Select From Interior Entities (左键点击第二个图标不放拖出即可) 注:定义Element集合时,可以从外到内,定以一层后,在display中--- -:把定义的那层remove掉再定义下面一层。 8,Mesh: Edit :Mesh : Mesh Offset (create solid layers): Surfaces (选择相应的面):Total thickness定义厚度,生成cohesive单元,把其之前定义的几层surface,都生成cohesive单丿元。 9,Mesh: Element type :对cohesive 单元,Family 选择Cohesive,对其他单元,Family 选择3D Stress;对于静态运算,Element Library选择Standard,对于动态(显式)运算,Element Library 选择Explicit。 10,Property: Create Material: jiti (材料名字):Mechanical : Elastic: Type: Isotropic =tdrt Matetial 邑 M<)terial-jiti Description; NLrnnb?r of field v-arid4)l?:0 ' Moduli tme scale [forvi&ctwlKlicrty^ Long-term No compr-eision 3 Nc Datia Voungi'i P鈕1刖n1* 1 4D0C Create Material: xianwei (材料名字):Mechanical : Elastic : Type : Isotropic

(完整)总结Abaqus操作技巧总结(个人),推荐文档

Abaqus操作技巧总结 打开abaqus,然后点击file——set work directory,然后选择指定文件夹,开始建模,建模完成后及时保存,在进行运算以前对已经完成的工作保存,然后点击job,修改inp文件的名称进行运算。切记切 记!!!!!! 1、如何显示梁截面(如何显示三维梁模型) 显示梁截面:view->assembly display option->render beam profiles,自己调节系数。 2、建立几何模型草绘sketch的时候,发现画布尺寸太小了 1)这个在create part的时候就有approximate size,你可以定义合适的(比你的定性尺寸大一倍); 2)如果你已经在sketch了,可以在edit菜单--sketch option ——general--grid更改 3、如何更改草图精度 可以在edit菜单--sketch option ——dimensions--display——decimal更改 如果想调整草图网格的疏密,可以在edit菜单--sketch option ——general——grid spacing中可以修改。 4、想输出几何模型 part步,file,outport--part 5、想导入几何模型? part步,file,import--part 6、如何定义局部坐标系 Tool-Create Datum-CSYS--建立坐标系方式--选择直角坐标系or柱坐标系or球坐标 7、如何在局部坐标系定义载荷

laod--Edit load--CSYS-Edit(在BC中同理)选用你定义的局部坐标系 8、怎么知道模型单元数目(一共有多少个单元) 在mesh步,mesh verify可以查到单元类型,数目以及单元质量一目了然,可以在下面的命令行中查看单元数。 Query---element 也可以查询的。 9、想隐藏一些part以便更清楚的看见其他part,edge等 view-Assembly Display Options——instance,打勾 10、想打印或者保存图片 File——print——file——TIFF——OK 11、如何更改CAE界面默认颜色 view->Grahphic options->viewport Background->Solid->choose the wite colour! 然后在file->save options. 12、如何施加静水压力hydrostatic load --> Pressure, 把默认的uniform 改为hydrostatic。这个仅用于standard,显式分析不支持。 13、如何检查壳单元法向 Property module/Assign/normal 14、如何输出单元体积 set步---whole model ----volume/Tickness/Corrdinate-----EVOL 15、如何显示最大、最小应力 在Visualization>Options>contour >Limits中选中Min/Max:Show Location,同样的方法可以知道具体指定值的位置。 16、如何在Visualization中显示边界条件 View——ODB display option——entity display——show boundary conditions 17、后处理有些字符(图例啊,版本号啊,坐标系啊)不想显示, viewport-viewport annotation option ,选择打勾。同样可以修改这些字体大小、位置等等。

本人学习abaqus五年的经验总结 让你比做例子快十倍

第二章 ABAQUS 基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外 丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几 何模型上。 载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件 上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上, 对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单 File→Import→Part。网 格部件不包含特征,只包含节点、单元、 面、集合的信息。创建网格部件有三种方法:(1)导入 ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进 入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初 始分析步之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型:—Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析

