机电传动控制基础知识
- 格式:pptx
- 大小:1.03 MB
- 文档页数:28
机电传动控制复习资料机电传动控制复习资料机电传动控制是现代工业领域中非常重要的一门学科,它涉及到机械、电气、自动化等多个学科的知识。
掌握机电传动控制的原理和技术,对于工程师和技术人员来说至关重要。
在这篇文章中,我们将为大家提供一些机电传动控制的复习资料,帮助大家更好地理解和掌握这门学科。
一、机电传动控制的基础知识1. 机电传动的基本概念:机电传动是指通过机械装置将电能转化为机械能,并实现对机械系统的控制。
机电传动系统由电机、传动装置和控制装置组成。
2. 电机的分类:电机可以分为直流电机和交流电机两大类。
直流电机包括直流励磁电机和直流永磁电机;交流电机包括异步电机和同步电机。
3. 传动装置的分类:传动装置可以分为齿轮传动、带传动、链传动等多种类型。
每种传动装置都有其适用的场合和特点。
4. 控制装置的分类:控制装置可以分为开环控制和闭环控制两种。
开环控制是指在控制过程中,输出信号不受输入信号的影响;闭环控制是指在控制过程中,输出信号受输入信号的反馈影响。
二、机电传动控制的原理和方法1. 机电传动系统的数学模型:机电传动系统可以用数学模型来描述。
通常采用的模型包括电机模型、传动装置模型和负载模型。
2. 机电传动系统的控制方法:机电传动系统的控制方法有很多种,常见的有PID控制、模糊控制、神经网络控制等。
不同的控制方法适用于不同的控制需求和系统特点。
3. 机电传动系统的性能指标:机电传动系统的性能指标包括速度响应、位置精度、稳定性等。
通过合理选择控制方法和参数,可以提高系统的性能。
4. 机电传动系统的故障诊断与维护:机电传动系统在长时间运行中可能会出现故障,及时的故障诊断和维护对于保证系统的正常运行非常重要。
常见的故障诊断方法包括振动分析、温度检测等。
三、机电传动控制的应用领域1. 工业自动化:机电传动控制在工业自动化领域中应用广泛。
它可以实现对生产线的自动化控制,提高生产效率和产品质量。
2. 机器人技术:机电传动控制是机器人技术的核心。
机电传动控制知识点1、机电传动控制系统的基本要素及其功能。
答:2、机电传动控制系统中,动力源是指什么?答:动力源是指驱动电动机的电源、驱动液压系统的液压源和驱动气压系统的气压源。
3、机电传动控制系统中,执行装置用于实现驱动功能和能量转换功能,包括以电、气压和液压等作为动力源的各种元器件及装置,常见的执行装置有哪些?答:以电作为动力源的直流电动机、直流伺服电动机、三相交流异步电动机、变频三相交流电动机、步进电动机、比例电磁铁、电动调节阀及电磁泵等;以气压作为动力源的气动马达和气缸;以油压作为动力源的液压马达和液压缸等。
4、自动控制系统的三个基本要求答:(1)稳定性:自动控制系统的最基本要求是系统必须是稳定的,不稳定的控制系统是不能工作的。
(2)快速性:在系统稳定的前提下,希望控制过程(过渡过程)进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差(偏差)过大。
合理的设计应该兼顾这两方面的要求。
(3)准确性:即要求动态误差和稳态误差都越小越好。
当与快速性有矛盾时,应兼顾这两方面的要求。
5、能够根据控制系统的工作示意图。
指出系统的输入量、输出量和被控对象,并画出系统的方块图。
6、按讨论域,机电控制系统数学模型的分类。
答:时域模型—微分方程;复频域模型—传递函数、动静态框图;频域模型—频率特性、Bode图等。
7、分析控制系统,建立控制系统的微分方程、传递函数。
例,图中所示为由两个RC电路串联而成的滤波网络。
试建立输入电压ui和输出电压uo 之间动态关系的微分方程。
解设回路电流i 1和i 2为中间变量。
根据基尔霍夫电压定律对前一回路,有对后一回路,有且由上三式消去中间变量i 1和i 2,整理即得u i 和u o 之间动态关系的微分方程⎰-+=dt i i C i R u i )(121111⎰⎰+=-dt i C i R dt i i C 22222111)(1⎰=dt i C u o 221io o o u u dt du C R C R C R dt u d C R C R =++++)(2122112222118、传感器的构成,灵敏度的定义。
