基于Xilinx FPGA高速串行接口的设计与实现
- 格式:ppt
- 大小:1.49 MB
- 文档页数:29
2017年11月基于FPGA的串口通信设计与实现王闽,张静(南京熊猫汉达科技有限公司,210014)【摘要】此次研究重点分析FPGA的串口通信设计和实现的过程,在分析相关问题的过程中,充分的了解FPGA实现RS232串行数据通信的具体方案,明确这种方案的实行对UART模块化设计的影响,从根本上避免UART芯片的复杂性,同时克服移植性较差产生的弊端。
【关键词】FPGA;UART;通信设计;实现方案【中图分类号】TN791【文献标识码】A【文章编号】1006-4222(2017)22-0052-01因为串行接口的应用相对宽泛,所以为了更好的体现出相应的通信功能,多是采用专用的串行接口芯片,这样的目的就是为实现相关的功能提供保障,但是此类接口芯片还是存有较多的问题,如体积较大、接口复杂、成本较高等,导致某些硬件在具体设计的过程中更加复杂,因此结构及功能已经保持固定,难以依照实际的需要展开设计,更无法实现对其逻辑控制的灵活修改。
1串口通信协议的基本概述设备处理器主要是对串行通信的数据进行接收并发送,整个过程离不开主要的器件,这种器件必须要完成对串行数据的转换,同时还应该对并行的数据展开处理,UART通用异步收发器的使用是关键。
UART可以及时的将计算机内部的并行数据转换为需要输出的串行数据流,同时也可以将计算机外部收集的相关串行数据信息转换为具体的字节,保证计算机内部更好的运用相关信息,也可满足并行数据器件的使用需求[1]。
2UART模块设计2.1内核模块UART内核模块属于串口通信设计的核心内容,面对数据接收的过程,应该重视内核模块发挥出的实用价值,其主要是负责着波特率发生器的控制过程,同时也关系到移位寄存器同步的接收功能,对于相关串行数据的保存有着非常重要的作用[2]。
在对相关的数据信息进行发送的时候,内核模块还是应该明确相对完整的发送序列,确保控制移位寄存器能够更好的完成加载任务,控制好波特率发生器的驱动过程,让其更好的完成串行数据的输出任务。
基于FPGA的SOC系统中的串口设计1概述在基于FPGA的SOC设计中,常使用串口作为通信接口,但直接用FPGA进行串口通信数据的处理是比较繁杂的,特别是直接使用FPGA 进行串口通信的协议的解释和数据打包等处理,将会消耗大量的FPG A硬件资源。
为简化设计,降低硬件资源开销,可以在FPGA中利用IP核实现的嵌入式微处理器来对串口数据进行处理。
本文中的设计采用了XILINX的FPGA,可选用的嵌入式微处理器IP核种类繁多,但基于对硬件资源开销最少的考虑,最终选用了Picobl aze。
嵌入式微处理器PicoBlaze适用于Spartan-II/E、CoolRunner-II和Virtex系列FPGA,运行速度可达到40MIPS以上,提供49个不同的指令,16个寄存器,256个地址端口,1个可屏蔽的中断。
其性能超过了传统的8bit微处理器。
嵌入式微处理器Picoblaze的功能、原理见参考文献[1]。
Picoblaze使用灵活,但其缺点是可寻址的存储空间非常有限,因此为满足实际需要本文同时也提出了使用片外SDRAM器件对其存储能力进行扩展的设计方法。
2串口收发接口设计2.1串口收发接口硬件设计嵌入式微处理器PicoBlaze本身并不具备串行接口,因此必须在F PGA中设计串口接收和发送模块并通过总线结构与Picoblaze连接。
串口接收和发送模块的设计可采用成熟的IP核。
实际设计中采用了XLINX的串口收发IP核,其特点是串口波特率,符号规则都可以灵活地定制,同时具有16字节的接收FIFO和16字节的发送FIFO。
串口收发IP核的功能、原理见参考文献[2]。
使用Picoblaze和串口收发IP核构成的串口收发系统结构见图1。
在设计中,发送模块、接收模块和标志寄存器分别有不同的地址, Picoblaze通过地址端口对串口收发模块进行访问。
设计中的标志寄存器,可用于指示发送模块和接收模块中FIFO的状态,Picoblaze通过查询标志寄存器来完成对串口数据的收发控制。
基于 FPGA串行收发器的通信接口设计与实现摘要:随着信号处理带宽和吞吐量的需求与日俱增,多片FPGA协同工作成为一种发展趋势。
FPGA片间通信必然成为一个研究热点,特别是不同厂商FPGA间的通信。
基于FPGA串行收发器,利用8B/10B编码,实现了链路同步、数据收发以及流量控制。
通过板间验证表明:该设计与实现的通信接口稳定可靠,单对收发器通信速率可达10Gbps,并且可进行多路扩展应用,可应用于40G、100G等高速通信。
