多级放大电路设计及测试
- 格式:doc
- 大小:432.00 KB
- 文档页数:8
多级放大电路单元测试题一、单选题(每题2分)1.关于复合管,下述正确的是()A.复合管的管型取决于第一只三极管B.复合管的输入电阻比单管的输入电阻大C.只要将任意两个三极管相连,就可构成复合管D.复合管的管型取决于最后一只三极管2.已知两共射极放大电路空载时电压放大倍数绝对值分别为A1u 和A2u,若将它们接成两级放大电路,则其放大倍数绝对值()。
A. A1u A2uB. A1u+A2uC. 大于A1uA2uD. 小于A1uA2u3.设计一个两级放大电路,要求输入电阻为1kΩ至2kΩ,电压放大倍数大于2000,第一级和第二级应分别采用。
A. 共射电路、共射电路B. 共源电路、共集电路C. 共基电路、共漏电路D. 共源电路、共射电路4.电容耦合放大电路 ( )信号。
A. 只能放大交流信号B. 只能放大直流信号C. 既能放大交流信号,也能放大直流信号D. 既不能放大交流信号,也不能放大直流信号5.直接耦合放大电路 ( )信号。
A. 只能放大交流信号B. 只能放大直流信号C. 既能放大交流信号,也能放大直流信号D. 既不能放大交流信号,也不能放大直流信号6.设计一个两级放大电路,要求电压放大倍数的数值大于10,输入电阻大于10M Ω,输出电阻小于100Ω,第一级和第二级应分别采用( )。
A. 共漏电路、共射电路B. 共源电路、共集电路C. 共基电路、共漏电路D. 共源电路、共射电路二、判断题(每题2分)1.多级放大电路的输入电阻等于第一级的输入电阻,输出电阻等于末级的输出电阻。
()2.只有直接耦合的放大电路中三极管的参数才随温度而变化,电容耦合的放大电路中三极管的参数不随温度而变化,因此只有直接耦合放大电路存在零点漂移。
()3.直接耦合的多级放大电路,各级之间的静态工作点相互影响;电容耦合的多级放大电路,各级之间的静态工作点相互独立。
()4.直接耦合放大电路存在零点漂移主要是由于晶体管参数受温度影响。
第1篇一、实验目的1. 理解多级运算电路的工作原理及特点。
2. 掌握多级运算电路的设计方法。
3. 学习使用电子实验设备,如信号发生器、示波器、数字万用表等。
4. 培养实验操作能力和数据分析能力。
二、实验原理多级运算电路是由多个基本运算电路组成的,通过级联多个基本运算电路,可以实现对信号的放大、滤波、调制、解调等功能。
本实验主要涉及以下几种基本运算电路:1. 反相比例运算电路:该电路可以实现信号的放大或衰减,放大倍数由反馈电阻RF和输入电阻R1的比值决定。
2. 同相比例运算电路:该电路可以实现信号的放大,放大倍数由反馈电阻RF和输入电阻R1的比值决定。
3. 加法运算电路:该电路可以将多个信号相加,输出信号为各输入信号的代数和。
4. 减法运算电路:该电路可以实现信号的相减,输出信号为输入信号之差。
三、实验仪器与设备1. 信号发生器:用于产生实验所需的输入信号。
2. 示波器:用于观察实验过程中信号的变化。
3. 数字万用表:用于测量电路的电压、电流等参数。
4. 电阻、电容、二极管、运放等电子元器件。
5. 电路板、导线、焊接工具等。
四、实验内容与步骤1. 设计并搭建反相比例运算电路,测量并记录放大倍数、输入电阻等参数。
2. 设计并搭建同相比例运算电路,测量并记录放大倍数、输入电阻等参数。
3. 设计并搭建加法运算电路,测量并记录输出信号与输入信号的关系。
4. 设计并搭建减法运算电路,测量并记录输出信号与输入信号的关系。
5. 分析实验数据,验证实验结果是否符合理论计算。
五、实验结果与分析1. 反相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。
分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。
