数学建模优秀论文设计模版
- 格式:doc
- 大小:63.00 KB
- 文档页数:16
优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。
数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。
关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。
广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。
一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。
如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。
一、二年级是学生初步感知数学得重要时期。
低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的研究,建立了相应的数学模型,并运用具体方法进行求解和分析。
通过对结果的讨论,得出了具有一定实际意义的结论和建议。
一、问题重述详细阐述所给定的问题,明确问题的背景、条件和要求。
二、问题分析(一)对问题的初步理解对问题进行初步的思考和分析,明确问题的关键所在和需要解决的核心问题。
(二)可能用到的方法和模型根据问题的特点,探讨可能适用的数学方法和模型,如线性规划、微分方程、概率统计等。
三、模型假设(一)假设的合理性说明所做假设的依据和合理性,确保假设不会对问题的解决产生过大的偏差。
(二)具体假设内容列举出主要的假设条件,如忽略某些次要因素、变量之间的关系等。
四、符号说明对文中使用的主要符号进行清晰的定义和说明,以便读者理解。
五、模型建立与求解(一)模型的建立详细阐述模型的构建过程,包括数学公式的推导和逻辑关系的建立。
(二)模型的求解运用适当的数学软件或方法对模型进行求解,给出求解的步骤和结果。
六、结果分析(一)结果的合理性对求解得到的结果进行合理性分析,判断其是否符合实际情况。
(二)结果的敏感性分析探讨模型中某些参数或条件的变化对结果的影响。
七、模型的评价与改进(一)模型的优点总结模型的优点,如准确性、简洁性、实用性等。
(二)模型的不足分析模型存在的不足之处,如局限性、假设的不合理性等。
(三)改进的方向针对模型的不足,提出可能的改进方向和方法。
八、结论与建议(一)结论总结问题的解决结果,明确回答问题的核心要点。
(二)建议根据结论,提出具有实际意义的建议和措施,为相关决策提供参考。
以下是一个具体的示例,假设我们要解决一个关于交通流量优化的问题。
问题重述在某城市的一个交通路口,每天早晚高峰时段都会出现严重的交通拥堵。
现需要建立数学模型,优化信号灯的设置时间,以提高交通流量,减少拥堵。
问题分析首先,我们需要收集该路口的交通流量数据,包括不同时间段各个方向的车辆数量。
数学建模全论文写作模板免费版一、引言(1)背景介绍:简要介绍数学建模的背景和意义。
(2)问题陈述:阐述要解决的问题以及其重要性。
(3)文献综述:回顾相关领域的研究成果和方法。
(4)本文的目的和贡献:明确本文的研究目的和研究结果的贡献。
二、问题分析(1)问题拆解:将整体问题分解为若干子问题。
(2)模型假设:对问题进行适度简化并给出所做的假设。
(3)模型建立:建立数学模型,包括变量定义、符号表示和方程等。
三、模型求解(1)模型求解方法选择:选择适合求解该模型的方法。
(2)算法和程序设计:详细描述算法步骤和程序设计过程。
(3)参数估计和敏感性分析:对模型进行参数估计和敏感性分析。
(4)模型求解结果:给出模型得到的数值结果,并进行分析和讨论。
四、模型验证(1)数据处理和准备:对实际数据进行处理和准备。
(2)模型适用性验证:对模型的适用性进行验证,包括模型的精度和鲁棒性等。
(3)与实际情况比较:将模型结果与实际情况进行对比,并进行分析和讨论。
五、模型推广(1)模型推广应用:探讨模型在其他领域的推广应用。
(2)模型改进和扩展:对模型进行改进和扩展,并给出相应的理论分析和实验结果。
六、结论(1)研究总结:总结本文的研究内容和方法。
(2)结果分析:对本文的研究结果进行总结和分析。
(3)研究展望:对未来进一步研究的方向和问题提出展望。
以上是一个标准的数学建模全论文写作模板,你可以根据自己的具体需求和实际情况进行适当修改和调整。
在写作过程中,需要注意逻辑严谨、分析深入、以及对结果的准确评估和合理解释。
同时,注意语言表达清晰、文字流畅,以确保读者能够理解你的研究内容和结论。
希望这个模板对你的论文写作有所帮助!。
数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。
如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。
数学建模所解决的问题不止现实的,还包括对未来的一种预见。
数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。
数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。
教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。
以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。
因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。
1.2数学建模在大学数学教学中的运用。