关键词:FPGA;8B/10B编码;高速收发器DESIGN AND INPLEMENTATION OF COMMUNICATION INTERFACE BASE ON FPGA SERIAL TRANSCEIVERYe Yun-feng, Ren Ji-kui, Huang rui, Yuan jun(No.30 Institute of CETC, Chengdu Sichuan 610041, China)Abstract:With the demand of signal processing bandwidth and throughput increases, multi-chip FPGA cooperative work becomes a trend. FPGA inter-chip communication must become a research hotspot,especially the communication between different FPGA of manufacturers. On the basis of FPGA serial transceiver, the link synchronization,data sending and receiving and traffic control are realized by using8B/10B coding. The inter-board verification shows that the communication interface is stable and reliable, the communication rate of single pair transceiver can reach 10Gbps, and can be applied tohigh speed communication such as 40Gbps or 100Gbps.Key words:FPGA; 8B/10B code; High-speed transceiver0 引言随着云计算与大数据技术的发展,用户对信息传输的需求不断增长,基带信号处理的带宽和吞吐量需求与日俱增[1]。
基于FPGA的串口通讯设计随着科技的不断发展,现场可编程门阵列(FPGA)因其高度的灵活性和强大的数据处理能力,日益成为通讯系统设计的重要选择。
串口通讯作为一种常见的通讯方式,广泛应用于各种设备之间的数据传输。
本文将探讨如何将FPGA应用于串口通讯设计,以期提高通讯效率和稳定性。
在本文中,我们将首先确定合适的主控芯片,然后设计基于FPGA的串口通讯电路,并对FPGA资源进行合理配置。
接下来,我们将介绍如何实现串口通讯算法,以提高通讯效率和稳定性。
在基于FPGA的串口通讯设计中,我们需要考虑以下电路元件的选择和设计:电阻分压器:用于降低输入信号的电压,以适应FPGA的输入范围。
晶体振荡器:为FPGA提供时钟信号,确保设备的同步运行。
电源转换器:将外部电源转换为FPGA所需的电压和电流范围。
我们还需要根据实际需求,设计串口通讯电路的功能模块,如数据发送、数据接收等。
在基于FPGA的串口通讯设计中,我们需要根据实际需求,合理分配FPGA内部资源。
具体来说,我们需要:锁相环(PLL):用于倍频和分频时钟信号,实现高速数据传输。
信号输出:驱动外部设备,如LED、LCD等。
在实现串口通讯算法时,我们首先需要定义通讯协议,包括数据格式、波特率、校验位等。
然后,我们可以使用流程图等方式,明确算法实现步骤。
例如:实验验证为了验证基于FPGA的串口通讯设计的可行性和可靠性,我们搭建了实验环境,并进行了以下测试:功能测试:检测电路各功能模块是否正常工作,如数据发送、数据接收等。
性能测试:测试通讯速率、稳定性、抗干扰能力等指标。
协议兼容性测试:检测算法是否兼容不同串口通讯协议。
长时间运行测试:检测系统在长时间运行下的稳定性和可靠性。
通过以上实验测试,我们发现基于FPGA的串口通讯设计在通讯速率、稳定性、抗干扰能力等方面均具有显著优势,能满足多种应用场景的需求。
同时,该设计具有较好的协议兼容性和可扩展性,能根据不同需求进行定制化扩展。
基于FPGA的数据高速串行通信实现1 引言在许多实际运用的场合中,数字信号传输具有数据量大,传输速度高,采用串行传输等特点。
这就要求数据收发双方采用合理的编解码方式及高速器件。
数字信号传输一般分并行传输、串行传输两种。
并行传输具有数据源和数据目的地物理连接方便,误码率低,传输速率高。
但是并行传输方式要求各条线路同步,因此需要传输定时和控制信号,而其各路信号在经过转发与放大处理后,将引起不同的延迟与畸变,难以实现并行同步。
若采用更复杂的技术、设备与线路,其成本会显著上升。
而高速远程数据传输一般采用串行同步传输。
传统建立准确的时钟信号的方法是采用锁相环技术。
但锁相环有若干个明显缺陷,一是其同步建立时间及调整精度即使采用变阶的方法也很难兼顾;二是锁相环需要一个高精度高频率的本地时钟。
本文所讨论的两种串行同步传输方法,无需高频率时钟信号,就可完全数字化。
采用Altera公司的ACEXlK系列器件完成电路设计,且外围电路简单,成本低,效果好。