实验结果与理论计算基本一致。
2. 同相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。
分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。
实验结果与理论计算基本一致。
多级放大电路设计与调试实验报告1多级放大电路设计与调试实验报告一,实验目的:1( 自行设计,安装,调试一个放大电路,满足规定实验要求2( 对实验电路的设计,调试过程进行分析,用实验验证模拟电路分析所采用的近似方法的可行性及同实际电路特性相比的差异性。
3( 学会在对电路进行检测后,对对应的问题和不足进行对应调节,有针对性对元件进行调整的方法。
二,实验设备:直流稳压电源,函数信号发生器,交流毫伏表,万用电表,双踪示波器,BJT 三极管,电容器,电阻,导线若干。
三,实验原理:由小功率BJT组成的电压放大电路可以对交流小信号起到线性放大作用,但是由于BJT的技术特性所限,其构成电路只能在一定范围信号电压,一定信号频带宽度,一定范围环境温度内达到线性放大的目的,超出限度,便可能出现信号失真,噪声增大,甚至烧毁电路的结果,因此对电路的设计要根据具体工作要求,选取符合要求的电路组态,元件参数进行设计。
此次实验所规定的所要满足的技术参数如下:电源电压VCC=12V;电压增益音视颇简称=40dB;输入电阻Ri(20k;最大输出电压VOM (有效值)>1V;频带宽度30Hz~30KHz;负载电阻RL=2k;信号源内阻RS=1k;使用环境温度:-10~+60鉴于电路的上述工作要求,在对电路组态以及元件选取的时候有如下考虑: 1,由于电路电压增益要达到40DB,也就是要电压放大100倍,因此要选用一种高增益的电路组态,由BJT放大电路三种组态知,其中共发射极放大电路增益大,因此可选用其做为放大电路的一部分。
2,对电路输入电阻的要求为Ri>20k,而共射极放大电路的输入电阻一般较小,很难满足此种要求,考虑加入另一级电路以提高输入电阻,而射极输出电路具有高输入阻抗的特点,因此选用共集电极射极输出电路做为放大电路的输入级。
3,由电路设计要求放大信号的频带宽度为30Hz~30Khz,而放大电路中对交流信号频率响应起主要作用的是电路中的偶合电容,旁路电容,以及三极管的极间电容,因此要设法调节这些电容的大小,以满足频带宽度的要求。
3.16多级放大电路的设计及测试一、 实验预习与思考设计任务和要求 (1) 基本要求:用给定的三极管2SC1815(NPN ),2SA1015(PNP )设计多级放大器,已知12CC V V =+,12EE V V =-,要求设计差分放大器恒流源的射极电流31~1.5EQ I mA =,第二放大级射极电流42~3EQ I mA =;差分放大器的单端输入单端输出不失真电压增益至少大于10倍,主放大级的不失真电压增益不小于100倍;双端输入电阻大于10K Ω,输出电阻小于10Ω,并保证输入级和输出级的直流电位为零。
给出设计过程,画出设计的电路,并标明参数。
首先设计,第一级的差分放大电路.要使两端串联的电阻值一样.然后集电极的两个电阻的阻值也要差不多.最后为确保发射极上的电阻为无穷大,则需要利用长尾式差分电路,确定其发射极电阻来构成一个电流源.然后设计主放大部分,要使发射极和集电极上的电阻的差值足够大,以使其达到放大100倍的要求,但还要确保阻值的合理性,以使三极管不会处于截止区或者饱和区.最后设计输出级电路.要选用尽可能小的电阻,以确保输出电阻可以足够的小,以达到要求.最后还要注意避免互补输出级出现交越失真的现象.参数:R1=R2=5kΩ,R5=10kΩ,R3=8.87kΩ,R6=R7=10kΩ,C2=1pF,C1=4μF,R12=1Ω,R9=1kΩ,R10=R11=1Ω.二、 实验目的(1) 理解多级直接耦合放大电路的工作原理和设计方法。