机电传动控制重点内容总结概述机电传动控制的目的与任务机电系统的组成电力拖动电气控制系统机械机电传动控制的任务将电能转换为机械能实现生产机械的启动、停止以及速度的调节完成各种生产工艺过程的要求保证生产过程的正常进行机电传动控制的目的第二章机电传动系统的运动学基础单轴拖动系统的运动方程式单轴拖动系统的运动方程式TM TL J d 2 dn J dt 60 dt 转动惯量和飞轮转矩的折算几种常见的负载特性恒转矩负载,离心式通风机型负载,直线型负载恒功率负载机电系统稳定运行的条件和判定方法第三章直流电机的工作原理及特性直流电机的基本结构和工作原理基本结构定子转子换向器工作原理发电机原理电动机原理电动势的大小和方向电磁转矩的大小和方向E K e nTM K m I a 直流他励电动机的机械特性机械特性的一般形式Ra U n Ia K e K e Ra U n T 2 K e K e K M 固有机械特性人为机械特性Ra U n T 2 K e K e K MU E I a RaP T 9.55 n PE K e n TM K m I a直流他励电动机的启动特性电动机固有的启动特性启动电流大启动转矩大启动方法电枢串电阻启动的方法启动电阻的选择直流他励电动机的调速特性调速方法特点电枢串电阻恒转矩调速特性电枢外加电压恒功率调速特性励磁磁通直流他励电动机的制动特性反馈制动产生的原因、制动过程与特点反接制动产生的原因、制动过程与特点能耗制动作用与特点第四章过渡过程过渡过程分析机电时间常数加快过渡过程的方法第五章交流电动机的工作原理及特性三相交流电动机的基本结构和工作原理基本结构定子转子工作原理旋转磁场的旋转速度旋转磁场的旋转方向转子的旋转速度三相交流电动机的额定参数定子绕组的连接方法额定参数连接方法的选用60 f n0 pn0 n S n0三相交流电动机的转矩特性与机械特性60 f n0 p S R2 n0 nm m X n0 20 U2 Tmax K 2 X 20 R2U 2 Tst K 2 2 R2 X 20 T max TN K 1 / f , X f 20三相交流电动机的启动、制动和调速特性固有启动特性启动方法调速方法与特点制动方法与特性单相交流电动机结构特点启动方法同步交流电动机结构特点特性启动方法第六章控制电机交直流伺服电机的工作原理如何消除自传现象第八章继电器接触器控制系统常用电器工作原理与使用场合接触器热继电器电流继电器电压继电器熔断器基本电路的分析与设计按钮、行程开关等继电器接触器电路的组成常用电动机控制电路按时间原则控制的电路按行程原则控制的电路按电流原则控制的电路按速度原则控制的电路各种保护第十三章步进电动机控制系统步进电动机的结构与工作原理齿数、相数通电方式步距角主要特性第十四章电机的选择电机容量的选择原则电机的发热和冷却不同工作制下电机容量的选择等效功率,力矩的折算电机种类,电压,转速,结构的选择。
《机电传动控制》笔记第一章:绪论1.1 简介《机电传动控制》将机械工程与电气工程相结合,通过研究电机、驱动器以及控制系统来实现对机械设备的有效操作。
本课程旨在培养学生理解并掌握机电一体化系统的设计原理和方法,为将来从事相关领域的科研或工程实践打下坚实的基础。
1.2 机电传动控制系统的基本概念•定义:机电传动控制系统是指利用电气、电子及计算机技术来控制机械设备运动的系统。
•组成要素:o执行机构(如电动机):负责产生驱动力。
o传感器:用于监测系统的状态信息。
o控制器:根据设定的目标值与实际反馈进行比较,并据此调整执行机构的动作。
o被控对象:即需要被控制的机械设备。
•工作流程:输入信号 → 控制器处理 → 输出信号 → 执行机构响应 → 反馈至控制器形成闭环回路。
1.3 发展历程与趋势自20世纪初以来,随着电力技术的发展,人们开始尝试用电能替代传统的蒸汽动力来进行工业生产。
到了20世纪中后期,随着微处理器技术和自动控制理论的进步,机电传动控制逐渐从简单的手动调节向自动化方向转变。
近年来,智能化、网络化成为该领域的主要发展方向之一。
未来,预计还将进一步融入物联网(IoT)、大数据分析等先进技术,提高整个系统的效率与可靠性。
第二章:电力拖动基础2.1 电机类型及其工作原理•直流电机o结构:由定子(包括主磁极、换向极)、转子(电枢铁心+绕组)、换向器三部分组成。
o工作原理:当电流通过电枢绕组时,在磁场作用下会产生电磁力矩使转子旋转;改变电压大小可以调节转速。
•交流电机o异步电机(感应电机)▪特点:简单耐用、成本低。