Abaqus中复合材料的累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈

服阶段(b-c段)。超过c点后,材料的承载能力显著下降直到断裂(c-d段)。最后阶段的变形仅发生在样品变窄的区域。C点表明材料损伤的开始,也被称为损伤开始的标准。超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。 图19.1.1-1 金属样品典型的轴向应力-应变曲线 因此,在Abaqus中失效机制的详细说明里包括四个明显的部分: ●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘) ●损伤开始的标准(如图19.1.1-1中c点) ●损伤发展演变的规律(如图19.1.1-1中曲线c-d) ●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除 (如图19.1.1-1中的d点)。 关于这几部分的内容,我们会对金属塑性材料(金属塑性材料的损伤与失效概论,19.2.1节)和纤维增强材料(纤维增强符合材料的损伤与失效概论,19.3.1节)进行分开讨论。

ABAQUS高级应用技巧

1.在abaqus command中提交分析,命令为:abaqus job=job-name (cpu=8 int)interactive 需要调用用户子程序时:abaqus job=job-name user=user-sub interactive 提交作业之前可以执行命令abaqus job=job-name datacheck interactive 就可以查看dat文件中的错误信息和模型分析需要的磁盘空间、内存大小等。暂停分析作业:a baqus suspend job=job-name 在暂停的位置继续运行分析作业abaqus resume job=job-name 如果彻底中止分析作业,以后不再使用上述abaqus resume 命令继续分析,可选择a.在windows任务管理器中结束进程standard.exe或explicit.exe。b.按kill按钮。C.使用命令abaqus terminate job=job-name 对于ABAQUS/Explicit分析,如果出现意外情况而导致分析作业中止,可以①使用自动恢复机制,命令为:abaqus job=job_name recover ②可以运用重启动分析作业。 2.分析结果输出到dat文件中 *EL PRINT 将单元上的分析结果(应力、应变、截面力等)输出到dat 文件中*NODE PRINT 将节点上的分析结果...... *CONTACT PRINT 将接触对的分析结果…… *MODAL PRINT 在基于模态的动力分析中,将位移和相位…… 3.历史变量输出到odb文件中 *OUTPUT,HISTORY,OP=NEW,FREQUENCY=1(OP=NEW表示清除先前定义的输出设置) 如:*INTEGRATED OUTPUT 表示将变量对某个面的积分结果(如面上的合力)输出到odb文件中 4.寻找帮助文档中的inp文件和.for文件: D:\Program Files\SIMULIA\Documentation\docs\v6.10\books\eif

ABAQUS中Cohesive单元建模方法

复合材料模型建模与分析 1. Cohesive单元建模方法 1.1 几何模型 使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。建立cohesive层的方法主要有: 方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。 方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。 (a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定 图1.建模方法 上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。 1.2 材料属性 应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation描述;另一种是基于连续体描述。其中基于traction-separation 描述的方法应用更加广泛。 而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性

降低软化阶段。 注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive 单元的刚度。曲线下的面积即为材料断裂时的能量释放率。因此在定义cohesive 的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。常用的定义方法是给定上述参数中的前三项,也就确定了cohesive 的本构模型。Cohesive 单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。Cohesive 单元只考虑面外的力,包括法向的正应力以及XZ ,YZ 两个方向的剪应力。 下文对cohesive 单元的参数进行阐述,并介绍参数的选择方法。 图2. 双线性本构模型 1.2.1 Cohesive 单元的刚度 基于traction-separation 模型的界面单元的刚度可以通过一个简单杆的变形公式来理解 PL AE δ= (1) 其中L 为杆长,E 为弹性刚度,A 为初始截面积,P 为载荷。公式(1)又可以写成 S K δ= (2) 其中S P A =为名义应力,K E L =为材料的刚度。 为了更好的理解K ,我们把K E L =写成: 1E E L E L K L L ===' (3)