2主要器件介绍编码和解码采用ACEXlK系列器件EPlK100QC208-2。
ACEXlK器件是Altera 公司针对通信、音频处理及类似场合应用而设计的。
该系列器件具有如下特性:高性能。
采用查找表(LUT)和嵌入式阵列块(EAB)相结合的结构,适用于实现复杂逻辑功能和存储器功能,例如通信中应用的DSP、多通道数据处理、数据传递和微控制等;高密度。
典型门数为1万到10万门,有多达49 152位的RAM(每个EAB有4 096位RAM)。
系统性能。
器件内核采用2.5 V电压,功耗低,其多电压引脚驱动2.5 V、3.3 V、5.0 V的器件,也可被这些电压所驱动,双向I/O引脚执行速度可达250 MHz;灵活的内部互联。
具有快速连续式延时可预测的快速通道互连。
3实现方法本文所述方法应用于数字音频数据实时传输。
原始数字音频每一帧视频数据为并行8位,速率达2 Mb/s,串行传输速度为16 Mb/s。
基于FPGA的高速数据采集系统接口设计■西安交通大学 黄伟罗新民 摘 要以基于新一代FP GA———Xilinx II2PRO的高速数据采集系统为例,详细介绍LVDS和LVPECL接口匹配设计和高速串行Rocket IO技术的实现,并对高速数传系统的输入输出接口的不同实现方式进行分析,给出系统解决方案。
关键词FP GA 高速数据采集 Rocket IO Virtex II2PRO引 言当前,越来越多的通信系统工作在很宽的频带上,对于保密和抗干扰有很高要求的某些无线通信更是如此。
随着信号处理器件的处理速度越来越快,数据采样的速率也变得越来越高。
在某些电子信息领域,要求处理的频带要尽可能的宽、动态范围要尽可能的大,以便得到更宽的频率搜索范围,获取更多的信息量。
因此,通信系统对信号处理前端的A/D采样电路提出了更高的要求,即希望A/D转换速度快而采样精度高,以便满足系统处理的要求。
可编程门阵列FP GA的出现已经显著改变了数字系统的设计方式。
应用可编程门阵列FP GA,可使数字系统设计具有高度的灵活性,因此FP GA的应用越来越广泛。
而新一代FP GA———Virtex II2PRO的出现使FP GA的功能更加强大,但随之而来的是要求提高数据的传输速率。
过去人们总是关心如何提高处理器运行速度,而现在关心的是怎样才能更快地将数据从一个芯片传输到另一个芯片。
可见,高速数据采集系统的输入输出接口设计就显得尤为重要。
1 高速采集系统介绍数据采集系统原理框图如图1所示。
输入的中频信号经A/D采样电路采样后,转换成LVDS信号送入FPG A 中,或通过FP GA的端口Rocket IO从高速接口输出,或通过FP GA的端口LVDS循环存储于高速缓存中,再由低速接口输出。
其中,FP GA主要完成对外接口管理、高速缓存的控制和管理。
时钟控制电路对A/D数据转换器和可编程门阵列FP GA起同步和均衡作用。
2 输入输出接口研究Virtex II2PRO系列是在Virtex II系列FP GA的基础上,嵌入了高速I/O接口和IBM Power PC处理器。
基于Xilinx FPGA高速串行接口设计与实现摘要由于时钟抖动,扭曲,队列同步和串扰噪声和各种非理想因素,进一步完善面临巨大的挑战并行传输率。
因此,串行传输,已成为高速数据传输系统在深亚微米主要选择。
在串行传输系统为了实现高速信号传输,并可节约电能和降低成本,数据更倾向于使用低摆幅模式,LVDS和CML是低电压,小的摆动,差分信号的串行传输方式,所以它被广泛地应用于PCI。
快递网络物理层和高速度SERDES电路。
但这个标准的LVDS传输率只能达到3Gbps,以实现独立设计以满足5Gbps的要求及以上的高速PCI。
表达应用,本文研究了伪标准的LVDS 121(PLVDS)和CML的启动界面的设计研究。
基于传输信号的理论,非理想因素和传输线的行为的信号完整性分析;提出了考虑高速串行传输系统的电路级和版图级设计;在PLVDS结束与CML 收发器电路的设计,并提出了改进方案。
其中,无歪斜单端差挠度问题提高plvds收发电路,电路的性能与加速管的改进;电平转换电路的信号快速切换到低水平的高水平,没有后续电路的调整,因此,延时小;双共模反馈电流开关电路的共模电平的控制,另一个环控制输出摆幅,输出更稳定;微分预加重技术使驱动能力强、降低码间干扰。
用于CML收发器的若干关键技术,有源负反馈技术和有源电感技术不仅可以有效地扩大信号的带宽,而且可以提高电路,电路的性能,降低了电路的功耗,减少了芯片的面积;均衡技术是有效减少传输线效应符号间干扰所引起的信号失真,提高信号质量。
同时也采用三级结构的樱桃。
胡珀限幅放大器电路,均衡电路进一步放大到比较器输出低摆幅信号可以识别的电压幅值。
在本文中,0.131cm CMOS技术实现两个PCI。
表达物理层PLVD和CML高速串行数据传输接口的基础上。
仿真结果表明,两种接口电路的传输速率高达5Gbps,完全符合PCI Express表示应用要求。
