自动控制原理 总复习
- 格式:ppt
- 大小:3.19 MB
- 文档页数:74
《自动控制原理》总复习第一章自动控制的基本概念一、学习要点1. 自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。
2. 控制系统的基本方式:①开环控制系统;②闭环控制系统;③复合控制系统。
3. 自动控制系统的组成:由受控对象和控制器组成。
4. 自动控制系统的类型:从不同的角度可以有不同的分法,常有:恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等05. 对自动控制系统的基本要求:稳、快、准。
6. 典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。
二、基本要求1. 对反馈控制系统的基本控制和方法有一个全面的、整体的了解。
2. 掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制系统稳、准、快三方面的基本要求。
3. 了解控制系统的典型输入信号。
4. 掌握由系统工作原理图画方框图的方法。
三、内容结构图第二章控制系统的数学模型一、学习要点1数学模型的数学表达式形式(1)物理系统的微分方程描述;(2)数学工具一拉氏变换及反变换;(3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。
2•数学模型的图形表示(1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。
二、基本要求1正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变量、输出变量、中间变量等概念,要准确掌握。
2、了解动态微分方程建立的一般方法及小偏差线性化的方法。
3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入响应、零状态响应等概念有清楚的理解。
4、正确理解传递函数的定义、性质和意义。
熟练掌握由传递函数派生出来的系统开环传递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。
(井)5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构图及结构图的简化,并能用梅逊公式求系统传递函数。
一、单选题(共20题,40分)1、在伯德图中反映系统抗高频干扰能力的是( )(2.0)A、低频段B、中频段C、高频段D、无法反应正确答案: C2、设单位负反馈控制系统的开环传递函数G(s)=,其中K>0,a>0,则闭环控制系统的稳定性与()o(2.0)A、K值的大小有关B、a值的大小有关C、a和K值的大小有关D、a和K值的大小无关正确答案: D3、关于线性系统稳态误差,正确的说法是:( )(2.0)A、一型系统在跟踪斜坡输入信号时无误差B、C、增大系统开环增益K可以减小稳态误差D、增加积分环节可以消除稳态误差,而且不会影响系统稳定性正确答案: C4、传递函数定义线性定常系统在零初始状态下系统输出拉氏变换与输入拉氏变换之()。
(2.0)A、积B、比C、和D、差正确答案: B5、下列系统中属于不稳定的系统是( )。
(2.0)A、闭环极点为的系统B、闭环特征方程为的系统C、阶跃响应为的系统D、脉冲响应为的系统正确答案: D6、系统开环对数幅频特性L(ω)中频段主要参数的大小对系统的()性能无影响。
(2.0)A、动态B、稳态C、相对稳定性D、响应的快速性正确答案: D7、设控制系统的开环传递函数为,该系统为( )(2.0)A、 0型系统B、Ⅰ型系统C、Ⅱ型系统D、Ⅲ型系统正确答案: B8、确定系统根轨迹的充要条件是()。
(2.0)A、根轨迹的模方程B、根轨迹的相方程C、根轨迹增益D、根轨迹方程的阶次正确答案: C9、高阶系统的主导闭环极点越靠近虚轴,则系统的 ( )(2.0)A、准确度越高B、准确度越低C、响应速度越快D、响应速度越慢正确答案: D10、闭环系统的动态性能主要取决于开环对数幅频特性的( )(2.0)A、低频段B、开环增益C、高频段D、中频段正确答案: D11、Z变换中复变量z的物理含义是什么?(2.0)A、滞后一个采样周期。
B、超前一个采样周期。
C、跟复变量s一样。
D、没有什么物理含义,就是为了计算方便。
《自动控制原理》复习参考资料一、基本知识 11、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。
2、闭环控制系统又称为反馈控制系统。
3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。
4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。
5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。