▪分类:单相、三相。
▪工作原理:依靠定子产生的旋转磁场切割转子导条,从而在转子内部形成闭合电路产生感应电流,进而产生转矩。
o同步电机▪特点:适用于高精度场合。
▪工作方式:转子转速严格等于电网频率与极对数之比,可通过改变励磁电流来调整输出功率因数。
2.2 电动机的选择原则选择合适的电动机对于确保整个系统的性能至关重要。
机电传动控制复习提纲第二章 机电传动系统的动力学基础2.1 知识要点2.1.1 基本内容1.机电传动系统的运动方程式机电传动系统是一个由电动机拖动,并通过传动机构带动生产机械运转的机电运动的动力学整体[如图2.1(a)所示]尽管电动机种类繁多、特性各异,生产机械的负载性质也可以各种各样,但从动力学的角度来分析时,则都应服从动力学的统一规律,即在同一传动轴上电动机转矩T M 、负载转矩T L 、转轴角速度ω三者之间符合下面的关系: T M -T L =Jdt d (2.1) 或用转速n 代替角速度ω,则为 T M -T L =dt dn GD 3752 (2.2)式(2.1)和式(2.2)称为机电传动系统的运动方程式。
机电传动系统的运动方程式是描述机电系统机械运动规律的最基本方程式,它决定着系统的运行状态,当动态转矩T d =T M -T L =0时,加速度a =dt dn =0 ,表示没有动态转矩,系统恒(匀)速运转,即系统处于稳态;当T d ≠0时,a =dt dn ≠0 ,表示系统处于动态,T d >0时,a =dt dn 为正,传动系统为加速运动;T d <0时,a =dt dn为负,系统为减速运动。
因式(2.1)和式(2.2)中的T M 、T L 既有大小还有方向(正负),故确定传动系统的运行状态不仅取决于T M 和T L 的大小,还要取决于T M 和T L 的正负(方向)。
因此,列机电传动系统的运动方程式和电路平衡方程时,必须规定各电量的正方向,也必须规定各机械量的正方向。
对机电传动系统中各机械量的正方向约定[见图2.1(b)]如下:在确定了转速n 的正方向后,电动机转矩T M 取与n 相同的方向为正向,负载转矩T L 取与n 相反的方向为正向,因此,若T M 与n 符号相同,则表示T M 与n 的方向一致;若T L 与n 符号相同,则表示T L 与n 方向相反。
也可以由T M 、T L 的方向来确定T M 、T L 的正负。
机电传动与控制基本知识一、机电传动是什么1. 机电传动就像是机械和电之间的“联络员”呢。
简单来说,就是把电能转化为机械能,让机器动起来的这么个东西。
比如说咱们常见的电动小风扇,插上电就能转,这里面就有机电传动在起作用哦。
2. 它还涉及到很多不同的部件,像电动机这种关键的东西。
电动机就像是机电传动的心脏,电能进去,它就开始欢快地把电能变成机械能,带动那些风扇叶呀、机械臂之类的东西转动或者做其他动作。
3. 机电传动也不是那么简单的,里面还有很多复杂的原理。
就好比你要让一个机器人手臂准确地抓取东西,这就需要精确的机电传动控制啦。
二、机电控制的重要性1. 想象一下,如果没有机电控制,那些大型的生产设备就会像没头的苍蝇一样乱转。
机电控制就像是给它们装上了大脑,告诉它们什么时候转,转多快,转多久。
比如说汽车生产线上的那些机械臂,在机电控制的指挥下,才能准确无误地把汽车零件组装在一起。
2. 在一些精密仪器里,机电控制更是重中之重。
比如说在显微镜下操作微小物体的那些设备,一点点的误差都可能导致实验失败,所以机电控制要非常精准才行。
3. 机电控制还能提高效率。
它可以根据不同的工作需求,调整设备的运行状态。
就像智能洗衣机,能根据衣物的重量和脏污程度,自动调整洗衣的模式,这都是机电控制的功劳呀。
三、机电传动与控制的基本原理1. 电动机原理是其中的一个大板块。
电动机有直流电动机和交流电动机。
直流电动机呢,是通过直流电在磁场中的作用产生转矩,让转子转动起来。
交流电动机又分好几种,像异步电动机,它是靠电磁感应原理工作的。
定子绕组产生旋转磁场,转子绕组切割磁场线产生感应电流,然后就开始转动啦。
2. 控制原理也很有趣。
有开环控制和闭环控制。
开环控制就像是你下了个命令,然后就不管了。
比如说你设定一个风扇一直以固定速度转,这就是开环控制。
闭环控制呢,就比较智能啦,它会有反馈。
比如空调,它会根据房间里的温度反馈,不断调整制冷或者制热的功率,让房间温度保持在你设定的值。