主题词:PLVDS,CML,预加重,均衡,有源负反馈,电压比较器,失效保护Design and implementation of high-speed serial interface based on Xilinx FPGAAbstractDue to clock jitter, skew, queue synchronization and crosstalk noise and various non-ideal factors, parallel transmission rate to further improve the face enormous challenges. So that the serial transmission has become a high-speed data transmission system in deep sub-micron main choice. In the serial transmission system in order to realize the high-speed signal transmission, and can save power and reduce the cost, the data tend to use low swing mode, LVDS and CML is the low voltage, small swing, differential signal serial transmission mode, so they are widely used in PCI.Express network physical layer and high speed SerDes circuit in. But this standard LVDS transmission rate can only reach 3Gbps, in order to achieve the independent design to meet the requirements of 5Gbps and above high speed PCI.Express application, this paper studies a pseudo standard LVDS 121 (PLVDS) and a CML interface to start the design research. Based on the theory of transmission signal, the signal integrity analysis of nonideal factors and transmission linebehavior; then put forward considering the high-speed serial transmission system circuit level and layout level design; at the end of the PLVDS and the CML transceiver circuit design and put forward the improvement scheme. Among them, no skew single-ended to differential deflection problem to improve the PLVDS transceiver circuit, the circuit performance is improved with the accelerating tube; level conversion circuit the signal quickly switched to a high level from low level, without a subsequent circuit is adjusted, therefore, the time delay is small; with double common-mode feedback current switching circuit in a the loop control of common mode level, another loop control output swing, the output is more stable; differential pre-emphasis technology makes stronger driving capability and reduce intersymbol interference. Several key technologies used in a CML transceiver, the active negative feedback technology and active inductor