ABAQUS分析步总结

A B A Q U S分析步总结Prepared on 21 November 2021

A B A Q U S分析步总结 作者:管理员发布于:2014-12-15 06:50:08 文字:【】【】【】最近在对ABAQUS的学习中遇到了一些问题,就是在建模过程中Step模块的分析步以及每个分析步下的初始增量步、最大增量步、最小增量步它们的具体含义,该去怎样设定,ABAQUS在求解一个非线性问题时是怎样进行迭代的,如何去判断每个增量步迭代的平衡条件等等。通过查阅资料和ABAQUS帮助文档,我对这些问题也有了深入的理解,现将这些问题以及我自己的一些理解总结如下,希望和大家分享。 ABAQUS/Standard对于非线性问题的求解采用的是Newton-Raphson算法来实现。通过对每一个分析步下的增量步进行多次迭代,来使每个增量步达到收敛,进而得到该分析步下的收敛解。在迭代的过程中,ABAQUS会根据收敛情况,自动地对增量步进行扩大或折减。具体过程如下: 如果一个增量步在16次迭代之内获得了收敛解,则成功结束当前的增量步,并开始求解下一个增量步。如果两个连续的增量步都在5次迭代之内就获得了收敛解,ABAQUS/Standard自动将下一个增量步增大为当前增量步的150%。这个过程叫做增量步的“扩大”。 如果一个增量步经过16次迭代仍没有获得收敛解,或者计算结果是发散的,ABAQUS/Standard会将增量步减小为当前增量步的25%,重新开始迭代尝试,此过程称为“折减”。 当折减次数超过5次,那么就会出现我们经常遇到的错误信息: ***ERROR: TOO MANY ATTEMPTS MADE FOR THIS INCREMENT: ANALYSIS TERMINATED 造成这样的问题往往是因为模型的本身有问题,例如存在刚体位移、过约束、接触或者塑性材料定义不当、网格过于粗糙或过于细化等。 在分析一个非线性问题前,一般都要对最大增量步的数目、初始增量步、最大和最小增量步进行适当的设定,来保证求解的顺利进行。这些参数的具体设置方法如下: 1. 初始增量步:对于很容易收敛的问题,一般设定为1即可;对于难以收敛的非线性问题,需减小初始增量步,如将分析步时间乘以或(这个需根据问题的具体情况决定)。 2. 最小增量步:一般采用默认值(1e-5),对于非常复杂的非线性问题,可以再将其减小1到2个数量级。 3. 最大增量步:一般采用默认值,因为它对模型是否收敛并没有影响。 4.最大增量步数目:默认为100,对于复杂的非线性分析,需要的增量步数往往大于100,所以应当把这些参数设置的尽量大一些。

(整理)基于ABAQUS复合材料薄壁圆筒的屈曲分析.

基于ABAQUS复合材料薄壁圆筒的屈曲分析 由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。因此,为了保证结构的安全,需要进行屈曲分析。 对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。ABAQUS 就是其中的杰出代表。 1.屈曲有限元理论 有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。 1.1线性屈曲 假设结构受到的外载荷模式为。,幅值大小为,结构内力为Q,则静力平衡方程应为 进一步考察结构在载荷作用下的平衡方程,得到 由于结构达到保持稳定的临界载荷时有,代入上式得 该方程对应的特征值问题为 如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为 该方程即为求解线性屈曲的特征值方程。为屈曲失稳载荷因子,为结构失稳形态的特征向量。

1.2非线性屈曲 非线性屈曲分析方法多采用弧长法进行分步迭代计算,在增量非线性有限元分析中,沿着平衡路径迭代位移增量的大小(也叫弧长)和方向,确定载荷增量的自动加载方案,可用于高度非线性的屈曲失稳问题。与提取特征值的线性屈曲分析相比,弧长法不仅考虑刚度奇异的失稳点附近的平衡,而且通过追踪整个失稳过程中实际的载荷、位移关系,获得结构失稳前后的全部信息,适合于高度非线性的屈曲失稳问题。 2.ABAQUS的线性屈曲分析 ABAQUS中提供两种分析方法来确定结构的临界荷载和结构发生屈曲响应的特征形状:线性屈曲分析(特征值屈曲分析)、非线性屈曲分析。 线性屈曲分析用于预测一个理想的弹性结构的理论屈曲强度。它是预期的线性屈曲荷载的上限,可以作为非线性屈曲分析的给定荷载,在渐进加载达到此荷载前,非线性求解必然发散;它还可以作为施加初始缺陷或扰动荷载的依据。所以预先进行特征值屈曲分析有助于非线性屈曲分析,进行特征值屈曲分析是必要的。 3.算例 3.1问题概述 图3-1 实例模型 如图所示两端开口的复合材料薄壁圆筒,底端固支,顶端作用有均匀分布的轴压边载。半径R=152mm,高度300mm,厚度t=0.804mm,对称铺层[±45,0]s,