大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。
再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。
不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的深入研究,建立了数学模型并进行求解,旨在为相关领域提供有益的参考和决策支持。
文中首先对问题进行了详细的分析和阐述,然后构建了相应的数学模型,运用了列举所用的方法和工具等方法进行求解,最后对结果进行了分析和讨论,并提出了一些改进和优化的建议。
一、问题重述在当今社会,具体问题背景。
本次数学建模竞赛的问题是:详细描述问题。
需要我们通过建立合理的数学模型,来解决阐述问题的核心和关键,并得出具有实际意义的结论和建议。
二、问题分析为了有效地解决上述问题,我们首先对其进行了深入的分析。
从问题的性质来看,它属于定性问题的类型,如优化问题、预测问题等。
进一步分析发现,影响问题的主要因素有列举主要因素,这些因素之间可能存在着描述因素之间的关系,如线性关系、非线性关系等。
基于以上分析,我们决定采用列举解决问题的总体思路和方法的方法来建立数学模型。
三、模型假设为了简化问题并使模型更具可操作性,我们做了以下假设:假设 1:具体假设 1 的内容假设 2:具体假设 2 的内容假设 n:具体假设 n 的内容需要说明的是,这些假设在一定程度上简化了实际情况,但在后续的模型验证和改进中,我们会对其合理性进行检验和调整。
四、符号说明为了便于后续模型的建立和表述,我们对文中用到的符号进行如下说明:符号 1:符号 1 的名称和含义符号 2:符号 2 的名称和含义符号 n:符号 n 的名称和含义五、模型建立与求解(一)模型 1 的建立与求解基于前面的分析和假设,我们首先建立了模型 1。
详细描述模型 1 的数学表达式和原理通过求解模型 1 所使用的方法和工具,我们得到了模型 1 的解为:给出模型 1 的解(二)模型 2 的建立与求解为了进一步提高模型的精度和适用性,我们又建立了模型 2。
详细描述模型 2 的数学表达式和原理运用求解模型 2 所使用的方法和工具,解得模型 2 的结果为:给出模型 2 的解(三)模型的比较与选择对建立的多个模型进行比较和分析,从准确性、复杂性、适用性等方面综合考虑,最终选择了说明选择的模型作为最优模型。
数学建模优秀论文模板标题:基于数学建模方法的XXX问题研究摘要:本文基于数学建模方法,对XXX问题进行了深入研究。
首先,我们对问题进行了全面的分析和理解,并提出了相关假设。
然后,我们通过建立数学模型,利用数学工具和算法对问题进行求解。
最后,我们对模型进行了验证和优化,并得出了一系列重要结论。
本研究获得了全国数学建模大赛一等奖。
研究结果具有一定的理论和实践价值,对于解决类似问题具有一定的指导意义。
关键词:数学建模;XXX问题;模型构建;求解方法;实践价值1.引言1.1问题背景1.2研究目的1.3研究意义2.问题分析和理解2.1对问题进行全面分析2.2提出相关假设2.3确定问题的关键要素及其相互关系3.模型建立3.1建立问题的数学模型3.2假设与符号定义3.3模型的假设和参数4.模型求解4.1求解方法的选择4.2模型求解过程4.3算法的设计与实现5.模型验证和优化5.1模型的验证方法5.2模型的优化策略5.3鲁棒性分析6.结果与讨论6.1模型求解结果6.2结果分析与讨论6.3结果的实际应用价值7.模型的评价与展望7.1模型的优点和不足7.2模型的推广和改进方向附录注意事项:1.这只是一个模板的大致结构,具体的内容要根据实际情况进行补充和修改。
2.摘要部分简洁明了地介绍了研究的目的、方法和结果。
3.引言部分对问题进行了背景说明,明确研究目的和意义。
4.问题分析和理解部分对问题进行了深入分析和理解,确定了问题的关键要素和假设。
5.模型建立部分对问题进行了数学建模,并定义了相关的符号和假设。
6.模型求解部分介绍了所选用的求解方法和实际算法的设计。
7.模型验证和优化部分对模型进行了验证和优化,包括鲁棒性分析。
8.结果与讨论部分对模型求解结果进行了分析和讨论,并探讨了结果的实际应用价值。
9.模型的评价与展望部分对模型的优点和不足进行了评价,并提出了模型的推广和改进方向。
数学建模论文模板本文将以“动力学模型研究草地生态系统中植物物种多样性变化的机制”为例,介绍数学建模论文的写作模板。
第一篇:绪论在本篇论文中,我们将研究草地生态系统中植物物种多样性变化的机制。
植物物种多样性是生态系统中的重要指标之一,其变化与环境因素、人类干扰等因素密切相关。
我们希望通过建立动力学模型,揭示不同因素对植物物种多样性变化的影响机制,为草地生态系统保护与管理提供科学依据。
本文的具体框架如下:在第二部分中,我们将简要介绍植物物种多样性与草地生态系统的相关知识。
在第三部分中,我们将从环境因素、人类干扰、种间关系等因素入手,进行动力学模型的建立,并分析模型参数。
在第四部分中,我们将通过模型仿真和实验验证,探究不同因素对植物物种多样性的影响。
第二篇:文献综述植物物种多样性是生态系统中的重要指标之一,其变化涉及到复杂的生态因素和人类活动。
在草地生态系统中,植物群落的物种多样性变化受到许多因素的影响,例如环境因素、人类干扰、生物多样性等。
下面我们将分别对这些因素的影响机制进行综述。
环境因素:环境因素是影响生态系统中植物物种多样性变化的重要因素。
其中,土壤水分、光照等生态因素对植物的分布、生长和繁殖都有直接和间接的影响。
土壤养分、温度、氧气含量、酸碱度等也会对物种多样性产生影响。
人类干扰:人类干扰是导致生态系统中植物物种多样性下降的主要因素之一。
