染色体微阵列的原理与临床应用
- 格式:pdf
- 大小:6.82 MB
- 文档页数:99
染色体微阵列分析技术在产前诊断中的应用专家共识染色体微阵列分析技术在产前诊断中的应用协作组目前,G 显带染色体核型分析技术仍然是细胞遗传学产前诊断的“金标准”,但该技术具有细胞培养耗时长、分辨率低以及耗费人力的局限性。
包括荧光原位杂交(fluorescence in situ hybridization,FISH) 技术在内的快速产前诊断技术的引入虽然具有快速及特异性高的优点,但还不能做到对染色体组的全局分析。
染色体微阵列分析(chromosomal mlcroarray analysis,CMA) 技术又被称为“分子核型分析”,能够在全基因组水平进行扫描,可检测染色体不平衡的拷贝数变异(copy number variant,CNV),尤其是对于检测染色体组微小缺失、重复等不平衡性重排具有突出优势。
根据芯片设计与检测原理的不同,CMA 技术可分为两大类:基于微阵列的比较基因组杂交(array- based comparative genomic hybridization ,aCGH) 技术和单核苷酸多态性微阵列(single nucleotide polymorphism array,SNP array) 技术。
前者需要将待测样本DNA 与正常对照样本DNA 分别标记、进行竞争性杂交后获得定量的拷贝数检测结果,而后者则只需将待测样本DNA 与一整套正常基因组对照资料进行对比即可获得诊断结果。
通过aCGH 技术能够很好地检出CNV,而SNP array 除了能够检出CNV 外,还能够检测出大多数的单亲二倍体(uniparental disomy,UPD) 和三倍体,并且可以检测到一定水平的嵌合体。
而设计涵盖CNV+SNP 检测探针的芯片,可同时具有CNV 和SNP 芯片的特点。
2010 年,国际细胞基因组芯片标准协作组(lntemational Standards for Cytogenomic Arrays Consortium,ISCA Consortium) 在研究了21698 例具有异常临床表征,包括智力低下、发育迟缓、多种体征畸形以及自闭症的先证者的基础上,发现aCGH 技术对致病性CNV 的检出率为 12.2%,比传统G 显带核型分析技术的检出率提高了10%。
第五章 染色体微阵列分析Chromosomal Microarray Analysis, CMACMA的技术原理123Contents目录CMA相关的基本概念和术语CMA的实验流程临床案例l孕18周,产前超声显示胎儿羊水量多,侧脑室增宽(16mm,正常值小于等于10mm),宫内发育迟缓,心脏强回声l应该采用什么样的产前诊断方法?羊水染色体核型分析结果:46,XX 未检测到异常羊水CMA 结果:chr4p16.3区域 del CNV 大小:3.9MbWolf-Hirschhorn 综合征(WHS)。
发生率为1/50 000,男女患者比例为1:2。
临床表现:特殊面容,严重的生长发育迟缓,智力低下,癫痫。
可伴有心脏缺损,脊柱弯曲及骨骼系统发育不良等症状。
拷贝数变异Copy number variation(CNV)基因组上的结构变异,包括缺失和重复。
总长度占基因组的13%,大小从1kb到几Mb不等。
举例:正常基因组顺序 A-B-C-Da duplication of "C" A-B-C-C-Da deletion of "C" A-B-D拷贝数变异CNVsl不同的CNV对于人类表型有不同的影响,这主要取决于CNV的大小和位置。
l一般来说,大片段CNV可影响多个基因,其致病性则较强;而小片段CNV累及基因数少,其致病性则较弱。
l在人类基因组中,1-10Kb大小的CNV发生频率最高,500Kb以内的CNV占65-80%,大于1Mb的CNV约占1%。
累及外显子区的CNV致病性较强,累及内含子区的CNV致病性较弱。
l CNV的致病性分析非常复杂,往往不能简单根据其大小和位置判断,需要进一步生物信息学分析和功能验证。
DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources. Firth, H.V. et al (2009). Am.J.Hum.Genet 84, 524-533 (DOI: /10/1016/j.ajhg.2009.03.010)Database Statistics 19,014open-access patient records52,879phenotype observations in these patients 27,638open-access copy-number variants。
染色体微阵列分析技术在产前诊断中的应用专家共识(完整版)目前,G显带染色体核型分析技术仍然是细胞遗传学产前诊断的“金标准”,但该技术具有细胞培养耗时长、分辨率低以及耗费人力的局限性。
