高中物理动量十个模型笔记
- 格式:docx
- 大小:11.61 KB
- 文档页数:2
§动量守恒定律常见模型子弹打击木块类模型例题1:设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,设木块对子弹的阻力恒为f ,求:(1)木块至少多长子弹才不会穿出?(2)子弹在木块中运动了多长时间?变式:若不固定木块时,子弹穿透木块后的速度为v 0/3,现固定木块,其它条件相同,则子弹穿过木块时的而速度为多少?例题2:如图质量为M 的模板B 静止在光滑的水平面上,一质量为m 的长度可忽略的小木块A 以速度v 0水平地沿模板的表面滑行,已知小木块与木板间的动摩擦因数为µ,求:(1)木板至少多长小木块才不会掉下来?(2)小木块在木板上滑行了多长时间?拓展1:上题中,如果已知木板长为L ,(端点为A 、B ,中点为O),问v 0在什么范围内才能使小木块滑到OB 之间相对木块静止?v 0拓展2:如图所示,一辆质量m=2kg 的平板车左端放有质量M=3kg 的小滑块,滑块与平板车之间的动摩擦因数µ=0。
4。
开始时平板车和滑块共同以2m/s 的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短、且碰撞后平板车速度大小保持不变,但方向与原来相反。
平板车足够长,以至滑块不会滑出平板车右端(g=10m/s 2).求:(1)平板车第一次与墙壁碰撞后想做运动的最大距离。
(2)平板车第二次与墙壁碰撞前瞬间的速度.(3)为使滑块始终不会滑到平板车右端,平板车至少多长?拓展3:两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L.导轨上面横放着两根导体棒ab 和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0。
若两导体棒在运动中始终不接触,求: (1)在运动中产生的较耳热最多是多少?(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?人船模型动量守恒定律的两个推论:推论1:当系统的动量守恒时,任意一段时间内的平均动量也守恒;推论2:当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。
动量守恒的十种模型解读和针对性训练人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:m v 人-M v 船=0。
(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=mM +m L 。
3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。
(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m。
“人船模型”的拓展(某一方向动量守恒)【典例分析】【典例】 如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。
质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。
以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。
整个过程凹槽不翻转,重力加速度为g 。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。
【名师点拨】应用“人船模型”解题的两个关键点(1)“人船模型”的应用条件:相互作用的物体原来都静止,且满足动量守恒条件。
(2)人、船位移大小关系:m 人x 人=m 船x 船,x 人+x 船=L (L 为船的长度)。
【针对性训练】1. (2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。
当细绳断裂后,木块与铁块均在竖直方向上运动,木块刚浮出水面时,铁块恰好同时到达池底。
仅考虑浮力,不计其他阻力,则池深为( )A.M +m MhB.M +m m(h +2a )C.M +m M(h +2a )D.M +m Mh +2a2.(2024全国高考模拟)一小船停靠在湖边码头,小船又窄又长(估计重一吨左右)。
动量守恒的十种模型解读反冲和火箭模型模型解读1. 反冲运动作用原理反冲运动是系统内物体之间的作用力和反作用力产生的效果动量守恒反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律机械能增加反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加2.火箭(1)火箭的原理火箭的工作原理是反冲运动,其反冲过程动量守恒,它靠向后喷出的气流的反冲作用而获得向前的速度。
(2)影响火箭获得速度大小的因素①喷气速度:现代液体燃料火箭的喷气速度约为2__000~4__000m/s 。