人类从事的采矿、建设等活动都会破坏生态系统的平衡,从而影响系统中不同物种的生存繁殖。
另外,过度放牧、过度利用等也会对植物群落的物种多样性造成一定的影响。
种间关系:物种之间的关系也是影响生态系统中植物物种多样性的重要因素之一。
其中,竞争、共生、捕食等种间关系都会直接或间接的影响植物群落的物种多样性。
第三篇:方法与结果基于在综述中分析的因素,我们建立了相应的生态动力学模型。
该模型以草地生态系统中植物群落的物种多样性为研究对象,考虑了土壤水分、光照、土壤养分等环境因素、过度放牧、过度利用等人类活动以及种间关系等多种因素对物种多样性的影响。
2016高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2016高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。
根据这些特点对问题1 用··的方法解决;对问题2 用··的方法解决;对问题3 用··的方法解决。
(第2段)对于问题1,用··数学中的··首先建立了··模型I。
在对··模型改进的基础上建立了··模型II。
对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为··,然后借助于··数学算法和··软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3 组数据(每组8 个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。
(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)(第3段)对于问题2用··(第4段)对于问题3用··如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。
并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。
(第5段)如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。
要注意合理性。
此推广模型可以不深入研究,也可以没有具体结果。
关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。
注:字数700-1000 之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。
摘要是重中之重,必须严格执行!。
页码:1(底居中)一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。
篇幅建议不要超过一页。
大部分文字提炼自原题。
二、问题分析主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。
如果有多个小问题,可以对每个小问题进行分别分析。
(假设有3个问题)1.1 问题1的分析对问题1研究的意义的分析。
问题1属于。
数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题1所要求的结果进行分析。
由于以上原因,首先建立一个。
的数学模型I,然后将其改进建立一个。
的模型II,。
对结果分别进行预测,并将结果进行比较.1.2问题2的分析对问题2研究的意义的分析。
问题2属于。
数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题2所要求的结果进行分析。
由于以上原因,首先建立一个。
的数学模型I,然后将其改进建立一个。
的模型II,。
对结果分别进行预测,并将结果进行比较. 。
三、模型假设(4号黑体)(以下小4号)1. 假设题目所给的数据真实可靠;2.3.4.5.6.。
注意:假设对整篇文章具有指导性,有时决定问题的难易。
一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。
注意罗列要工整。
四、定义与符号说明(4号黑体)(对文章中所用到的主要数学符号进行解释小4号)。
尽可能借鉴参考书上通常采用的符号,不宜自己乱定义符号,对于改进的一些模型,符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠近)。
对文章自己创新的名词需要特别解释。
其他符号要进行说明,注意罗列要工整。
如“ij x ~第i种疗法的第j项指标值”等,注意格式统一,不要出现零乱或前后不一致现象,关键是容易看懂。
五、模型的建立与求解(4号黑体)5.1准备工作(4 号宋体)5.1.1数据的处理1.·数据全部缺失,不予考虑。
2.对数据测试的特点,如,周期等进行分析。
3.·数据残缺,根据数据挖掘等理论根据。
变化趋势进行补充。
4.对数据特点(后面将会用到的特征)进行提取。
5.1.2聚类分析(进行采样)用··软件聚类分析和各个不同问题的需要,采得。
组采样,每组5-8个采样值。
将采样所对应的特征值进行列表或图示。
5.1.3预测的准备工作根据数据特点,对总体和个体的特点进行比较,以表格或图示方式显示。
5.2问题1 的。
模型(4 号宋体)5.2.1模型I(·的模型)1. 该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2. ·模型I的建立和求解(1) 说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2) 借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3) 给出问题1的数学模型I表达式和图形表示式。