包括荧光原位杂交(fluorescence in situ hybridization,FISH)技术在内的快速产前诊断技术的引入虽然具有快速及特异性高的优点,但还不能做到对染色体组的全局分析。
染色体微阵列分析(chromosomal microarray analysis,CMA)技术又被称为“分子核型分析”,能够在全基因组水平进行扫描,可检测染色体不平衡的拷贝数变异(copy number variant,CNV),尤其是对于检测染色体组微小缺失、重复等不平衡性重排具有突出优势。
根据芯片设计与检测原理的不同,CMA技术可分为两大类:基于微阵列的比较基因组杂交(array.based comparative genomic hybridization,aCGH)技术和单核苷酸多态性微阵列(single nucleotide polymorphism array.SNP array)技术。
前者需要将待测样本DNA与正常对照样本DNA分别标记、进行竞争性杂交后获得定量的拷贝数检测结果,而后者则只需将待测样本DNA与一整套正常基因组对照资料进行对比即可获得诊断结果。
通过aCGH技术能够很好地检出CNV,而SNP array除了能够检出CNV外,还能够检测出大多数的单亲二倍体(uniparental disomv,UPD)和三倍体,并且可以检测到一定水平的嵌合体。
而设计涵盖CNV+SNP检测探针的芯片,可同时具有CNV和SNP芯片的特点”。
2010年,国际细胞基因组芯片标准协作组(International Standards for Cytogenomic Arrays Consortium,ISCA Consortium)在研究了2 1 698例具有异常临床表征,包括智力低下、发育迟缓、多种体征畸形以及自闭症的先证者的基础上,发现aCGH 技术对致病性CNV的检出率为12.2%,比传统G显带核型分析技术的检出率提高了10%。
100·罕少疾病杂志 2023年6月 第30卷 第 6 期 总第167期【第一作者】刘建生,男,副主任技师,主要研究方向:细胞遗传、分子遗传实验室诊断。
E-mail:***************【通讯作者】刘建生·论著·染色体微阵列技术在胎儿遗传学诊断中的应用刘建生*泰安市妇幼保健院产前诊断中心 (山东 泰安 271000)【摘要】 目的 应用染色体微阵列分析技术(CMA),对符合产前诊断指征的孕中期胎儿羊水细胞遗传学诊断。
方法 对2020年1月至2023年2月来本院就诊的675例18~27周孕妇,按照年龄组与诊断指征分组,抽取羊水,分别进行CMA检测及染色体核型分析。
结果 本文共检出染色体异常157例,其中染色体非整倍体97例,检出率为23.3%(97/675),其中以无创产前DNA(NIPT)数目异常组为主,检出率55.6%(84/151);拷贝数变异(CNVs)60例,检出率为8.9%(60/675),其中明确致病35例,占58.3%(35/60),非明确临床意义型 (VOUS)检出25例,占41.7%(25/60),以NIPT提示CNV异常组检出率最高,占13.8%(13/87)。
年龄分组以≥35岁组与30-34岁组为多,分别占39.3%(265/675)与37.5%(253/675)。
染色体非整倍体检出率20-24岁组最高,占21.7%(13/60),其次为≥35岁组,占17%(45/265)。
20-24岁组与30-34岁组比较,χ2=4.5,0.01<P <0.05,两组比较有统计学意义。
产前诊断指征中,NIPT提示胎儿染色体异常组检测人数最多,比占总数的35.3%(238/675),其中NIPT提示染色体数目异常检测率22.4%(151/675),异常检出率58.9%(89/151);超声软指标异常检出率17.6%(27/153),以NT/NF增厚为主,占软指标的37.0%(10/27)。
染色体微阵列分析技术在2600例流产物中的应用彭继苹;袁海明【摘要】染色体微阵列分析(chromosomal microarray analysis,CMA)是一种通过对染色体进行全基因组扫描来筛查染色体数目和结构异常的检测技术,是儿科和产前遗传诊断的常规工具,已被应用于流产病因分析.本研究应用CMA技术在全基因组水平分析引起流产的染色体异常情况,并评估该技术在临床流产中的应用价值.对收集的2600例流产样本进行CMA技术检测,成功检测了2505例,成功率高达96.3%,其中1021例用CytoScan Optima芯片进行检测,1211例用CytoScan 750K芯片进行检测,273例用CytoScan HD芯片进行检测.利用这3种芯片共检出967例(38.60%)样本发生染色体异常,其中通过CytoScan Optima芯片检出506例(50.00%),CytoScan 750K芯片检出388例(32.00%),CytoScan HD芯片检出73例(26.74%).