6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。
7、两个传递函数分别为 G1(s)与 G2(s)的环节,以并联方式连接,其等效传递函数为G(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。
18、系统前向通道传递函数为 G (s),其正反馈的传递函数为 H (s),则其闭环传递函数为G(s) /(1-G(s) H(s) )。
9、单位负反馈系统的前向通道传递函数为 G (s),则闭环传递函数为G(s) /(1+ G(s) )。
10 、典型二阶系统中,ξ=0.707 时,称该系统处于二阶工程最佳状态,此时超调量为 4.3%。
11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。
12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。
13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。
14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。
15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。
16 、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。
17 、对于典型二阶系统,惯性时间常数 T 愈大则系统的快速性愈差。
18 、应用频域分析法,穿越频率越大,则对应时域指标 ts越小,即快速性越好19 最小相位系统是指 S 右半平面不存在系统的开环极点及开环零点。
20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、补偿校正与复合校正四种。
《自动控制原理》综合复习资料一、简答题1、常见的建立数学模型的方法有哪几种?各有什么特点?2、自动控制原理中,对线性控制系统进行分析的方法有哪些?3、给出梅逊公式,及其中各参数意义。
4、举例说明什么是闭环系统?它具有什么特点?5、系统的性能指标有哪些?6、幅值裕度,相位裕度各是如何定义的?7、画出自动控制系统基本组成方框结构图?8、减小稳态误差的措施主要有?9、闭环控制系统由哪几个基本单元组成? 10、增加开环零、极点对根轨迹有什么影响?二、计算题1、已知系统输入为i u ,输出为o u ,求出传递函数)(/)()(s U s U s G i o =。
2、试简化下图所示系统方框图求其传递函数:3、已知某二阶系统的单位阶跃响应为()t te et c 10602.12.01---+=,试求:(1)系统传递函数()()s R s C (5分)(2)确定系统阻尼比ξ、无阻尼振荡频率n ω。
4、设某系统的特征方程式为0161620128223456=++++++s s s s s s判断闭环系统的稳定性,若不稳定求其不稳定特征根个数。
(利用劳斯判据)5、RC 无源网络电路图如下图所示,试列写该系统的微分方程,并求传递函数Uc(s)/Ui(s)。
6、试简化下图所示系统方框图求其传递函数:7、已知系统的结构图如所示:当0=f K 、10=a K 时,试确定系统的阻尼比ξ、固有频率n ω和单位斜坡输 入时系统的稳态误差;8、已知系统如下图所示,求系统的单位阶跃响应,并判断系统的稳定性。
9、RC 无源网络电路图如下图所示,试列写该系统的微分方程,并求传递函数Uc(s)/Uc(s)。
i uc u 1C1R2R2CX rX c10S(S+1)0.5S+1G 1G 2 G 3 H 1H 210、系统方框图如图示,试用方框图变换求取传递函数)(/)(s X s Y ;11、已知单位反馈系统的开环传递函数)3s(s 2G (s)+=且初始条件为c(0)=-1,•)0(c =0。
《自动控制原理》复习提纲自动控制原理复习提纲第一章:自动控制系统基础1.1自动控制的基本概念1.2自动控制系统的组成1.3自动控制系统的性能指标1.4自动控制系统的数学建模第二章:系统传递函数与频率响应2.1一阶惯性系统传递函数及特性2.2二阶惯性系统传递函数及特性2.3高阶惯性系统传递函数及特性2.4惯性环节与纯时延环节的传递函数2.5开环传递函数与闭环传递函数2.6频率响应曲线及其特性第三章:传递函数的绘制和分析3.1 Bode图的绘制3.2 Bode图的分析方法3.3 Nyquist图的绘制和分析3.4极坐标图的应用3.5稳定性分析方法第四章:闭环控制系统及稳定性分析4.1闭环控制系统4.2稳定性的概念和判据4.3 Nyquist稳定性判据4.4 