研究生《数值分析》练习题(1)
- 格式:doc
- 大小:157.50 KB
- 文档页数:3
2005-2006学年第一学期硕士研究生期末考试试题(A 卷)科目名称:数值分析学生所在院: _______ 学号: _________ 姓名: _______ 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
一、 (15分)设求方程12-3x + 2cosx = 0根的迭代法(1) 证明对0兀0 w /?,均有lim 林,其中T 为方程的根.kT8 (2) 此迭代法收敛阶是多少?证明你的结论.二、 (12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的 收敛性。
x } + 2X 2 - 2X 3 = 1,v 兀]+ 兀2 +兀3 = _1,2兀]+ 2兀2 +兀3 = °・a 0、a 0 ,说明对任意实数。
工0,方程组AX=b 都是0 Q,非病态的。
(范数用||・|L )四、(15分)已知y = f (x )的数据如下:求/(%)的Hermite 插值多项式H 3 (%),并给出截断误差/?(兀)=f (x ) - H 3 (x )。
五、(10分)在某个低温过程屮,函数y 依赖丁•温度兀(°C )的试验数据为已知经验公式的形式为『=仮+方兀2 ,试用最小二乘法求出a , b o 六、(12分)确定常数a, b 的值,使积分(2a 三、(8分)若矩阵A = 0J(a, /?) = !] [ax2取得最小值。
七、(14分)已知Legendre (勒让德)止交多项式厶(x )有递推关系式:'L 曲(兀)=^77 心(兀)一 -—Ln-1(兀)(斤=1, 2,…)试确定两点的高斯一勒让德(G —L )求积公式£ f (x )djc = £ f\x }) + A 2 .f (兀2)的求积系数和节点,并用此公式近似计算积分go ) = y ()儿+1 =儿+力(^心+-^2) k\=f (Xn ,yJ 忍=fg + h,y n +hk {)(1) 验证它是二阶方法; (2) 确定此单步法的绝对稳定域。
研究生“数值分析”试题一, 填空(20分)1,n +1个互异节点插值型数值求积公式的代数精度为________次,最高为________次。
2,SOR 方法收敛的必要条件:松弛因子ω满足条件_________。
3,对于插值型求积公式∑⎰=-≈nk k k x f A dx x f 011)()(,其节点),,1,0(n k x k =是高斯点的充分必要条件是_________。
4,设)(ij a A =为n ×n 矩阵,则1A =________,∞A =________。
5,设解方程组b Ax =的迭代法为d Bx x k k +=+1,则迭代收敛的充分必要条件是________。
6,判断下面的函数是否为三次样条函数(填是或否)(1)211001)1(0)(233≤≤<≤<≤⎪⎩⎪⎨⎧-+=x x x x x x x f - (2)⎩⎨⎧≤≤<≤-++++=100112212)(33x x x x x x x f二,(10分)在22-≤≤-x 上给出x e x f -=)(等距节点函数运用二次插值求x e -的近似值,要使误差不超过610-,问使用函数表的步长应取多大?三,(10分)四,(10分)设)(x f 在[]30,x x 上有三阶连续导数,且3210x x x x <<<,试作一个次数不高于四次的多项式)(x p ,满足条件)()(j j x f x p ==j 0,1,2,3)(')('11x f x p = 推导它的余项)()()(x p x f x E -=的表达式五,(10分)试用Romberg (龙贝格)方法,计算积分⎰311dx x,并精确到小数点后4位。
六,(10分)利用数值积分的Simpson (辛甫生)公式,导出公式)''4'(31111-+-++++=n n n n n y y y h y y 并指出次方法的阶七,(10分)设0)(=x f 的单根α,)(x F x =是0)(=x f 的等价方程,则:)(x F 可表为)()()(x f x m x x F -=证明: 当1)]('[)(-≠ααf m 时,)(x F 是一阶的。
工科研究生《数值分析》复习练习一.填空(共4分,每空44分)(1)设i x i =(n i ,,2,1,0⋯=)插值结点,)(x l i 是相应的n 次Lagrange 插值基函数,则()ni i l x ==∑(),=∑=ni i i x l x 0)(().(2)用简单迭代法求方程3()10f x x x =−−=的正实根,迭代格式()至少是二阶收敛的。
(3)求解非线性方程01=−x xe 的牛顿迭代公式是()(4)在所有首项系数为1的n 次多项式中,首项系数为1的n 次()多项式在[-1,1]上与零的平方逼近误差最小。
(5)设211314122A −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,则1||||A =(),||||A ∞=().(6)32()272f x x x =−+,则[1,2,3,4]f =(),[1,1,1]f =()(7)n 次Chebyshev 多项式在[-1,1]上的零点为()(8)插值型求积公式0()()nbk k ak A f x f x dx =≈∑∫至少具有()次代数精度,求积系数之和0nk k A ==∑(),而Gauss 求积公式至少具有()次代数精度。
(9)初值问题'24,(0)2,y y x y =−−=,则显式Euler 格式,隐式Euler 格式和梯形格式分别为(),(),()。
(10)已知数据对),,2,1)(,(n k y x k k ⋯=,用直线c bx ax y ++=2拟合这n 个点,则参数c b a ,,满足的法方程组是()(11)第一种幂法迭代格式为()二(10分)求一个次数不高于4次的代数多项式()p x ,使它满足(0)'(0)0,(1)'(1)1,(2)1p p p p p =====,并写出其余项表达式。
(利用Newton 插值公式,制作带重节点的差商表)三(10分)证明:区间[a,b]上带权()x ρ的正交多项式()n g x 的零点都是实数,相异的,且全部落在开区间(,)a b内部。
计算方法复习题(1)一、 单项选择题(每小题3分,共15分)1.近似值210450.0⨯的误差限为( )。
A. 0.5 B . 0.05C . 0.005D . 0.0005.2. 求积公式)2(31)1(34)0(31)(20f f f dx x f ++≈⎰的代数精确度为( )。
A. 1 B.2C.3D . 43. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。