(2) 学习并熟悉设计高增益的多级直接耦合放大电路的方法。
(3) 掌握多级放大器的性能指标的测试方法。
(4) 掌握在放大电路中引入负反馈的方法。
三、 实验原理与测量方法直耦式多级放大器的主要设计任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出电压增益足够高的多级放大器,可对小信号进行不失真地放大。
多级放大电路的设计与测试一、实验目的1.理解多级直接耦合放大电路的工作原理与设计方法2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法3.掌握多级放大器性能指标的测试方法4.掌握在放大电路中引入负反馈的方法二、实验预习与思考1.多级放大电路的耦合方式有哪些分别有什么特点2.采用直接偶尔方式,每级放大器的工作点会逐渐提高,最终导致电路无法正常工作,如何从电路结构上解决这个问题3.设计任务和要求(1)基本要求用给定的三极管2SC1815(NPN), 2SA1015(PNP)设计多级放大器,已知V C C=+12V, -V EE=-12V,要求设计差分放大器恒流源的射极电流I EQ=1~,第二级放大射极电流I EQ=2~3mA差分放大器的单端输入单端输出不是真电压增益至少大于10 倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10k Q,输出电阻小于10Q,并保证输入级和输出级的直流点位为零。
设计并仿真实现。
三、实验原理直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。
1. 输入级电路的输入级是采用NPN型晶体管的恒流源式差动放大电路。
差动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。
典型的差动放大电路采用的工作组态是双端输入,双端输出。
放大电路两边对称,两 晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,禾厅抗干扰。
该电路作为多级放大电路的输入级时,采用 V 1单端输入,U oi 的单端输出的工作组^态。
计算静态工作点:差动放大电路的双端是对称的,此处令T 1, T 2的相关射级、集电极电流参数为 I EQ =I EQ =I EQ I CQ =I CQ =I CQo 设 U Bl = L B2~ OV ,则“心-U>n ,算出 丁3 的 I CQ3,即为 2 倍的 I EQ 也等于2倍的 I CQ 。
多级放大电路课程设计一、教学目标本节课的教学目标是让学生掌握多级放大电路的基本原理和分析方法,能够运用所学知识分析和解决实际问题。
具体目标如下:1.知识目标:•了解多级放大电路的组成和作用;•掌握放大电路的静态工作点和动态工作点调整方法;•熟悉多级放大电路的频率特性和失真现象;•掌握多级放大电路的测试和调试方法。
2.技能目标:•能够运用多级放大电路分析方法,分析和解决实际电路问题;•能够运用示波器、信号发生器等实验设备进行多级放大电路的测试和调试;•能够绘制多级放大电路的原理图和测试曲线。
3.情感态度价值观目标:•培养学生的科学思维和实验操作能力;•增强学生对电子技术的兴趣和自信心;•培养学生团队合作和交流分享的学习态度。
二、教学内容本节课的教学内容主要包括多级放大电路的基本原理、分析方法、测试和调试方法。
具体内容包括:1.多级放大电路的组成和作用:介绍多级放大电路的基本组成部分,如输入级、输出级、中间级等,以及它们的作用和相互关系。
2.放大电路的静态工作点和动态工作点调整:讲解如何通过调整偏置电阻等元件的值,使得放大电路在合适的静态工作点工作,以及如何通过反馈网络调整动态工作点。
3.多级放大电路的频率特性和失真现象:分析多级放大电路的频率特性,如低频特性和高频特性,以及失真现象的产生原因和解决方法。