Bode稳定性判据4.5系统的稳态误差分析第五章:比例、积分和微分控制器5.1比例控制器的原理和特性5.2积分控制器的原理和特性5.3微分控制器的原理和特性5.4比例积分(P)控制系统5.5比例积分微分(PID)控制系统第六章:根轨迹法6.1根轨迹的概念和基本性质6.2根轨迹的绘制方法6.3根轨迹法的稳定性判据6.4根轨迹设计法则6.5根轨迹法的应用案例第七章:频域设计方法7.1频域设计基本思想7.2平衡点反馈控制法7.3频域设计法的应用案例7.4系统频率响应的优化设计7.5频域方法的灵敏度设计第八章:状态空间分析和设计8.1状态空间模型的建立8.2状态空间的矩阵表示8.3状态空间系统的特性8.4状态空间系统的稳定性分析8.5状态空间设计方法和案例第九章:模糊控制系统9.1模糊控制的基本概念9.2模糊控制系统的结构9.3模糊控制器设计方法9.4模糊控制系统的应用案例第十章:遗传算法与控制系统优化10.1遗传算法的基本原理10.2遗传算法在控制系统优化中的应用10.3遗传算法设计方法和案例第十一章:神经网络及其应用11.1神经网络的基本概念和结构11.2神经网络训练算法11.3神经网络在控制系统中的应用11.4神经网络控制系统设计和优化方法第十二章:自适应控制系统12.1自适应控制的基本概念12.2自适应控制系统的结构12.3自适应控制器设计方法12.4自适应控制系统的应用案例第十三章:系统辨识与模型预测控制13.1系统辨识的基本概念13.2建模方法及其应用13.3模型预测控制的原理13.4模型预测控制系统设计和优化方法第十四章:多变量控制系统14.1多变量控制系统的基本概念14.2多变量系统建模方法14.3多变量系统稳定性分析14.4多变量系统控制器设计14.5多变量系统优化控制方法以上是《自动控制原理》的复习提纲,内容覆盖了自动控制系统的基本概念、传递函数与频率响应、传递函数的绘制和分析、闭环控制系统及稳定性分析、比例、积分和微分控制器、根轨迹法、频域设计方法、状态空间分析和设计、模糊控制系统、遗传算法与控制系统优化、神经网络及其应用、自适应控制系统、系统辨识与模型预测控制、多变量控制系统等知识点。
《自动控制原理》课程综合复习资料一、单选题1.关于自动控制系统的组成,下列说法正确的是()。
A.自动控制系统包括比较环节、控制器、执行器、被控对象和传感器五部分。
B.自动控制系统包括控制器、被控对象和传感器三部分。
C.自动控制系统包括控制器、执行器、被控对象和传感器四部分。
D.自动控制系统包括控制系统的输入、控制器、执行器、被控对象和传感器和控制系统输出等。
答案:C2.关于传递函数,下面说法正确的是()。
A.传递函数与微分方程的相互转化可以不用满足零初始条件。
B.传递函数能反映系统的物理结构。
C.系统传递函数分母的阶次n与分子的阶次m满足关系m>n。
D.传递函数只适合单输入单输出系统,不适合多输入多输出系统。
答案:D3.对复杂的结构图或信号流通图,系统的传递函数可以采用()直接求出。
A.终值定理B.初值定理C.方框图变换D.梅森增益公式答案:D4.一阶系统的单位阶跃响应曲线中,误差带选2%时,调节时间为()。
A.TB.2TC.3TD.4T答案:D5.一阶微分环节属于()类型的校正环节。
A.超前校正B.滞后校正C.先超前后滞后D.先滞后后超前 答案:A6.图中有几条回路()。
A.2条B.3条C.4条D.5条 答案:B7.信号流图特征式的计算公式为()。
A. B.C. D.答案:D8.图中有几条前向通道()。
A.2条B.3条C.4条D.5条 答案:C9.已知系统的闭环特征方程为32310330+++=s s s ,则系统实部为正的特征根个数有()。
A.0个1a b c d e f a bc defΔL L L L L L =---+∑∑∑1+a b c d e f abc defΔL L L L L L =++∑∑∑1+a b c d e f abcdefΔL L L L L L =-++∑∑∑1a b c d e f abc defΔL L L L L L =-+-+∑∑∑B.1个C.2个D.3个 答案:C10.已知系统的开环传递函数为()(1)(2)=++KG s s s s ,则闭环系统稳定的参数取值范围是()。
一、单选题1.控制系统的稳态误差反映了系统的()A、稳态控制精度B、相对稳定性C、快速性D、平稳性答案: A2.一阶系统的单位阶跃响应曲线随时间的推移()。
A、上升B、下降C、不变D、无规律变化答案: A3.信号流图中,()的支路称为阱节点。
A、只有信号输入B、只有信号输出C、既有信号输入又有信号输出D、任意答案: B4.小型开关电源中的变压器中传递的交流电流,其频率一般为()A、几十HzB、几百HzC、几千HzD、几万Hz答案: D5.设惯性环节的频率特性为G(jω)=10/(jω+1),当频率ω从0变化至∞时,其幅相频率特性曲线是一个半圆,位于极坐标平面的()A、第一象限B、第二象限C、第三象限D、第四象限答案: D6.适合于应用传递函数描述的系统是()。
A、线性定常系统B、线性时变系统C、非线性时变系统D、非线性定常系统答案: A7.奈奎斯特稳定判据中,Z = P - R,其中R是指()A、对-1+j0点顺时针包围的次数B、对-1+j0点逆时针包围的次数C、对1+j0点顺时针包围的次数D、对1+j0点逆时针包围的次数答案: B8.单相交流调压电路,电源为220V/50Hz正弦交流电,控制角为90°时,输出交流电压有效值为()A、110VB、220VC、156VD、314V答案: C9.系统特征方程式的所有根均在复平面的左半部分是系统稳定的()A、充分条件B、必要条件C、充分必要条件D、以上都不是答案: C10.有一个IGBT,当施加栅极电压时,得到以下结果:UGS=2V时ID=0;UGS=2V时ID=0;UGS=4.5V时ID=2A;UGS=5V时ID=8A。