A. 0det ≠A B. 某个0det ≠k AC. )1,1(0det -=≠n k A kD. ),,1(0det n k A k =≠4.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=531221112A ,则=∞A ( )。
A. 4B . 5C. 6 D 95.当实方阵A满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。
A. 1+k xB.k k x x 11λ++C. k xD.k k x x 11λ-+二、填空题(每小题3分,共15分)1. 14159.3=π,具有4位有效数字的近似值为 。
2. 已知近似值21,x x ,则=-∆)(21x x 。
3.已知1)(2-=x x f ,则差商=]3,2,1[f 。
4.雅可比法是求实对称阵 的一种变换方法。
5.改进欧拉法的公式为 。
三、计算题(每小题12分 ,共60分)1. 求矛盾方程组;⎪⎩⎪⎨⎧=-=+=+2423212121x x x x x x的最小二乘解。
2.用列主元法解方程组⎪⎩⎪⎨⎧=++=++=++426453426352321321321x x x x x x x x x3.已知方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----131********x x x a a a a (1) 写出雅可比法迭代公式;(2) 证明2<a 时,雅可比法收敛;(3) 取1=a ,初始值T X )1,1,1()0(=,求出)1(X 。
数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。
因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。
二、求矩阵A 的条件数1)(A Cond (4分)。
其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。
1. 五个节点的Newton-Cotes 求积公式的代数精度为______,五个节点的求积公式最高代数精度为___________。
(即Gauss 型求积公式)2. 已知数值求积公式为311()[(1)4(2)(3)]3f x dx f f f ≈++⎰ ,则其代数精度为______。
3. 数值积分公式1'12()[(1)8(0)(1)]9f x dx f f f -≈-++⎰的代数精度为_________。
4. 要使求积公式11101()(0)()4f x dx f A f x ≈+⎰具有2次代数精度,则1x =___,1A =___。
5. 在Newton-Cotes 求积公式:()()()()nbn i i a i f x dx b a C f x =≈-∑⎰中,当系数()n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当___________时的Newton-Cotes 求积公式不能使用。
()8()7()10()6A n B n C n D n ≥≥≥≥6. 若用复化梯形公式计算10x e dx ⎰,要求误差不超过610-,利用余项公式估计,至少用______个求积节点。
7. 对于Gauss 型求积公式31()()()bk k a k f x x dx A f x ρ=≈∑⎰,其中()x ρ为权函数,下列说法错误的是_________。
(A )该求积公式一定是稳定的; (B )31()k k k A f x b a ==-∑;(C )该求积公式的代数精度为5;(D )2(35)()()0ba x x x x dx ωρ-=⎰ ,其中31()()k k x x x ω==∏-。
8. 0{()}k k x ϕ∞=是区间[0,1]上权函数()x x ρ=的最高系数为1的正交多项式族,其中0()1x ϕ=,则140()_______x x dx ϕ=⎰。
9. 构造代数精度最高的如下形式的求积公式,并求出其代数精度:10101()()(1)2xf x dx A f A f ≈+⎰10. 数值积分公式形如1()()(0)(1)(0)(1)xf x dx S x Af Bf Cf Df ''≈=+++⎰(1)试确定参数A 、B 、C 、D ,使公式的代数精度尽量高; (2)设4()[0,1]f x C ∈,推导余项公式10()()()R x xf x dx S x =-⎰,并估计误差。
数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -= ( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b c s a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n nn n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj jj x l x x k n =≡=∑ii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少? 9. 若2nn y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()b aS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hhf x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰; (3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。
(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分)解:{},88,4,1max 1==A1分{},66,6,1max ==∞A1分()AA A T max 2λ=1分⎢⎢⎢⎣⎡=001A A T420⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001220-⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡00180⎥⎥⎥⎦⎤3200 2分{}3232,8,1max )(max ==A A T λ1分24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x )=0解的Ne wt on迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①N ewton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分 ②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组A