起道机液压缸测试台的液压系统设计与研究
- 格式:pdf
- 大小:155.52 KB
- 文档页数:2
学士学位论文论文题目液压传动综合实验研究与液压综合实验台设计(英文)Experimental Study of Hydraulic and Hydraulic Integrated Comprehensive Test Bench学院机电与建筑工程学专业机械设计制造及其自动化姓名张妮学号200706101114指导教师周德魁2011年 6 月 3 日优秀学位论文作者声明本人郑重声明:所呈交的学位论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
本人完全了解有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理机构送交论文的复印件和电子版。
同意省级优秀学位论文评选机构将本学位论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。
本学位论文内容不涉及国家机密。
论文题目:液压传动综合实验研究与液压综合实验台设计作者单位:江汉大学作者签名:张妮2011 年6 月3 日液压传动综合实验研究与液压综合实验台设计摘要本文通过调研国内外液压综合实验台的种类及结构,分析我校液压设备的种类、各校液压综合实验的开设和性能。
1.该实验台将我校四台实验台综合为一体,各液压元件可共用,节约成本,节约空间,而且油路简单,利于学生观察和理解。
2.本实验台由三部分组成:控制部分、支撑部分、测试部分。
采用形态分析法,从多种选择方案中进行比较选优,控制部分选用PLC控制(没做具体分析);支撑部分选用框架结构,材料选用铸铁;测试部分包括液压元件性能测试,演示实验,学生自主创新设计。
3.采用模块化设计方法,将各演示实验做成单独油路板,简化油路。
4.该实验台的设计,集多功能于一体,不仅对实验台油路系统图、总装配图进行了设计,还设计了各油路板的零件图。
这样的液压综合实验台不但可以供学生进行液压实验,同时可以供科研人员进行科研实验。
试验台液压系统结构设计3.1 激振器设计液压激振器能够输出力、位移、速度等一系列参量。
它是系统的执行元件。
液压激振器要符合静态试验下各参量的输出要求。
同时还要考虑油源系统的开发,激振器本身的安装,电液伺服阀的选取,活塞轴的密封等具体要求。
3.1.1 静态设计由已给出的条件分析得出下表3.1:表3.1 试验台电液力伺服控制系统设计要求和参数项目符号 参数 单位 工作要求 被试件质量M 500 Kg 最大静态力F m 1000 KN 工作频率ω 1-33 Hz 最大速度V max 31.4 cm/s 最大加速度a 40 m/s 2 最大行程s ±150 mm 控制系统性能参数输入信号下的控制精度 e f ≤±5 高频持续时间t 2 s① 选取供油压力Ps在本课题中,负载数值比较大。
故供油压力不能根据常规计算来算。
现在,取液压系统的供油压力MPa 28p s =② 确定液压缸的活塞面积③ 在保证伺服阀阀口有足够的压降的前提下,取负载压力L p 为:MPa p L 25= 则液压缸有效面积A p 为2261024.410252210000003223m p F Ap L m -⨯=⨯⨯⨯== 因为液压缸的有效工作面积对于未知数缸筒直径D 与活塞杆直径d,按工作压力可取为d /D =0.7,代入上式得查相关手册得直径圆整为D =320mm,且取d =220mm 。
则校核有效面积得 查《机械设计手册》选取液压缸型号为 YHG1G320/220×150LF 3L 1Q图3.1液压缸结构示意图3.1.2 计算激振器的性能参数液压系统的最大流量为(速度按照31.4cm/s 计算):由前面的计算可知,液压激振器有效活塞面积为4.24×104mm 2。
由此可得此时系统所需要的最大的峰值流量为798.6L/min(速度按31.4cm/s 计算)。
选择蓄能器组,计算系统所需的平均流量N Q :)(422d D A p -=πmm m A D p325325.051.01024.4451.042==⨯⨯⨯=⨯=-ππ2422221024.4)220320(4)(4mm d D A p ⨯=-=-=ππmax2Q Q N π=得系统平均流量min /4.508L Q N =系统的最小流量min Q 为min /31L (速度按照s /cm 2.1计算)。
液压缸试验台液压系统的初步设计
张立军;刘克铭
【期刊名称】《机床与液压》
【年(卷),期】2008(36)12
【摘要】针对目前液压缸试验台存在的诸多问题,通过采用新的设计理念,包括采用非对称阀控制非对称缸及油温控制系统,提出了液压缸试验台液压系统的两套设计方案,即功率回收方式和非功率回收方式,并对其工作原理及特点进行了详细分析和对比.