可以判断其开启电压为()A、>4.5VB、<4.5VC、=2VD、=5V答案: B11.传递函数的零初始条件是指t<0时系统的()。
A、输入为零B、输入、输出及各阶导数为零C、输入、输出为零D、输出及各阶导数为零答案: B12.适合应用传递函数描述的系统是()A、单输入,单输出的线性定常系统B、单输入,单输出的线性时变系统C、单输入,单输出的定常系统D、非线性系统答案: A13.若二阶系统的单位阶跃响应为非周期的趋于稳定,则系统的阻尼比应为()。
自动控制原理复习总结笔记一、自动控制理论的分析方法:(1)时域分析法;(2)频率法;(3)根轨迹法;(4)状态空间方法;(5)离散系统分析方法;(6)非线性分析方法二、系统的数学模型(1)解析表达:微分方程;差分方程;传递函数;脉冲传递函数;频率特性;脉冲响应函数;阶跃响应函数(2)图形表达:动态方框图(结构图);信号流图;零极点分布;频率响应曲线;单位阶跃响应曲线时域响应分析一、对系统的三点要求:(1)必须稳定,且有相位裕量γ和增益裕量Kg(2)动态品质指标好。
p t 、s t 、r t 、σ% (3)稳态误差小,精度高 二、结构图简化——梅逊公式 例1、解:方法一:利用结构图分析:()()()()[]()()[]()s X s Y s R s Y s X s R s E 11--=+-=方法二:利用梅逊公式 ∆∆=∑=nk KK P s G 1)(其中特征式 (11),,1,1+-+-=∆∑∑∑===Qf e d fedMk j k j N i i LL L L L L式中:∑iL 为所有单独回路增益之和∑jiLL 为所有两个互不接触的单独回路增益乘积之和 ∑fedLL L 为所有三个互不接触的单独回路增益乘积之和其中,k P 为第K 条前向通路之总增益;k ∆ 为从Δ中剔除与第K 条前向通路有接触的项;n 为从输入节点到输出节点的前向通路数目 对应此例,则有:通路:211G G P ⋅= ,11=∆特征式:312131211)(1G G G G G G G G ++=---=∆ 则:3121111)()(G G G G P s R s Y ++∆= 例2:[2002年备考题]解:方法一:结构图化简继续化简:于是有:结果为其中)(s G =…方法二:用梅逊公式[]012342321123+----=∆H G G H G G G H G G通路:1,1321651=∆=G G G G G P1232521,H G G G P +=∆= 1,334653=∆=G G G G P于是:()()......332211=∆∆+∆+∆=P P P s R s Y三、稳态误差(1)参考输入引起的误差传递函数:()HG G s R s E 2111)(+=; 扰动引起的误差传递函数:()()HG G H G s N s E 2121+-=(2)求参考输入引起的稳态误差ssr e 时。
自动控制原理总复习资料(完美)总复第一章的概念典型的反馈控制系统基本组成框图如下:输出量串连补偿放大执行元被控对元件元件件象--反馈补偿元件测量元件自动控制系统有三种基本控制方式:反馈控制方式、开环控制方式和复合控制方式。
基本要求可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。
第二章要求:1.掌握运用拉普拉斯变换解微分方程的方法。
2.牢固掌握传递函数的概念、定义和性质。
3.明确传递函数与微分方程之间的关系。
4.能熟练地进行结构图等效变换。
5.明确结构图与信号流图之间的关系。
6.熟练运用梅森公式求系统的传递函数。
例1:某一个控制系统动态结构图如下,求系统的传递函数。
C1(s)C2(s)C(s)C1(s)G1(s)G2(s)G3(s)R1(s)R2(s)R1(s)R2(s)传递函数为:C(s) = G1(s)C1(s) / [1 -G1(s)G2(s)G3(s)R1(s)R2(s)]例2:某一个控制系统动态结构图如下,求系统的传递函数。
C(s)C(s)E(s)E(s)R(s)N(s)R(s)N(s)C(s)G1(s)G2(s)-G2(s)传递函数为:C(s) = G1(s)C(s) / [1 + G1(s)G2(s)H(s)N(s)]例3:i1(t)R1 i2(t)R2R(s)+u1(t) c1(t)C1 C2 r(t)I1(s)+U1(s)112+I2(s)将上图汇总得到:R1I1(s)U1(s)C1s r(t)-u(t) = i(t) R U1(s)u(t) = [i(t) - i(t)]dt Cu(t) - c(t) = i(t)Rc(t) = i(t)dtCI2(s)R2KaC(s)1C2s(b)C(s) R(s)+R1C1sR2C2s1Ui(s)1/R11/C1sIC(s)1/R21/C2s10rad/s,试求系统的传递函数、特征方程、极点位置以及阻尼比和固有频率的物理意义。