②火箭的质量比:指火箭起飞时的质量与火箭除燃料外的箭体质量之比,决定于火箭的结构和材料。
现代火箭的质量比一般小于10。
火箭获得的最终速度火箭发射前的总质量为M 、燃料燃尽后的质量为m ,火箭燃气的喷射速度为v 1,如图所示,在火箭发射过程中,由于内力远大于外力,所以动量守恒。
发射前的总动量为0,设燃料燃尽后火箭的飞行速度为v ,发射后的总动量为mv -(M -m )v 1(以火箭的速度方向为正方向)由动量守恒定律,mv -(M -m )v 1=0解得v=Mm-1 v1由此可知,燃料燃尽时火箭获得的最终速度由喷气速度及质量比Mm决定。
喷气速度越大,质量比越大,火箭获得的速度越大。
(3).多级火箭:能及时把空壳抛掉,使火箭的总质量减少,因而能够达到很高的速度,但火箭的级数不是越多越好,级数越多,构造越复杂,工作的可靠性越差,目前多级火箭一般都是三级火箭。
【典例精析】1.(2017·全国理综I卷·14)将质量为1.00kg的模型火箭点火升空,50g燃烧的燃气以大小为600m/s的速度从火箭喷口在很短时间内喷出。
在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)A.30kg⋅m/sB.5.7×102kg⋅m/sC.6.0×102kg⋅m/sD.6.3×102kg⋅m/s【针对性训练】1.(2024重庆模拟2)如题图1所示,水火箭又称气压式喷水火箭、水推进火箭,由饮料瓶、硬纸片等环保废旧材料制作而成。
(每日一练)人教版2022年高中物理力学动量知识汇总笔记单选题1、三块相同的木块A、B、C,自同一高度由静止开始下落,其中B在开始下落时被一个水平飞来的子弹击中并嵌人其中,木块C在下落一半高度时被水平飞来的一子弹击中并嵌人其中,若三个木块下落到地面的时间分别为t A、t B、t C,则()A.t A=t B=t CB.t A=t B<t CC.t A<t B<t CD.t A<t B=t C答案:B解析:木块A做自由落体运动,木块B在刚要下落瞬间被子弹射中,并留在其中,木块B与子弹一起做平抛运动。
竖直方向A、B均做自由落体运动,且下落高度相同,故二者下落时间相同,即t A=t B木块C落下一定距离后被同样的子弹水平射中,也留在其中,在子弹击中木块过程中,竖直方向动量守恒,根据动量守恒定律可知,由于子弹进入木块后总质量变大,所以木块竖直方向的速度变小,木块落地时间延长,木块C在空中的运动时间比A、B时间长,即t A=t B<t C则AB同时落地,C最后落地。
故选B。
2、2020年9月1日,俄罗斯“国际军事比赛”中,各国参赛队伍展开了激烈比拼。
比赛时,士兵从高台跳到低处地面时,士兵的速度在很短时间内减小为零,速度变化大,为了安全,士兵都是让脚尖先着地,有效地保护人体免于伤害或减轻伤害程度。
这样做是为了()A.减少动量的变化量B.减小冲量C.减小人的平均受力大小D.减小地面对人的压强答案:C解析:A.设人落地时的速度为v,动量的变化量为Δp=0−(−mv)=mv这样做不能减少动量的变化量mv,A不符合题意;B.人受到的冲量为I=0−(−mv)这样做不能减小冲量,B不符合题意;C.根据动量定理得(F−mg)t=0−(−mv)解得F=mvt+mg这样做是为了延长人和地面的作用时间t,减小人的平均受力F大小,C符合题意;D.这样做的目的不是为了减小地面对人是压强,D不符合题意。
高中物理模型总结归纳在高中物理学习中,模型是一个非常重要的概念。
通过模型,我们可以更好地理解和描述自然现象。
本文将对高中物理学习中常用的模型进行总结归纳,以帮助同学们更好地理解和应用这些模型。
第一部分:力学模型1. 牛顿运动定律牛顿运动定律是力学领域中最基本的模型之一。
它包括了三条定律,即惯性定律、动量定律和作用-反作用定律。
通过运用这些定律,我们可以准确地描述物体的运动状态和相互作用。
2. 牛顿力学模型牛顿力学模型描述了物体在外力作用下的运动规律。
其中包括了质点力学、刚体力学和弹性力学等内容。
通过使用牛顿的运动定律和力的概念,我们可以解决各种物体在力的作用下的运动问题。
3. 弹簧振子模型弹簧振子模型是描述弹簧振动的重要模型。
它包括了弹簧劲度系数、振动周期和频率等概念。
通过这个模型,我们可以更好地理解和计算弹簧的振动特性。
第二部分:电磁学模型1. 电场模型电场模型描述了电荷之间相互作用的规律。
其中包括了库仑定律和电场强度等概念。
通过这个模型,我们可以预测和计算电荷之间的相互作用力。
2. 磁场模型磁场模型描述了磁荷之间相互作用的规律。
其中包括了洛伦兹力和磁感应强度等概念。
通过这个模型,我们可以解释和计算磁场对物体的作用力。
3. 电磁感应模型电磁感应模型描述了磁场变化对电荷的影响。
其中包括了法拉第电磁感应定律和楞次定律等概念。
通过这个模型,我们可以解释和计算由磁场变化引起的感应电流和感应电动势。
第三部分:光学模型1. 光的几何模型光的几何模型描述了光的传播和反射规律。
其中包括了折射定律、焦距和成像等概念。
通过这个模型,我们可以解释和计算光的传播路径和成像特性。