4.多级放大电路的测试和调试方法:介绍使用示波器、信号发生器等实验设备进行多级放大电路的测试和调试的方法,如测试放大倍数、频率响应等。
三、教学方法本节课采用多种教学方法,以激发学生的学习兴趣和主动性。
具体方法包括:1.讲授法:通过讲解多级放大电路的基本原理和分析方法,使学生掌握相关知识。
2.讨论法:学生进行小组讨论,分享各自对多级放大电路的理解和疑问,促进学生之间的交流和合作。
3.案例分析法:通过分析实际电路案例,使学生能够将所学知识应用于实际问题中。
4.实验法:安排学生进行多级放大电路的实验操作,培养学生的实验操作能力和科学思维。
一、功能利用两个共发射极放大电路构成的两级阻容耦合放大电路实现对输入电压的放大功能。
二、性能指标电路的主要性能有电压放大倍数Av、输入电阻Ri、输出电阻Ro、同频带BW三、电路图四、原理分析及理论计算㈠原理分析:将放大电路的前级输出端通过电容接到后级输入端称为阻容耦合方式,上图所示为两级阻容耦合放大电路且两级均为共射放大电路。
由于电容对直流量的阻抗为无穷大,因而阻容耦合放大电路各级之间的直流通路各不相通,各级的静态工作点相互独立,在求解或实际调试Q点时可按单级处理,所以电路的分析与设计和调试简单易行。
而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减的传递到后级输入端,因此在分立件电路中阻容耦合方式得到非常广泛的应用。
由于前后两级电路静态工作点相互独立,接下来将对典型单级阻容耦合放大电路进行分析,对第一级:1、第一级是典型的阻容耦合共射级放大电路,它采用的是分压式电流负反馈偏置电路。
放大器的静态工作点Q主要由Rb1、Rb2、Re、Rc及电源电压所决定。
该电路利用电阻Rb1、Rb2的分压定基级电位Vbq,如果满足条件I1>>Ibq,当温度升高时,Ic q↑→Ve q↑→Vb e ↓→Ib q↓→Ic q↓,结果抑制了Ic q的变化,从而获得稳定的静态工作点。
2、基本关系式只有当I1>>Ibq时,才能保证Vbq恒定。
这是稳定点工作的必要条件,一般取I1=(5~10)Ib q(硅管),I1=(10~20)Ib q(锗管),负反馈越强,电路的稳定性越好。
所以要求Vbq>> Vb e,即Vbq=(5~10)Vb e,一般取Vbq=(5~10)V(硅管),Vbq=(5~10)V(锗管)电路的静态工作点由下列关系式确定R e≈(Vbq- Vb e)/ Ic q= Ve q/ Ic q,对于小信号放大器,一般Ic q=0.5mA到2mA,Veq=(0.2~0.5)VccRb2=Vbq/ I1==【Vbq/(5~10)Ic q】βRb1≈[(Vcc-Vbq)/Vbq]×Rb2Vceq≈Vcc- Ic q(Re+Rc)3、主要性能指标及测试方法①电压放大倍数Av=V o/Vi=-βRl’/rbe 式中Rl’=Rc//Rl ,rbe为晶体管内阻,即Rbe=rb+(1+β)26mV/{Ieq}. mA,测量放大倍数实际是测量放大器的输入电压与输出电压的值。
摘要单级放大电路的电压放大倍数一般可以达到几十倍,然而,在许多场合,这样的放大倍数是不够用的,常需要把若干个单管放大电路串接起来,组成多级放大器,把信号经过多次放大,从而得到所需的放大倍数。
在生产实践中,一些信号需经多级放大才能达到负载的要求。
可由若干个单级放大电路组成的多级放大器来承担这一工作。
在多级放大电路的前面几级,主要用作电压放大,大多采用阻容耦合方式; 在最后的功率输出级中,常采用变压器藕合方式’;在直流放大电路及线性集成电路中,·常采用直接接藕合方式。