【总页数】3页(P110-112)
【作者】张立军;刘克铭
【作者单位】中国石油大学(华东)机电工程学院,山东东营,257061;广西大学机械工程学院,广西南宁,530004
【正文语种】中文
【中图分类】TH137.1
【相关文献】
1.一种创新的液压缸加载试验台的液压系统设计 [J], 吕少力;王保相
2.液压缸试验台液压系统的改进 [J], 周宝花;蔡洪波
3.液压缸试验台液压系统的改进设计 [J], 吴成志; 赵艳平; 芮丰
4.基于AMESim的液压缸冲击试验台液压系统仿真分析 [J], 邹波; 王世红
5.液压缸综合性能检测试验台液压系统的研究开发 [J], 曾亿山;李文新;夏永胜
因版权原因,仅展示原文概要,查看原文内容请购买。
关键词:故障模拟;液压系统;试验台0引言不同于机械设备,液压元件及其系统有其特殊性,即液压设备的元件、工作油液等大都密封在油路中,相较于机械设备具有不直观的缺陷,此外,其工作状态只能靠设备中仅有的压力表和流量计来指示,不能使用电气设备检查参数用的万用表、测试笔等电子仪器。
因此,液压系统的故障主要表现出不确定因素多、隐蔽性强、种类多样、因果关系复杂、故障发生后难以查找等特点,且故障的突发会带来生产设备停工、造成重大经济损失等后果,因此在保障液压系统正常运行的前提下,如何预判故障及其征兆具有重要意义[1-2]。
1设计要求与方案设计1.1设计要求要求液压系统故障模拟试验台能够完成液压泵、液压缸、溢流阀和电磁阀等元件的故障模拟,系统最高压力7MPa,流量不小于11L/min。
1.2方案设计液压泵10气穴故障模拟:通过安装一个悬空的吸油过滤器11.2来模拟液压泵10的气穴故障[3]。
液压缸6内外泄漏故障模拟:通过在液压缸6的进油口并联一个节流阀1.3来模拟液压缸6进油路的外泄漏故障;通过在液压缸6的出油口并联一个节流阀1.5来模拟液压缸6出油路的外泄漏故障;在液压缸6的进出油口之间并联一个节流阀1.4来模拟液压缸6的内泄漏故障。
先导式溢流阀9.1内泄漏和弹簧折断故障模拟:溢流阀9.1进油路加截止阀3.2来模拟溢流阀阀芯在关闭位置卡死,在其进油路上并联一个节流阀1.7来模拟溢流阀9.1内泄漏和弹簧折断故障。
电磁换向阀7内泄漏故障模拟:利用节流阀1.6将换向阀7的P口和A口相连,来模拟换向阀7因阀芯磨损等原因导致的内泄漏故障。
先导式减压阀5故障模拟:利用一个节流阀1.1与油箱相通,模拟先导式减压阀5的远程调压口和泄油口接通,使减压阀5阀芯一直处于打开状态,故障现象为无法减压,以此来模拟锥阀和阀座配合间隙过大,减压阀锥阀弹簧折断、漏装,主阀芯在开启位置卡死等故障。
节流阀1.2故障模拟:将节流阀1.2与截止阀3.1串联来模拟节流阀1.2的阀芯在关闭位置卡死的故障现象;将节流阀1.1与节流阀1.2并联,来模拟节流阀阀芯磨损故障。
山东农业大学毕业论文题目:挖掘机液压系统的设计与研究院部机械电子与工程学院专业班级届次学生姓名学号指导教师目录引言 (i)1挖掘机发展的历史和现状及发展 (3)1.1国内挖掘机发展的历史和现状 (3)1.2 国外挖掘机发展的历史和现状及发展 (2)2 挖掘机液压系统的基本组成及其基本要求 (2)3 挖掘机液压系统的基本动作分析 (2)4 挖掘机液压系统的基本回路分析 (2)4.1限压回路 (2)4.2缓冲回路 (3)4.3节流回路 (2)4.4行走限速回路 (2)4.5合流回路 (2)4.6闭锁回路 (2)4.7再生回路 (2)5 负载敏感压力补偿液压系统的设计 (2)5.1负载敏感压力补偿液压系统控制回路设计 (2)5.1.1降低系统溢流损失 (2)5.1.2液压系统的最高压力限制 (2)5.1.3防止系统压力冲击 (3)5.1.4二次压力反馈式LS控制系统 (3)5.1.5发动机扭矩控制 (2)5.2负载敏感压力补偿液压系统的基本回路 (2)5.2.1回转回路 (2)5.2.2行走回路 (3)5.2.3动臂、斗杆、铲斗回路 (3)致谢词 (2)参考文献 (2)ContentsIntroduction (i)1 Development and present of excavator (3)1.1 Development and present of excavator internal (3)1.2 Development and present of excavator overseas (2)2 The basic compose and requirment of hydraulic system of