在967例染色体异常中,有801例(82.83%)发生染色体数目异常,94例(9.72%)发生染色体结构异常,56例(5.79%)发生嵌合体,16例(1.65%)检出纯合区域.本研究结果表明,CMA可应用于临床流产物的遗传学诊断,是一种可靠、稳定、高分辨的技术,其检测结果能够对再生育风险评估提供指导.【期刊名称】《遗传》【年(卷),期】2018(040)009【总页数】10页(P779-788)【关键词】流产;染色体微阵列分析;染色体数目异常;染色体结构异常;嵌合体;染色体纯合区域【作者】彭继苹;袁海明【作者单位】北京金域医学检验实验室有限公司,北京 100010;广州金域医学检验中心有限公司,广州 510330【正文语种】中文自然流产是指妊娠不到28周、胎儿体重不足1000 g、胎儿及其附属物脱离母体而妊娠自行终止者。
妊娠12周之内终止者称为早期流产,临床上自然流产多表现为胎儿发育的停止。
染色体微阵列分析染色体微阵列分析是一种常用的遗传学检测方法,用于检测染色体序列的变异和异常。
它可以帮助医生和研究人员了解遗传疾病的发生机制,并为病人提供个性化的诊断和治疗方案。
本文将介绍染色体微阵列分析的原理、应用和潜在的风险。
染色体微阵列分析的原理是基于DNA微阵列技术,它可以同时检测数千个基因的表达量和染色体上的拷贝数变异。
在染色体微阵列分析中,首先需提取被检测者的DNA样本,然后将其转化为标记有荧光物质的cRNA(互补RNA)。
接下来,将cRNA与染色体上的DNA序列片段进行杂交反应。
最后,使用显微镜观察染色体上的荧光信号,以确定基因的表达量和染色体的结构变异。
染色体微阵列分析在临床应用中有着广泛的应用。
首先,它可以用于检测染色体异常,如染色体缺失、重复和倒位等。
这些异常往往与遗传疾病的发生密切相关,通过染色体微阵列分析可以及早发现这些异常,从而指导临床诊断和治疗。
其次,染色体微阵列分析可以用于评估肿瘤患者的染色体变异情况,以指导治疗方案的制定和预后的判断。
此外,它还可以用于检测染色体序列的失衡情况,如染色体局部缺失和重复,这对研究人员来说是非常有价值的。
然而,染色体微阵列分析也存在一定的风险。
首先,该技术需要高度专业的实验操作和数据解读能力,否则可能会导致错误结果的产生。
其次,因为染色体微阵列分析是通过检测基因的表达量和染色体序列的拷贝数来判断异常的,所以它可能无法检测一些基因变异,如染色体点突变和基因结构变异。
此外,染色体微阵列分析也存在着一定的伦理和隐私问题,因为它可以揭示被检测者的遗传信息,可能对个人和家庭产生潜在的影响。
因此,在进行染色体微阵列分析之前,需要对潜在的风险和益处进行综合评估,并充分考虑被检测者和家族的意愿。
同时,也需要进行必要的知情同意和隐私保护措施,以确保被检测者的权益和数据的安全。
综上所述,染色体微阵列分析是一种常用的遗传学检测方法,具有广泛的临床应用前景。
它可以帮助医生了解疾病的发生机制,并为病人提供个性化的诊断和治疗方案。
染色体微阵列技术 chromosomal microarrayanalysis, cma染色体微阵列技术(chromosomal microarray analysis,CMA)是一种能够检测出染色体异常的高分辨率分析技术。
该技术可以在单个实验中检测大约20000个基因的拷贝数变异和局限性缺失。
它是现代分子遗传学的一项重要进展,对于诊断和治疗一系列遗传疾病具有重要价值。
下面,我们将细致探讨染色体微阵列技术的重要性、工作原理和应用。
一、染色体微阵列技术的重要性CMA技术是一种非常快速、准确、可靠的异常分析技术,可广泛应用于非整倍体的染色体异常检测,尤其适用于遗传病因评估。
CMA不仅能够发现由于单基因缺陷催化的局部基因拷贝数变异,还可以检测到染色体微缺失、微扩增和多倍体等高度复杂的异常状况。
因此,它被广泛应用于诊断某些与染色体异常有关的精神缺陷、发育迟缓等遗传疾病。
二、染色体微阵列技术的工作原理CMA技术的工作原理是将生物样品DNA中的许多小片段固定在玻璃芯片上,与不同染色体上的良种学基因进行杂交,这些小片段涵盖了人类基因组中的所有区域。
接下来,将待测的样品DNA用荧光标记染色体矢量标记,并将其与芯片上的参考DNA混合。
混合的DNA在芯片的表面进行杂交反应,运用激光扫描器来扫描历经荧光标记的染色体矢量,通过与参考DNA进行比较,分析出待测样品中拷贝数增多或减少区域的位置和程度。
三、染色体微阵列技术的应用CMA技术已广泛应用于医学领域,特别适用于诊断疑难杂症。
常见的医学应用包括评估结构性畸形、自闭症、精神发育迟缓、先天性心脏缺陷和小头畸形等遗传病因。
此外,在肿瘤学的研究中,CMA技术也正得到更广泛的应用。
例如,在癌症患者中可以应用CMA技术来研究基因变异是否与肿瘤的发生发展有关,在某种肿瘤中可以探索到与肿瘤相关的染色体区域变异。
总之,CMA技术是一种有效而强大的分析和检测技术。
在医学领域,CMA技术可以提供大量有关染色体拷贝数变异的相关信息,有助于诊断和治疗许多常见的遗传性疾病。