摘要 (2)第一章放大电路基础 (3)1.1 放大的概念和放大电路的基本指标:1.2 三种类型的指标第二章基本放大电路 (7)2.1 BJT 的结构 (7)2. 2 BJT的放大原理 (8)第三章多级放大电路 (9)3.1 多级放大电路的耦合方式 (9)3.2 放大电路的静态工作点分析 (11)3.3 设计电路的工作原理 (12)3.4计算参数 .......................................................................................................... .. (13)总结......................................................................................................................... (14)参考文献 ................................................................................................................ (14)第一章放大电路基础放大的概念和放大电路的基本指标:“放大”这个词很普遍,在很多场合都会发现放大的现象的存在。
多级放大电路的设计1.放大器选择:选择合适的放大器对于多级放大电路的设计至关重要。
常见的放大器包括共射放大器、共基放大器和共集放大器等。
不同的放大器有不同的特点和应用场景,设计者应根据需求选择合适的类型。
2.放大器级数:多级放大电路的级数取决于所需的总增益。
每个级别的放大器都会对信号进行增强,但也会引入一些噪声和非线性失真。
因此,设计者需要在增益和失真之间进行权衡,选择合适的级数。
3.负反馈回路:负反馈回路是多级放大电路中的关键组成部分,用于控制放大程度并提高线性度。
通过将一部分输出信号送回到输入端,可以减小增益并降低非线性失真。
设计者需要选择适当的负反馈电阻和电容来实现所需的负反馈效果。
4.输入和输出阻抗匹配:为了最大限度地传递信号并减小信号损失,设计者需要确保输入和输出的阻抗与信号源和负载的阻抗相匹配。
此外,还应避免阻抗不匹配引起的反射和干扰。
5.电源设计:多级放大电路需要稳定的电源供应,以确保放大器可靠地工作。
设计者需要选择适当的电源电压和电流,并加入适当的电源滤波电容和电感来减小噪声。
6.频率响应设计:多级放大电路的频率响应对于信号传输的质量有直接影响。
设计者需要选择合适的放大器和组件来实现所需的频率响应,并根据需要进行频率补偿。
在多级放大电路的设计过程中,需要进行仿真和实际测试来验证设计的可行性和性能。
通过使用电子设计软件进行仿真,可以评估放大器的增益、频率响应和线性度等参数。
在实际测试中,可以使用示波器、信号发生器和频谱分析仪等仪器来检查放大电路的性能。
综上所述,多级放大电路的设计是一个涉及多个方面的复杂过程,需要设计者具备深入的电子知识和实践经验。
通过合理选择放大器、设计负反馈回路、匹配输入和输出阻抗以及进行频率响应设计等步骤,可以实现高质量的多级放大电路设计。
两级放大电路的设计测试与调试一、实验原理:1、多级放大器的指标的计算:一个三级放大器的通用模型如图所示有模型图可以得到多级放大器的计算特点:Ri=Ri多级放大器的输入电阻等于第一级放大器的输入电阻;Ro=Ro末,多级放大器的输出电阻等于末级放大器的输出电阻;Ri后=Rl前,后级放大器的输入电阻是前级放大器的负载;Ro前=Rs后,V oo前=Vs后,前级放大器的输出电路是后级放大器的信号源;Av=Av1*Av2*Av3,总的电压增益等于各级电压增益相乘。