复合材料ABAQUS分析 精讲版

复合材料Abaqus仿真分析——精讲版 本文以一个非常简单的复合材料层合板为例,应用Abaqus/CAE对其进行线性静态分析。一块边长为254mm的方形两层层合板,两层厚度均为2.54mm,第一层铺层角45°,第二层铺层角-45°;板的四边完全固支,板的上表面受到689.4kpa的压强。各单层的材料相同,材料属性如下: E1=276GPa,E2=6.9GPa,E3=5.2GPa,γ12=0.25,G12=3.4GPa,G13=3.4GPa,G23=3.4G。 定义模型的几何形状 创建一个具有平面壳体单元基本特征的三维变形体,在草图环境绘制板的几何形状如下图:

定义材料属性和局部材料方向 Create coordinate system

定义局部坐标系,对于像本例这样的简单几何体,本可以不用另外建立局部坐标系,但笔者还是在本例中用了局部坐标系,主要是考虑到以后再复杂问题中会经常用到这一方法。 创建铺层 或者使用菜单栏

此处使用全局坐标系

使用用户自定义坐标系 Rotation angle depends on the coordinate system defined by user. Par example, if x-axe in the user defined system is parallel to the direction of fiber; we should replace the angles by 0 and 90. 使用全局坐标系和局部坐标系的区别在下面这一步可以查看 如果使用全局坐标系,会有方向指示,如果使用用户自定义坐标系,在层中没有方向指示可以通过’工具——查询’来检查铺层(Tool ---- Q uery----ply stack plot) Case 1 全局坐标系

ABAQUS及Ansys概述

ABAQUS软件公司和产品应用介绍 一、ABAQUS软件公司的发展历程 1972年,ABAQUS的首要创始人David Hibbitt在布朗大学完成了Ph.D.论文,论文的一部分为基于有限元方法的计算力学内容。这期间,他和他的导师创建了一个公司,产品为他们开发的有限元软件MARC。此后,ABAQUS的另外一个创始人Paul Sorensen也加入了MARC,但之后回到布朗大学继续攻读Ph.D学位。ABAQUS的另外一个创始人Dr. Bengt Karlsson曾经是Control Data公司的分析工程师,由于工作的关系,他逐步对当时各种有限元程序加以熟悉并产生浓厚兴趣。1976年,他从欧洲来到美国和Hibbitt一同在MARC工作。 作为MARC的总工程师,Hibbitt越发意识到工业界对有限元软件有一种强烈的需求,将会成为工程师的日常工具,逐步取代传统的实验做法,但这要求对现有的程序进行大幅度修改,使之能够处理更大规模的模型,计算的可靠性和精度更高。他建议导师重写MARC的内核来适应工业领域的要求,但是他的导师当时不愿意进行这样的一笔投资。1977年,Hibbitt离开MARC开始从头编写ABAQUS。Karlsson很快加入了他。之后,已经从布朗大学博士毕业正在通用汽车公司工作的Sorensen也加入了他们的行列。Hibbitt, Karlsson & Sorensen, Inc., (HKS) 公司于1978年2月1日正式成立。三个力学专家开始了一个强大工程分析工具的发展历程。 HKS的第一个客户是Westinghouse Hanford公司,它在华盛顿州从事核反应堆方面的开发工作。Westinghouse Hanford需要进行复杂的分析,包括核燃料棒的接触、蠕变和松弛等问题。ABAQUS可以进行温度相关的蠕变、塑性以及接触建模体现了其优势,很快ABAQUS在核工业领域小有名气。 ABAQUS早期的应用还包括石油、军工等其它领域。随着软件功能的不断强大,汽车公司在80年代中期开始采用ABAQUS作为复杂工程模拟的工具。此后ABAQUS的研发一直是和重要工业客户一起合作进行的,这些客户碰到的力学难题,双方会一起参与来设法解决,同时不断丰富ABAQUS本身的功能。今天,ABAQUS已经被应用于各个工业领域作为核心产品的研发工具,对它求解能力的强大性和灵活性的赞誉不绝于耳。 2002年底HKS公司改名为ABAQUS公司,全部业务都是进行ABAQUS软件的开发与维护。近年来公司始终保持两位数增长,2007年增长17%,2008年增长18%。目前ABAQUS全球有800名雇员,在北美、欧洲、亚太地区有40个分公司或代表处。在总部的400多名雇员中有200多人具有工程或计算机的博士学位,70多人具有硕士学位。被公认为世界上最大且最优秀的非线性固体力学研究团体。 二、ABAQUS软件的发展历程 ABAQUS最早的产品为ABAQUS/Standard。ABAQUS/Standard是一个通用