(4) 给出误差分析的理论估计。
3.模型I的数值模拟将模型I 进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析。
5.2.2模型II(·的模型)1. 该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2. ·模型II的建立和求解(1) 说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2) 借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3) 给出问题1的数学模型I表达式和图形表示式。
(4) 给出误差分析的理论估计。
3.模型II的数值模拟将模型II进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析5.2.3模型III(·的模型)1. 该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2. ·模型I的建立和求解(1) 说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2) 借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3) 给出问题1的数学模型I表达式和图形表示式。
(4) 给出误差分析的理论估计。
3.模型I的数值模拟将模型I 进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析。
5.2.4问题1的三种数学模型的比较。
对三种模型的优点和缺点结合原始数据和模拟预测数据进行比较。
给出各自得优点和缺点。
5.3问题2 的。
个模型(4 号宋体)5.3.1模型I(·的模型)1. 该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2. ·模型I的建立和求解(1) 说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2) 借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3) 给出问题1的数学模型I表达式和图形表示式。
(4) 给出误差分析的理论估计。
3.模型I的数值模拟将模型I 进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析。
5.3.2模型II(·的模型)1. 该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2. ·模型II的建立和求解(1) 说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2) 借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3) 给出问题1的数学模型I表达式和图形表示式。
(4) 给出误差分析的理论估计。
3.模型II的数值模拟将模型II进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析5.3.3模型III(·的模型)1. 该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2. ·模型I的建立和求解(1) 说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2) 借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3) 给出问题1的数学模型I表达式和图形表示式。
(4) 给出误差分析的理论估计。
3.模型I的数值模拟将模型I 进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析。
5.3.4问题1的三种数学模型的比较。
对三种模型的优点和缺点结合原始数据和模拟预测数据进行比较。
给出各自得优点和缺点。
5.4问题3 的。
的模型(4 号宋体)5.4.1模型I(·的模型)1. 该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2. ·模型I的建立和求解(1) 说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2) 借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3) 给出问题1的数学模型I表达式和图形表示式。
(4) 给出误差分析的理论估计。
3.模型I的数值模拟将模型I 进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析。
5.4.2模型II(·的模型)1. 该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2. ·模型II的建立和求解(1) 说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2) 借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3) 给出问题1的数学模型I表达式和图形表示式。