x=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax =b,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为0)21(2)31(=----=-αλαααλλB I2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jaco bi迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-21)(1U L D B J22--⎥⎥⎥⎦⎤-012 3分,03213=====-λλλλλJ B I2分即10)(<=J B ρ,由此可知Jaco bi 迭代收敛 1分Gauss -Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Dool ittl e分解计算下列3个线性代数方程组:i i b Ax =(i =1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002021 ⎥⎥⎥⎦⎤211=LU 3分由Ly=b1,即⎢⎢⎢⎣⎡111110⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974得y =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111由Ly=b2=x 1,即⎢⎢⎢⎣⎡111110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分由U x2=y,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 由L y=b3=x2,即⎢⎢⎢⎣⎡111110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分由U x3=y,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x +1)=232x x +3分8. 有如下函数表:试计算此列表函数的差分表,并利用New ton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i =0,1,2,3)为等距插值节点,则N ew ton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f hx x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+= =4+5x+x(x-1)=442++x x4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++=2分取m =1, n=x , k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m ,k)=dx x⎰-112=0(n,k)=dx x⎰-113=0.5 (k,k)=dx x⎰-114=0 (m,y )=dx x ⎰-11=1(n,y)=dx x ⎰-112=0 (k ,y )=dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零) 即二次最佳平方逼近多项式222)(cx x c x P -+=1分平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Si mps on 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式: )}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.1394分用复合Simpso n公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++= =3.1424分11. 计算积分⎰=2sin πxdx I ,若用复合Simpso n公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simp son 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯1分12. 用改进Eu le r格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,si n1.1=0.89] (6分)解:改进Eul er 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y2分于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y2分即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx1分且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ1分而xx ⋅=λλx A x ,⋅≤⋅⋅≤λ故x A Ax2分 由于A x 0x ≤≠λ得到,两边除以1分 故A A ≤)(ρ1分当λ是复数时,一般来说x 也是复数,上述结论依旧成立。
● 当22()3x x ϕ+=时,'12()3x x ϕ=,因此'1(2) 1.3333ϕ=>1,,因此,该迭代格式不收敛。
● 当2()x ϕ='2()x ϕ=,因此'2(2)0.75ϕ=<1,,因此,该迭代格式收敛。
● 当32()3x x ϕ=-时,'322()x xϕ=,因此'3(2)0.5ϕ=<1,,因此,该迭代格式收敛。
● 当242()23x x x ϕ-=- 时,2'44224()1213x x x x x ϕ--=-+,因此'4(2)0ϕ=<1,,因此,该迭代格式收敛。