technology not only can effectively expand the bandwidth of signal, but also can improve the performance of circuit, circuit, reduce the power consumption of the circuit, reduce the area of chip; equalization technology is effective to reduce the transmission line effect and intersymbol interference caused by signal distortion, the signal quality isimproved. At the same time also uses three levels of structure of Cherry.Hooper limiting amplifier circuit, the equalization circuit outputs low swing signal for further amplification to the comparator can identify the voltage amplitude. In this paper, 0.131xm CMOS technology to achieve two for PCI.Express physical layer PLVDS and CML high-speed serial data transmission interface based on. Layout simulation results show that, two kinds of interface circuit transmission rate up to 5Gbps, fully meet the requirements of PCI.Express application.Key Words:PLVDS,CML,Pre—emphasis,Equalization,Active Negative Feedback,Limiting Amplifier,Fail—Safe目录摘要 (I)Abstract (III)引言 (2)1绪论 (4)1.1高速串行技术背景的研究 (4)1.2 HSST(High Speed Serial Technology)现状发展概况 (4)1.2.1 LVDS相关介绍 (5)2 Virtex-5 FPGA设计原理和参数 (10)2.1 Virtex-5介绍 (10)2.2 FPGA 设计方法 (13)2.3 Xilinx FPGA 相关软件介绍 (13)3.1 TS20l链接口简介 (17)3.2 FPGA与TS20l硬件连接及可行性分析 (21)3.3 FPGA仿真设计 (22)3.4实际硬件调试 (29)4 B3G TDD系统中RocketIO 接口资源需求分析与设计 (32)5 B3G TDD系统MAC层高速串口实现与仿真测试 (37)1.MAC高层协议处理模块 (38)2.数据转接模块 (39)5.2 RocketIO接口仿真与测试 (40)5.2.1 RocketIO 接口仿真 (40)5.2.2 单板测试和板间测试 (43)5.3 本章小结 (46)结论 (47)参考文献 (48)附录A 信号处理板 (50)附录B FPGA RocketIO仿真代码 (51)附录C Xilinx硬件部分 (55)FPGA+DSP硬件部分致谢 (55)引言在数字系统的互连设计,高速串行I/O技术替代传统的并行I / O技术已成为发展趋势。
基于 FPGA的高速串行数据接口设计与测试摘要:为了提升串行数据接口在传输速率性能及转换处理误码性能,本文选取FPGA作为数据接口处理器,通过JESD204B协议传输数据信息,搭建了高速串行数据接口。
实验测试结果表明,该设计方案数据信息传输满足同步性要求,未出现数据传输乱码情况,可以作为高速数据传输工具。
关键词:数据接口设计;JESD204B协议;FPGA随着科学技术的发展,扩大了电子设备发展空间的同时,提高了设备数据传输与转换处理速率要求[1]。
传统的数据转换器已经无法满足设备性能提升需求,因而ADC/DAC高速串行数据转换及传输设备应运而生,发展空间较大,借助核心控制器,开发数据接口设备[2]。
目前,应用比较多的传输协议为JESD204B,符合FPGA处理器通信处理要求[3]。
因此,本文选取JESD204B协议,提出高速串行数据接口设计研究。
一、基于FPGA的高速串行数据接口总体框架结构设计本文提出的数据接口设计方案选取FPGA芯片作为核心处理器,因该处理器性能较为稳定,且运行速度较快,支持JESD204B通信协议。