abaqus复合材料

复合材料不仅仅是几种材料的混合物。它有一些普通材料所没有的特性。它在潮湿和高温环境、冲击、电化学腐蚀、雷电和电磁屏蔽环境中具有不同于普通材料的特性。 复合材料的结构形式包括层板、夹层结构、微模型、机织预制件等。 复合材料的结构和材料是相同的,并且在结构形成时可以同时确定材料的分布。它的性能与制造过程密切相关,但制造过程非常复杂。由于复合材料结构不同层的材料性能不同,复合材料结构在复杂荷载作用下的破坏模式和破坏准则也各不相同。 在ABAQUS中,复合材料的分析方法如下 1建模 其结构形式决定了其建模方法,可以采用基于连续介质的壳单元和常规壳单元。复合材料应用广泛,但复合材料的建模是一个难点。制作复杂的结构光需要一个月的时间2材料 使用“图纸类型”(图层材质)来建立材质参数。材料参数可以以工程参数的形式给出,也可以通过子选项给出材料强度数据。这种材料只使用平面应力问题。

ABAQUS可以用两种方式定义层压板:复合材料截面定义和复合材料层压板定义复合剖面定义对每个区域使用相同的图层特性。这样,我们只需要创建一个壳组合,将截面属性指定给二维(在网格中定义的常规壳元素)或三维(三维的大小应与壳中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合分析方法简介 复合覆盖定义由复合布局管理器定义,主要用于在模型的不同区域构造不同的层。因此,在定义之前应该先划分区域,并将不同的层分配给不同的区域。它可以根据常规shell的元素和属性进行定义。 传统的壳单元定义每个层的厚度并将其分配给二维模型。根据单元的厚度可以将单元划分为三维单元的厚度方向。 提示:堆栈参考坐标系(放置方向)的定义和每个堆栈坐标系(图层方向)的定义。定义正确的图层角度、图层厚度和图层顺序。ABAQUS无法分析单个层的法向变化超过

Abaqus中复合材料弹性属性的设定

一、定义材料的刚度矩阵 从弹性力学理论可以知道,各向异性材料的刚度矩阵由于有对称性,刚度系数有最初的36个减少到21个,如下图: 在实际应用中,大多数工程材料都有对称的内部结构,因此材料具有弹性对称性,这种对称性可以进一步简化上述的刚度矩阵。 1、有一个弹性对称面的材料(如结晶学中的单斜体) 例如取x-y平面为对称面,则D1112= D1113= D2212= D2213= D3312= D3313= D1223= D1323=0,刚度系数又减少8个,剩下13个。 2、有两个正交(相互垂直)弹性对称面的材料 例如进一步取x-z平面为对称面,则D1123= D2223= D3323= D1213=0,刚度系数又减少4个,剩下9个,如下图: 在Abaqus编辑材料中进行个刚度系数的设定。