2、实验电路:(多级放大电路的输出电阻的测试由于multisim没有晶体管毫伏表而改用万用表其中万用表(①)用来测试各个待求脚的电位,万用表(②)用来测试输出电压)二、测试方法:本实验与前面单管放大器的设计输入输出电阻与放大增益的测试是一样的三、实验内容:1测试静态工作点领Vcc=+12V,调节Rw 使放大器的第一级工作点Ve1=1.6V,用数字万用表测量各管脚电压并记录于下表Vb1 Vc1 Ve1 Vb2 Vc2 Ve22.183 8.589 1.573.175 7.773 2.547表(1)静态工作点的测试(单位:伏特)2,放大倍数的测量调整函数发生器,是放大器Ui=5mv,f=1kHz的正弦信号,测量输出电压Uo,计算电压增益填于下表3,输入电阻和输出电阻的测量运用两侧电压法测量量级放大器的输入电阻和输出电阻,测试输入电阻时,在输入口接入取样电阻R=1kΩ。
数据分别填入下表表(2)输入、输出电阻的测量4,测量量级放大器的频率特性,并会出频率特性曲线。
用点频测试法测量两级放大器的频率特性,并求出放大器的带宽△f=f H-f L。
记录相关数据,填于下表,并要求在对数坐标席上绘出放大器的幅频特性曲线。
表(3)幅频特性的测试、图(2.1)输入电阻的测量(万用表测得的是峰峰值电压的有效值实际为7.057/2mv)图(2.b)输入电阻的测量(有效值为6.13/2)由上面两图可得Ri=6620Ω。
bjt多级放大电路设计
设计BJT多级放大电路涉及到选择合适的放大器级数、电阻、电容和电源电压等参数。
在设计多级放大电路时,需要考虑以下几个方面:
1. 放大倍数,确定所需的总放大倍数,根据输入信号的幅度和输出信号的要求来确定。
2. 频率响应,考虑信号的频率范围,选择合适的频带宽度和截止频率,以确保信号在整个频率范围内都能得到放大。
3. 输入输出阻抗匹配,保证前级放大器的输出阻抗与后级放大器的输入阻抗匹配,以避免信号失真和能量损失。
4. 稳定性,考虑反馈电路的设计,以提高电路的稳定性和抑制可能的振荡。
5. 电源稳定性,选择合适的电源电压和电源滤波电路,以确保电路工作时电源的稳定性。
6. 温度稳定性,考虑温度对元器件参数的影响,选择具有较好温度稳定性的元器件。
在设计BJT多级放大电路时,需要根据具体的应用需求和电路参数来进行综合考虑和优化。
同时,还需要进行电路仿真和实际测试,以验证设计的可行性和性能是否符合要求。
最后,根据测试结果对电路进行调整和优化,以达到最佳的放大效果。
实验报告多级放大电路引言多级放大电路是电子工程学中非常常见且重要的实验之一。
在本次实验中,我们将设计和搭建一个多级放大电路,然后测试并分析其性能。
多级放大电路在信号处理、音频放大等领域具有广泛的应用。
实验目的1. 学习多级放大电路的基本工作原理。
2. 设计和搭建一个多级放大电路,并测试其信号放大性能。
实验原理多级放大电路是由多个级联的放大器构成的,每个放大器被称为一个放大级。
每个放大级的输出作为下一个放大级的输入,因此输出信号将会经过多次放大。
多级放大电路的基本工作原理如下:1. 输入信号经过第一级放大器放大,得到一级放大信号。
2. 一级放大信号作为输入信号,经过第二级放大器放大,得到二级放大信号。
3. 二级放大信号作为输入信号,经过第三级放大器放大,得到三级放大信号,以此类推。
4. 最后一级的输出信号即为多级放大电路的输出信号。
多级放大电路通常由两种类型的放大器组成:电压放大器和功率放大器。
电压放大器用于放大输入信号的电压大小,而功率放大器用于放大信号的功率。
实验步骤与结果1. 根据实验要求,设计和搭建一个三级放大电路,其中第一级为电压放大器,后两级为功率放大器。
2. 连接实验电路,并检查电路连接是否正确。
3. 输入一个信号,测试多级放大电路的输出信号大小。
4. 使用示波器监测电路的频率、相位等性能指标,并进行记录。
5. 分析实验结果,并与理论计算进行比较。
实验结果显示,多级放大电路能够将输入信号的电压和功率进行相应的放大。
输出信号的大小与输入信号的幅度差异很大,从而实现了对信号的放大处理。
同时,电路的频率和相位表现良好,没有明显的失真或偏移现象。
实验分析与讨论1. 多级放大电路的放大倍数会随着级数的增加而增加,从而达到更大的信号放大效果。