因此,本研究在数模转换器和模数转换器之间添加了JESD204B接口,向该接口发送sysref信号,按照JESD204B通信协议,对数据进行读取和转换处理,并将经过处理后的信号从接口端发送出去。
如图1所示为数据接口总体框架结构设计方案。
图1数据接口总体框架结构设计方案图1中设计方案左侧和右侧转换器的部署呈对称结构,以FPGA为核心处理器,向4个转换器分别发送数据处理命令,从而实现数据信息的高速处理与传输。
FPGA处理器内部集成了高速信息处理收发装置,共计80组,线上传输数据速度最大值为13.1Gb/s。
所以选取的通信协议数据传输速率不得高于此数值,本方案选取的JESD204B协议最大数据传输效率为12.5Gb/s,符合数据接口开发要求。
二、串行数据接口通信1、JESD204B协议JESD204B协议由数据传输层、物理层、应用层、链路层4部分构成[4]。
基于FPGA实现JESD204B高速接口设计作者:曹鹏飞来源:《无线互联科技》2018年第23期摘要:JESD204B接口是高速ADC和DAC芯片采用的数据通信接口之一,具有传输速率高,抗干扰能力强,芯片间同步方便等优点。
目前国内JESD204B 接口应用多由国外集成芯片提供,缺乏自主性和灵活性。
为了加强JESD204B 接口自主设计,文章阐述了基于FPGA GTX 高速收发器实现JESD204B接口通信的方法,详细说明了JESD204B接口的FPGA设计实现方案、同步化处理机制等内容。
利用多通道JESD204B接口实现高速串行数据的传输,有效解决了传统并行数据采集存在的问题,满足实际工程的应用需求。
关键词:JESD204B;FPGA;高速串行传输;数据采集模数转换器(Analog-to-Digital Converter,ADC)和数模转换器(Digital to Analog Converter,DAC)在众多领域中应用非常广泛,随着工艺的发展和实际应用的需要,采样速率和采样精度越来越高,采用传统的CMOS接口和LVDS接口已经无法满足设计的要求,而采用基于CML的JESD204B接口可以很好地解决这一问题,接口单通道速率可达12.5 Gb/s。
在ADC/DAC与FPGA处理芯片之间实现JESD204B接口,可以有效完成芯片间的高速数据传输,并且具有减少器件管脚和封装尺寸,减少占用布局空间,降低功耗等优点。
1 JESD204B概述JESD204B接口包括3个子类,分别为子类0、子类1和子类2。
JESD204B接口包括3个子类,分别为子类0、子类1和子类2。
3个子类的区别主要体现在同步方式各不相同。
子类0不支持确定性延迟,而子类1和子类2能够支持确定性延迟,可实现片间的数据同步。
子类1通过SYSREF信号在芯片内部产生帧时钟和本地多帧时钟(Local Multiframe Clock,LMFC),同步传输数据并在数字信道上实现已知和确定性延迟。
基于FPGA的高速串行传输系统的设计与实现李强;刁节涛;聂洪山【摘要】The serial transmission technology taken as a transmission technology with high transmission rate and low designing cost is widely used in the field of high-speed communication, becomes the first choice in the field of science and technology. Based on the analysis of high-speed serial transmission system, the overall design some instances was proved. The result shows that the system can achieve the purpose of high-speed transmission.%作为高传输速率和低设计成本的传输技术,串行传输技术被广泛应用于高速通信领域,并已成为业界首选.在此基于对高速串行传输系统的分析,对实例进行了总体设计验证,最终达到高速传输的目的.【期刊名称】《现代电子技术》【年(卷),期】2011(034)015【总页数】4页(P131-134)【关键词】FPGA;PCI-Express;时钟控制模块;Aurora模块【作者】李强;刁节涛;聂洪山【作者单位】国防科学技术大学电子科学与工程学院,湖南长沙410073;国防科学技术大学电子科学与工程学院,湖南长沙410073;国防科学技术大学电子科学与工程学院,湖南长沙410073【正文语种】中文【中图分类】TN911-340 引言随着网络技术的不断发展,数据交换、数据传输流量越来越大。
尤其像雷达,气象、航天等领域,不仅数据运算率巨大,计算处理复杂,而且需要实时高速远程传输,需要长期稳定有效的信号加以支持,以便能够获得更加精准的数据收发信息,更好的为工程项目服务。