excavator 23 The basic motion analysis of hydraulic system of excavator (2)4 The basic circuit analysis hydraulic system of excavator (2)4.1Pressure limiting circuit (2)4.2Buffer circuit (3)4.3Cuttingloop (2)4.4Walking speed limit of loop (2)4.5 Combined Loop (2)4.6 Closed loop (2)4.7 Regeneration circuit (2)5 The design of pressure compensated load sensing hydraulic system 25.1The design of load sensing hydraulic system pressure compensationcontrol loop (2)5.1.1 Overflow losses reduce system (2)5.1.2Limit the maximum pressure hydraulic system (2)5.1.3 To prevent the system pressure shock (3)5.1.4LS secondary pressure feedback control system (3)5.1.5Engine torque contro (2)5.2Pressure compensated load sensing hydraulic system of the basiccircuit (2)5.2.1Turn loop (2)5.2.2Walking Loop (3)5.2.3The boom;Stick;Bucket Loop (3)Acknowledgement (2)References (2)挖掘机液压系统的设计与研究【摘要】本次设计主要是对挖掘机的液压系统进行设计和研究。
液压教学实验台控制系统设计与实现的开题报告标题:液压教学实验台控制系统设计与实现一、研究背景及意义液压传动技术是工业自动化中广泛应用的一种技术,具有传动力大、灵活性强、设计方便、可靠性高等特点,因此在工程领域中有广泛的应用。
为了加强学生对液压技术的理论和实践学习,设计液压教学实验台对学生进行教学和实践训练,已成为高校教学的重点。
随着液压技术的不断发展和应用,液压控制系统作为液压技术中的重要组成部分,其应用范围也在不断扩大,液压控制系统的研究也越来越重要。
本项目主要针对液压控制系统及其在液压教学实验台中的应用展开研究,旨在设计一种可以实现对液压教学实验台进行控制,并可观测和记录液压系统各项参数的控制系统。
此外,本项目的研究还可以为实验台的改进和改良提供技术支持,并为液压控制系统的研究提供理论支持。
二、研究现状及存在问题液压控制系统中常用的控制方式有手动控制和自动控制两种,其中自动控制方式可分为开环控制和闭环控制两种;液压控制系统的常用控制器有PID控制器和模糊控制器等。
在实际应用中,不同的液压控制系统和控制任务需要使用不同的控制方式和控制器。
目前,针对液压教学实验台控制系统的研究已经开始,但仍存在以下问题:1. 对液压控制系统的实现采用的方法和技术方案不同,导致实验结果存在一定的差异;2. 现有的液压教学实验台控制系统多数存在参数设定不准确,控制精度不高等问题;3. 相比于真实应用场景中的液压控制系统,现有的液压教学实验台控制系统的控制效果仍有一定的待提高空间。
三、研究目标与内容本项目旨在设计并实现一套具备良好稳定性和控制精度的液压教学实验台控制系统。
在此基础上,本项目还将重点考虑以下内容:1. 液压控制系统的控制方式和控制器的选择;2. 实验台控制系统的硬件设计和软件设计;3. 系统参数的调试和实验数据的采集及处理。
四、研究方法本项目采用机电一体化的设计思路,并选用模糊控制算法作为液压控制系统的控制器。
第五章试验台液压系统设计根据以上分析,因飞机在跑道滑行时,起落架缓冲器的负载特性较复杂,只能按道路谱提取极限参数:如最大行程、最大速度、最大激振力以及最高频率等。
由图5.6可以看出最大速度(最大速度为0.2m/s)一定时,负载特性曲线。
图5.6 最大速度一定时的负载特性曲线5.2系统方案和液压系统图5.2.4液压系统图液压系统原理如图5.8所示。