(2)、● 当22()3x x ϕ+=时,迭代法计算公式是20122.5,3k k x x x ++==,程序如下: >> fi=inline('(x.*x+2)/3');x0=2.5;er=1;k=0;while er>0.00001x=fi(x0);er=abs(x-x0);x0=xk=k+1end运行结果如下:x0 =2.7500k =1x0 =3.1875k =2x0 =4.0534k =3x0 =6.1433k =x0 =13.2468k =5x0 =59.1589k =6x0 =1.1673e+003 k =7x0 =4.5416e+005 k =8x0 =6.8755e+010 k =9x0 =1.5757e+021 k =10x0 =8.2765e+041 k =11x0 =2.2834e+083 k =12x0 =1.7379e+166 k =13x0 =Infk =14x0 =Infk =15由以上计算结果看,序列是发散的,运行14次已经超出计算机的识别范围,当2()x ϕ迭代法计算公式是1k x +=程序运行结果如下:>> fi=inline('sqrt(3*x-2)');x0=2.5;er=1;k=0;while er>0.00001x=fi(x0);er=abs(x-x0);x0=xk=k+1;endx0 =2.3452x0 =2.2440x0 =2.1753x0 =2.1274x0 =2.0934x0 =2.0689x0 =2.0510x0 =2.0379x0 =2.0282x0 =2.0211x0 =2.0157x0 =2.0118x0 =2.0088x0 =2.0066x0 =2.0049x0 =2.0037x0 =2.0028x0 =2.0021x0 =2.0016x0 =2.0012x0 =2.0009x0 =2.0007x0 =2.0005x0 =2.0004x0 =2.0003x0 =2.0002x0 =2.0002x0 =2.0001x0 =2.0001x0 =2.0001x0 =2.0000x0 =2.0000x0 =2.0000>>由以上计算结果看,序列收敛与2,所以x=2是f(x)= 232x x -+=0的根。
《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。
1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。
(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。
"(1)计算01)1(<-=f ,故有根区间为[1,2]。
(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。
(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。
(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。
研究⽣考试数值分析试题研究⽣2002级数值分析⼀(12分)、对于积分=+1,2,1,0,999n dx x x n。
(1)试推导递推公式 ,2,1,19991=+-=-n nI I n n ;(2)分析上述算法的数值稳定性;(3)若上⾯算法不稳定,请选择合适的算法,并分析其稳定性。
⼆(12分)、解⽅程组= 00001.8800001.626221x x 和?=00002.8800001.626221x x ,就所观察到的现象进⾏分析。
三(12分)、设⽅程组=--=+-=+-7989783212121x x x x x x x ;(1)适当调整⽅程的排列顺序,使得⽤Gauss-Seidel 迭代法求解时收敛?说明收敛原因。
(2)取初始向量()()Tx 0,0,00=,⽤Gauss-Seidel 迭代求近似解()2x,并求其()()k k x x-+1误差。
四(12分)、(1)已知函数()4xe xf =,在[0,1]内三点0,1/2,1的函数值,求其⼆次插值的余项;(2)三个节点如何安排能使其余项达最⼩,此时⼈余项为多少?五(12分)、对于⽅程()02ln =+-x x ,若求[-1.9,-1]内的根,分别选取迭代⽅程()2ln +=x x 和2-=x e x ,它们的收敛性如何?再写出⽜顿迭代公式。
六(10分)、设()?=>+-='100,5y x x y y ,解析解xe x y -+-=25262515,分别取45.0,4.0,2.0,1.0=h ,利⽤Euler ⽅法计算得y(10)的近似值分别为1.96,1.96,5.2851,142.8863,对此现象进⾏分析。
七(10分)、设()x e x f =,分别取步长0001.0,01.0,5.0=h ,⽤中⼼差商公式计算()0f '的近似值并求出误差,对结果作分析⽐较。
⼋(10分)、求不超过2次的多项式()x P 2,使其满⾜条件:()21=f ,()32=f ,()12='f ,并写出其误差估计。
1. 3,2x =-分别是方程328120x x x --+= 的根;讨论用Newton 迭代法求它们近似值的收敛阶。
取初值02x =-计算根3x =-的近似值,要求迭代3次。
(结果保留4位小数) 解: 设 32()812f x x x x =--+ 2()328f x x x '=-- ()62f x x ''=- (3)0,(3)0f f '-=-≠,(2)0,(2)0,(2)100f f f '''===≠则:3-是()0f x =的单根,故Newton 迭代在3-附近是平方收敛; 2是()0f x =的二重根,故Newton 迭代在2附近是线性收敛; 取02x =-,Newton 迭代:3212()812()328n n n n n n n n f x x x x x x x f x x x +--+=-=-'-- 223634n n n x x x ++=+2001023634x x x x ++==+2112123634x x x x ++==+2223223634x x x x ++==+2. 设常数0a ≠ ,求出a 的取值范围使得解方程组112233212313a x b a x b a x b --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭的Jacobi 迭代法收敛。
解: Jacobi 迭代:(1)()k k J x B x g +=+10210211203203130130J a B a a a -----⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1123a b g a b a b -⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭迭代矩阵J B 的特征方程:021211120323013013J a E B a a a a λλλλλλλ----⎛⎫⎛⎫⎪ ⎪-=+-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即:3()14()0a a λλ+=特征根:0,i aλλ==±谱半径:()1J B ρ=< 时Jacobi 迭代收敛故:a >3. 设(1)用Crout 三角分解法求解方程组 12323251034133619x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ;(2)用乘幂法求方程组系数阵的按摸最大的特征值和对应的特征向量。
数值分析习题(含标准答案)
一、选择题(每题5分,共20分)
1. 下列哪个选项不属于数值分析的研究范畴?