2. 电路中的放大器应具有足够的带宽,以确保输入信号的频率范围能够得到充分的放大。
3. 多级放大电路中放大器的稳定性对于整个电路的性能至关重要,应注意稳定性分析与设计。
一、设计任务1.1 设计目的:(1)、掌握设计放大电路测试三极管β值的方法,以及组装与调试方法。
(2)、进一步熟悉模拟,数字集成电路的使用方法。
1.2 设计内容及要求1、设计制作一个自动测量三极管电流放大系数β值范围的装置,将被测NPN 型三极管β值分三档;β值的范围分别为80~120及120~160,160~200对应的分档编号分别是1、2、3;待测三极管为空时显示0,超过200显示4。
2、用数码管显示β值的档次及三极管的β值;3、组装、调试三极管β值测试仪。
4、画出完整的电路图,写出设计报告。
二、设计方案2.1 设计思路设计电路测量三极管的β值,将三极管β值转换为其他可用仪器测量的物理量来进行测量(如电压,根据三极管电流IC=βIB的关系,当IB为固定值时,IC 反映了β的变化,电阻RC上的电压VRC又反映了IC的变化)。
因为题目要求分三档显示三极管的β值(即 值的范围分别为80~120、120~160及160~200,对应的分档编号分别是1、2、3),所以对转换后的物理量进行采样,将取样信号同时加到具有不同基准电压的比较电路输入端进行比较,相应的一个比较电路输出高电平,其余比较器输出为低电平,实现AD转换。
比较后再进行分档显示。
要实现分档显示,则必须对比较器输出的高电平进行二进制编码和显示译码器译码,驱动数码管显示出相应的β值档次代号。
从而实现该档次代号的显示。
在发挥部分,设计电路测量三极管的β值,将三极管β值转换为其他可用仪器测量的物理量来进行测量,如电压,根据三极管电流IC=βIB的关系,当IB为固定值时,IC反映了β的变化,电阻RC上的电压VRC又反映了IC的变化,对VRC 进行伏频转换,转换后的频率f就反映了β值的大小,然后再用计数器对f的信号进行一定时间的计数,最后通过计数器的保持输出经译码电路就可以显示β值。
关键一:将变化的β值转化为与之成正比变化的电压或电流量,再取样进行比较、分档。
实训报告(多级放大电路的搭建与静态工作点测试)
一、实训目的
1、通过电路搭建,进一步理解多级放大电路的组成与原理;
2、通过电路静态工作点的测试,判断其工作状态,进一步理解三极管放大条件;
3、锻炼与提高学生动手能力,激发学生专业学习兴趣。
二、实训器材
1、模拟实验箱
2、万用表
三、实训内容
1、多级放大电路原理图
2、电路的搭建及步骤
①搭建T1三极管基极直流通路和交流通路(12V电源、47K、15K、10uF)
②搭建三极管发射极直流通路和交流通路(RE1、1K、47uF)
③搭建T1三极管负载电阻和输出电容与T2基极相连(2.4K、10uF )
④搭建T2三极管基极直流通路(100K、10K、3K)
⑤搭建T2三极管发射极直流通路(430)
⑥搭建T2三极管集电极直流通路和交流通路(5.1K、10uF)
3
多级放大电路静态工作点测试及三极管工作状态判断
U C(V)U B(V)U E(V)发射结集电结工作状态T1
T2。
实验四多级放大电路一、实验目的1、掌握多级放大电路静态工作点的测试和调整方法。
2、掌握测试多级放大电路电压放大倍数的方法。
3、掌握测试放大器频率特性方法。
二、实验仪器1、双踪示波器。
2、万用表。
3、信号发生器。
三、预习要求1、复习教材多级放大电路内容及频率响应特性测量方法。
2、分析图多级放大电路。
初步估计测试内容的变化范围。
四、实验内容图2-1多级放大电路1、调整并测量最佳静态工作点具体步骤如下:(1) 按图接线,注意接线尽可能短。
(2) 先将Rp2调至1kΩ,通电。
然后调节Rp1,使Uce1=7~8V,调节Rp3,使Uce2=7~8V,断开第一级晶体管集电极连线,测Ic1,断开第二级集电极连线,串入万用表(电流档)测量Ic2,将测量数据Uce1、Uce2、Ic1、Ic2记录至表中(测Uce用万用表的直流电压档并联测量,测Ic用万用表的直流电流档串连测量)。