它由液位计1、吸油滤油器2、电接点温度计3、液位继电器4、电机5、内啮合齿轮泵6、单向阀7、高压滤油器8、蓄能器9、防震压力表10、溢流阀11、直动式溢流阀12、电磁换向阀13、伺服阀14、作动器15以及油源组成。
图5.8 液压系统图5.2.5液压回路原理在图5.8所示的液压系统中,采用两组油泵电机(电机5和油泵6)并联共享一个油箱的结构,两组电机可以独立运行或并联运行,运行灵活,确保系统在小流量运行时节约能量。
泵采用直线共轭内啮合齿轮泵,它的特点是,在液压行业被喻为“永不磨损的油泵”,用于高、精、尖液压系统。
与叶片泵、柱塞泵相比,直线共轭内啮合齿轮泵低噪音、无脉动、长寿命等卓越性能。
蓄能器9是用来减少压力波动。
这个蓄能器的作用主要的是在伺服阀打开时能向系统补充油液,使伺服阀进油压力少跌或基本保持不变。
如果没有蓄能器的补充,阀开启后的短时间内,阀的进口也就是泵的出口压力要低下去然后再升上来,这样就影响了阀的控制性能,这是一种稳定系统压力的主动设计。
伺服阀14属于典型位置控制系统,它的控制原理如图5.9所示。
伺服阀体与液压缸固结在一起,构成了反馈控制。
在控制过程中,首先由计算机给定输入指令,推动电液伺服阀的阀芯,液压油进行液压缸,推动其运动。
液压缸的输出位移和输出力能够不断地回输到阀体上,与滑阀的输入位移相比较,得出两者之间的位置偏差,即滑阀的开口量。
由于开口量的存在,油源的压力油就要进入液压缸,驱动液压缸运动,使阀的开口量(偏差)减小,直至输出位移与输入位移相一致时为止。
液压试验台设计摘要:液压系统的组成、功能日益复杂,因而发生故障的机率也随之增多。
液压系统的故障具有隐蔽性、变换性和诱发因素的多元性,所以在故障诊断和排除时,不但需要有熟练的技术人员,同时还要有完善的检测设备。
检测液压元件性能参数的试验设备多为性能单一的液压试验台。
而且一般为液压件生产厂家和研究所专用。
从使用方面来看,一旦液压系统发生故障,常常需检测多种液压元件的技术指标,才能找出故障部位和根源,达到及时修理的目的。
本文阐述了一种液压试验台的设计、工作原理及主要技术指标。
它综合了液压阀和液压缸专用试验台的性能,达到了一机多用的目的,该试验台具有测试可靠、制造容易、维护方便、成本低廉等特点。
关键词:液压试验台;油箱;液压阀;液压缸;压力机THE DESIGN OF HYDRAULIC TEST BENCHAbstract:The components and functions of hydraulic system become more and more complex , and thus the probability of failure also increase. Hydraulic system failure with elusive, transformation-induced and inducing factor multiplicity, so in the fault diagnosis and rule out the possibility, not only the need for skilled personnel, but also have a well-developed testing equipment, most of the test equipments that used for detecting the performance parameters of hydraulic components are a single hydraulic test bed. And generally to hydraulic parts manufacturers and research institutes dedicated. From the perspective of using, once the hydraulic system failure, are often required to detect a wide range of hydraulic components of the technical indicators to identify the root causes of fault location and to achieve the purpose of timely repairs. In this paper we explain the design of one kind of hydraulic test