A. 数值微分
B. 数值积分
C. 数值逼近
D. 数据库管理
答案:D
2. 在数值分析中,求解线性方程组常用的方法有?
A. 高斯消元法
B. 迭代法
C. 拉格朗日乘数法
D. 上述所有方法
答案:D
3. 下列哪种方法适用于求解非线性方程组?
A. 牛顿法
B. 梯度下降法
C. 高斯消元法
D. 上述所有方法
答案:D
4. 在数值积分中,下列哪种方法具有最高的精度?
A. 梯形法则
B. 辛普森法则
C. 高斯求积法
D. 上述所有方法
答案:C
二、填空题(每题5分,共20分)
1. 数值分析的主要目的是通过有限步骤的运算,对数学问题进行近似求解。
2. 在数值微分中,常用的差分公式有前向差分、后向差分和中心差分。
3. 数值逼近的主要方法包括插值法和逼近法。
4. 在数值积分中,常用的方法有梯形法则、辛普森法则和高斯求积法。
三、解答题(每题10分,共30分)
1. 已知函数 f(x) = e^x,求其在 x = 0.5 处的导数。
答案:f'(0.5) ≈ 1.6487
2. 求解线性方程组 2x + 3y = 5,4x y = 1。
答案:x ≈ 0.625,y ≈ 1.25
3. 已知函数 f(x) = x^3 3x^2 + 4,求其在区间 [0, 2] 上的积分。
答案:f(x) 在区间 [0, 2] 上的积分≈ 3.6667。
13级研究生数值分析习题第一章 误差及相关问题内容及纲目:1) 舍入误差和截断误差2) 绝对误差和相对误差3) 误差的传播和计算函数值4) 算法的数值稳定性5) 计算中需要注意的问题1. 用x 近似,sin x 即,sin x x ≈δδ],,0[∈x 最大为多少时,该近似计算的截断误差不超过10-7. 2. 设,0>x x 的相对误差为δ,求x ln 的绝对误差。
3.的相对误差不超过0.1%,应取几位有效数字?解:知识点:有效数字和相对误差间的关系。
4,设近视数*x 有n 位有效数字,所以有: *11|()|1024n r e x -≤⨯⨯,令:11100.1%24n -⨯≤⨯,解得: 3.097,n ≥所以有4位有效数字。
4. 227作为=3.1415926π有几位有效数字? 5. 误差的来源?计算中需要注意的几个问题.第二章 函数插值内容及纲目:1) 插值多项式的存在性与唯一性2) 插值多项式的构造方法(lagrange 插值,Newton 插值,等距节点的插值)3) 带导数的插值函数构造,Hermite 插值,误差估计和构造方法4) 差分和差商的定义、性质和联系5) 三次样条插值公式及误差估计1. ]2,,2,2,2,[]2,,2,2,2,[,13)(72162147 x f x f x x x x f 和求+++=。
2. 已知12144,11121,10100===,分别用线性插值和抛物插值法,求115的近似值。
3. (分三次Hermite 插值),仅给定10,x x 和相应的函数值10,y y 及其微商10,m m ,构造插值函数)(x H ,)(x H 满足条件:1).)(x H 是不超过三次的多项式;2). ,)(,)(1100y x H y x H ==1100)(,)(m x H m x H ='='。
4. 构造 不超过3次的插值多项式,使其满足:.3)1(;0)2(,2)1(,1)0(='===f f f f5. 设f(x) ∈C 2[a,b],且)(a f = )(b f =0,求证:b x a x f ≤≤|)(|max )(81a b -≤ 2 bx a x f ≤≤|)(''|max 。
研究生2002级数值分析一(12分)、对于积分⎰=+1,2,1,0,999n dx x x n。
(1)试推导递推公式 ,2,1,19991=+-=-n nI I n n ;(2)分析上述算法的数值稳定性;(3)若上面算法不稳定,请选择合适的算法,并分析其稳定性。
二(12分)、解方程组⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00001.8800001.626221x x 和⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00002.8800001.626221x x ,就所观察到的现象进行分析。