(3)参照实验一,将信号源接入Us两端,示波器接在放大器输出端,观察并调节函数信号发生器使输出信号在示波器上的波形为最大不失真时的波形。
注意:如发现有寄生振荡,可采用以下措施消除:a、重新布线,尽可能走线短。
b、可在三极管EB间加几p到几百p的电容。
c、信号源与放大器用屏蔽线连接。
2、测量电压放大倍数(1)调节函数信号发生器,使放大器的输入信号为Ui=5mV,f=1kHz的正弦信号。
(2)用示波器分别观察第一级和第二级放大器的输出波形,若波形失真,可少许调节Rp1及Rp3,直到使两极放大器输出信号波形都不失真为止。
(3)在输出波形不失真的条件下,测量记录Ui、Uo1、Uo2(用示波器测量)。
(4)接入负载电阻RL(用Rp4代替),其他条件同上,测量记录Ui、Uo1、Uo2,填入表中。
并计算Au1、Au2、Au。
(可调节负载电阻值观察结果)表2.2 数据记录表43、测试放大器的幅频特性用逐点法测量放大器的频率特性,方法为:先测出中频段的输出电压Uo,在保持输入信号幅值不变的情况下,降低信号源频率,可以选择多个不同频率,记录相应的输出电压值。
3.16 多级放大电路的设计与测试
一.实验目的
1.理解多级放大直接耦合放大电路的工作原理和设计方法。
2.学习并熟悉设计高增益的多级直接耦合放大电路的方法。
3.掌握多级放大器性能指标的测试方法。
4.掌握再放大电路中引入负反馈的方法。
二.实验预习与思考
基本要求:
用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知Vcc=+12V,Vee=-12V,要求设计差分放大器恒流源的射极电流Ieq3=1-1.5mA,第二放大级射极电流Ieq4=2-3mA;差分放大器的单端输出不失真电压增益至少大于10倍,主放大级的不失真电压增益不小于100倍;双端输入电阻大于
10KOhm,输出电阻小于10Ohm,并保证输入级和输出级的直流电流为为零。
三.测试方法
静态工作点、增益、输入、输出阻抗、幅频特性等测试方法请参看前面的教学内容。
四.实验内容
用Multisim仿真设计结果,并调节电路参数以满足性能指标要求。
给出仿真结果。
仿真实验电路:
测得放大电路单端输入电阻约为10KOhm,放大倍率3094.53倍。
由于放大倍率较大,如采用Ui=5mV,10kHz交流电,则放大电压
Uo=Ui*Au=15.47V,超出了放大电路的最大输出,因此接下来的仿真实验采用交流电压为100uV,500Hz的交流电源。
1.静态工作点测试
Ubq1 Uceq1 Ieq1 Ueq4 Ieq4 Uecq4
11.394V 2.281mA 4.757V
0 3.206V 1.374m
A
测试电路:
2.电路放大倍率的测试
差分放大级:
Ui1 Uo1 Av1 100uV 1.346mV 13.46倍主放大级:
Ui2 Uo2 Av2 1.346mV 309.453mV 229.9倍总放大倍数:Au= 3094.53倍
测试电路:
测试截图:
差分输入,输出波形:
主放大级输入、输出波形:
总输入,输出波形:
2.输入电阻测试
U U’R Ri
100uV 49.085uV 10kOhm 10.372kOhm
测试电路:测试结果:
输出电阻:Ro=4.032hm
3.频率特性的测量
F(Hz) 0.01fh 0.05fh 0.1fh 0.5fh fh 2fh 5fh 10fh
370
1850 3.7K 18.5 37K 74K
185K 370K
Au(dB ) 69.79
69.81
1
69.79
8
69.32
8
67.71 65.57
3
54.92
2
46.61
4
分析电路:
测试结果:幅频特性:
相频特性:。