3、有三个正交弹性对称面的材料 如果材料有三个相互垂直的弹性对称面,没有新的刚度系数为零,也只有9个。 4、横观各项同性材料 若经过弹性体材料一轴线,在垂直该轴线的平面内,各点的弹性性能在各方向上都相同,我们称此材料横观各向同性材料,如单向复合材料。对于这种材料最终的刚度系数只剩下D1111,D1122,D1133,D3333,D1212五项,其余各项均为零。在复合材料中,经常遇到正交各项异性和横观各项同性两种材料。 二、定义材料工程弹性常数 通过指定工程弹性常数定义线弹性正交各向异性材料是最便捷的一种方法,根据复合材料力学理论,用工程弹性常数表示的柔度矩阵表示如下:

其中,γij/Ei=γji/Ej,所以用9个独立弹性常数可以表征材料属性,即三个材料主 方向上的弹性模量E1,E2,E3,三个泊松比γ12,γ13,γ23,三个平面内的剪切弹性模量G12,G13,G23。 例如测得复合材料一组材料数据为:E1=39GPa,E2=8.4GPa,E3=5.2GPa,γ12=0.26,γ13=0.3,γ23=0.28,G12=4.2GPa,G13=3.6GPa,G23=2.4GPa (随便给出的)。在Abaqus编辑材料对话框中输入对应数据,完成正交各向异性材料的定义。 对于横观各向同性材料,E1=E2,γ13=γ23,γ31=γ32,G13=G23,弹性常数

总结Abaqus操作技巧总结

打开abaqus,然后点击file——set work directory,然后选择指定文件夹,开始建模,建模完成后及时保存,在进行运算以前对已经完成的工作保存,然后点击job,修改inp文件的名称进行运算。切记切 记!!!!!! 1、如何显示梁截面(如何显示三维梁模型) 显示梁截面:view->assembly display option->render beam profiles,自己调节系数。 2、建立几何模型草绘sketch的时候,发现画布尺寸太小了 1)这个在create part的时候就有approximate size,你可以定义合适的(比你的定性尺寸大一倍); 2)如果你已经在sketch了,可以在edit菜单--sketch option ——general--grid更改 3、如何更改草图精度 可以在edit菜单--sketch option ——dimensions--display——decimal更改 如果想调整草图网格的疏密,可以在edit菜单--sketch option ——general——grid spacing中可以修改。 4、想输出几何模型 part步,file,outport--part 5、想导入几何模型? part步,file,import--part 6、如何定义局部坐标系 Tool-Create Datum-CSYS--建立坐标系方式--选择直角坐标系or柱坐标系or球坐标 7、如何在局部坐标系定义载荷

laod--Edit load--CSYS-Edit(在BC中同理)选用你定义的局部坐标系 8、怎么知道模型单元数目(一共有多少个单元) 在mesh步,mesh verify可以查到单元类型,数目以及单元质量一目了然,可以在下面的命令行中查看单元数。 Query---element 也可以查询的。 9、想隐藏一些part以便更清楚的看见其他part,edge等 view-Assembly Display Options——instance,打勾 10、想打印或者保存图片 File——print——file——TIFF——OK 11、如何更改CAE界面默认颜色 view->Grahphic options->viewport Background->Solid->choose the wite colour! 然后在file->save options. 12、如何施加静水压力hydrostatic load --> Pressure, 把默认的uniform 改为hydrostatic。这个仅用于standard,显式分析不支持。 13、如何检查壳单元法向 Property module/Assign/normal 14、如何输出单元体积 set步---whole model ----volume/Tickness/Corrdinate-----EVOL 15、如何显示最大、最小应力 在Visualization>Options>contour >Limits中选中Min/Max:Show Location,同样的方法可以知道具体指定值的位置。 16、如何在Visualization中显示边界条件 View——ODB display option——entity display——show boundary conditions

相关主题
文本预览
相关文档 最新文档