三(12分)、设方程组⎪⎩⎪⎨⎧=--=+-=+-7989783212121x x x x x x x ;(1)适当调整方程的排列顺序,使得用Gauss-Seidel 迭代法求解时收敛?说明收敛原因。
(2)取初始向量()()Tx0,0,00=,用Gauss-Seidel 迭代求近似解()2x ,并求其()()k k x x -+1误差。
四(12分)、(1)已知函数()4xe xf =,在[0,1]内三点0,1/2,1的函数值,求其二次插值的余项;(2)三个节点如何安排能使其余项达最小,此时人余项为多少?五(12分)、对于方程()02ln =+-x x ,若求[-1.9,-1]内的根,分别选取迭代方程()2ln +=x x 和2-=x e x ,它们的收敛性如何?再写出牛顿迭代公式。
六(10分)、设()⎩⎨⎧=>+-='100,5y x x y y ,解析解x e x y -+-=25262515,分别取45.0,4.0,2.0,1.0=h ,利用Euler 方法计算得y(10)的近似值分别为1.96,1.96,5.2851,142.8863,对此现象进行分析。
七(10分)、设()xe xf =,分别取步长0001.0,01.0,5.0=h ,用中心差商公式计算()0f '的近似值并求出误差,对结果作分析比较。
硕士研究生 《数值分析》练习题
一、判断题
1、用Newton 切线法求解非线性线性方程可以任选初值。
( )
2、求解非线性线性方程,Newton 切线法比弦截法迭代次数多。
( )
3、若n n A R ⨯∈非奇异,用Jacobi 迭代法求解线性方程组Ax b =必收敛。
( )
4、Lagrange 插值法与Newton 插值法得到同一个插值多项式。
( )
二、填空题
1、近似数 3.14108937a =关
于π具 位有效数字。
2、双点弦截法具有 阶收敛速度。
3、求方程x x e =根的单点弦截法迭代公式是 。
4、设2112A ⎛⎫
=
⎪ ⎪⎝
⎭
,则()A ρ= 。
5、设,0,1,2,3i x i =是插值基点,,0,1,2,3i l i =是对应的三次Lagrange 插值基函数,则()()3
3012i i i x l =-=∑ 。
6、由下数据表确定的代数插值多项式的不超过 次。
7、若()8754321f x x x x =+-+,则差商[]0,1,2,,8f = 。
8、拟合三点()()()0,1,1,3,2,2A B C 的
直线是y = 。
三、分析与计算题
1、设()14,2,3515T
A x -⎡⎤==-⎢⎥
-⎣⎦
,求∞=,2,1,,p x A p p 和()1A cond 。
2、1001012,20253A x -⎛⎫⎛⎫ ⎪ ⎪
== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭
,试计算p
p x
A ,,p=1,2,∞,和1)(A c o n d 。
3、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中
122111221A -⎛⎫
⎪=-- ⎪ ⎪--⎝⎭。
4、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中
2-11=11111-2A ⎡⎤
⎢⎥⎢⎥
⎢⎥⎣⎦。
5、已知函数表如下:
⑴ ()111.75ln11.75L ≈、估计截断误差并说明结果有几位有效数字; ⑵ ()211.75ln11.75N ≈、估计截断误差并说明结果有几位有效数字。
6、已知函数表
如下:
⑴用Lagrange 插值法求ln 0.55的近似值()10.55N 、估计截断误差并说明结果的有效数字;
⑵用Newton
插值法求ln 0.55的近似值()20.55N 、估计截断误差并说明结果的有效数字。
7、已知数据如下,求满足条件的Hermite 插值多项式。
8、求满足条件的Hermite插值多项式。
f x求[0,3]上的三次样条插值函数。
9、已知函数表如下,用三转角法求()
f x在[0,3]上的三次样条插值函数。
10、已知函数表如下,求()
11、试对如下已知数据进行线性拟合。