bench, working principle and the main technical indicators. It combinated the performance of hydraulic valves and hydraulic cylinders dedicated test-bed, to become multiple use, the test bench with characteristics of test reliable, easy to manufacture, easy maintenance, low cost and so on.Key words:hydraulic test stand; tank; hydraulic valve; hydraulic cylinder; forcing press目录摘要 (1)Abstract. (2)1 绪论 (1)1.1 课题背景及目的 (1)1.2 国内外研究状况 (1)1.2.1 国内外发展现状 (1)1.2.2 发展趋势 (3)1.2.2.1 以计算机软件为平台,实现液压传动实验的虚拟化 (3)1.2.2.2 以计算机网络为平台实现液压传动实验的网络化 (3)1.2.2.3 利用PLC编程实现液压传动实验的智能化 (3)1.2.2.4 以液压故障诊断系统为平台,实现液压系统的检测与故障分析 (3)1.2.2.5 利用纯水液压传动节约能源、保护环境 (4)1.3 论文构成及研究内容 (4)2 液压试验台基本设计计算 (5)2.1 液压系统设计步骤与设计要求 (5)2.2 初选系统工作压力 (5)2.3 计算液压缸的主要结构尺寸 (5)2.4 制定基本方案和绘制液压系统图 (8)2.4.1 制定基本方案 (8)2.4.2 液压试验台系统原理图 (9)3 液压试验台选用设计 (12)3.1 液压泵的选型与安装 (12)3.1.1 液压泵工作压力的确定 (12)3.1.2 液压泵流量的确定 (12)3.1.3 液压泵的安装方式 (12)3.2 电动机功率的确定 (15)3.3 液压阀的选型与安装 (15)3.4 液压油缸的选型 (17)3.5 液压油管的选型 (17)3.6 液压油箱的设计 (18)3.6.1 液压油箱有效容积的确定 (18)3.6.2 液压油箱的散热计算 (18)3.6.3 液压油箱的容量计算 (19)3.6.4 液压油箱的结构设计 (19)4 简易轻载压力机设计 (23)4.1 概述 (23)4.2 简易压力机设计 (24)5 结论 (25)参考文献 (26)致谢 (27)1 绪论1.1 课题背景及目的随着液压工业的发展,液压技术在各种机械中发挥着越来越重要的作用。
液压机液压系统设计与实践1. 引言液压系统在各种工程机械和工业设备中具有广泛的应用,其性能的优劣直接影响到整台设备的运作效率和稳定性。
本文主要讨论了液压机液压系统的设计与实践,包括系统的设计原则、主要元件的选择、系统的安装与调试等方面内容。
2. 液压系统的设计原则2.1 确定系统的工作压力和流量根据机械设备的工作需求,确定液压系统的工作压力和流量,为后续元件的选择提供依据。
2.2 选择合适的液压油液压油的选择应考虑工作环境、温度范围、系统压力等因素,以确保系统的正常运行。
2.3 合理布局液压元件液压元件的布局应考虑系统的稳定性、易维护性等因素,合理布局可以降低系统的压力损失,提高系统效率。
2.4 安全性与可靠性设计为保证液压系统的安全可靠运行,应设计必要的安全保护装置,如压力继电器、溢流阀等。
3. 主要元件的选择3.1 液压泵的选择根据系统的工作压力和流量,选择合适类型的液压泵,如齿轮泵、柱塞泵等。
3.2 液压控制阀的选择根据控制需求,选择合适的液压控制阀,如方向控制阀、压力控制阀、流量控制阀等。
3.3 液压缸的选择根据执行机构的运动要求,选择合适的液压缸,如活塞式液压缸、柱塞式液压缸等。
3.4 液压油箱的设计液压油箱的设计应考虑油液的冷却、过滤、储备等功能,确保液压系统的正常运行。
4. 液压系统的安装与调试4.1 液压系统的安装按照设计图纸和规范要求,进行液压元件的安装,确保各连接部位严密,管道布局合理。
4.2 液压系统的调试通过对系统进行调试,检查各元件的工作性能是否达到设计要求,及时发现并解决问题。
5. 结论液压机液压系统的设计与实践涉及多个方面内容,合理的设计和严谨的实践过程是保证系统正常运行的关键。
通过本文的讨论,可以对液压系统的设计与实践有更深入的了解,为实际工程应用提供参考。