2. 光的波动模型光的波动模型描述了光的干涉、衍射和偏振等现象。
其中包括了惠更斯-菲涅耳原理和双缝干涉等概念。
通过这个模型,我们可以解释和计算光的波动特性和干涉衍射效应。
第四部分:量子力学模型1. 波粒二象性模型波粒二象性模型是描述微观粒子行为的重要模型。
高考物理知识归纳(三) ---------------动量和能量1.力的三种效应:力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理2.动量观点:动量:p=mv=KmE 2 冲量:I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。
公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)I=F 合t=F 1t 1+F 2t 2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0(系统总动量变化为0)如果相互作用的系统由两个物体构成,动量守恒的具体表达式为P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP '(两物体动量变化大小相等、方向相反)实际中应用有:m 1v 1+m 2v 2='22'11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。
即:P+(-P)=0注意理解四性:系统性、矢量性、同时性、相对性矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。
相对性:所有速度必须是相对同一惯性参照系。
同时性:表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v 1’和v 2’必须是相互作用后同一时刻的瞬时速度。
高中物理第08章动量守恒 动量守恒定律应用四种常见模型Lex Li01、动量守恒定律概述(1)动量守恒定律的五性:①条件性:满足系统条件或近似条件;②系统性:动量守恒是相对与系统的,对于一个物体无所谓守恒;③矢量性:表达式中涉及的都是矢量,需要首先选取正方向,分清各物体初、末动量的正、负。
④相对性:方程中的所有动量必须相对于同一参考系;⑤同时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。
不同时刻的动量不能相加。
(2)应用动量守恒定律解题的步骤①对象(系统性):分析题意,明确研究对象;②受力(条件性):对各阶段所选系统内物体进行受力分析,判定能否应用动量守恒; ③过程(矢量性、相对性、同时性):确定过程的始、末状态,写出初动量和末动量表达式;④方程:建立动量守恒方程求解。
02、常见模型(1)碰撞、爆炸:作用时间极短,内力远大于外力,系统动量守恒①弹性碰撞:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则: 动量守恒:221101v m v m v m += 动能不变:222211111011v m v m v m +=解得:121012m m v v m m −=+ 120122m v v m m =+②非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能损失:22'2'21111112211222222()()E m v m v m v m v ∆=+−+ ③完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v机械能损失:222111112212()()E m v m v m m v ∆=+−+④爆炸:系统动量守恒,机械能增加例01 如图所示,光滑水平面上有A、B、C三个物块,其质量分别为m A=2.0 kg,m B=m C =1.0 kg,现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰好以4 m/s的速度迎面与B发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B与C碰撞前),A和B物块速度的大小;(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.针对训练01 如图所示,总质量为M的大小两物体,静止在光滑水平面上,质量为m的小物体和大物体间有压缩着的弹簧,另有质量为2m的物体以v0速度向右冲来,为了防止冲撞,大物体将小物体发射出去,小物体和冲来的物体碰撞后粘合在一起.小物体发射的速度至少应多大,才能使它们不再碰撞?(2)人船模型(平均动量守恒问题):特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).例02 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
⾼中物理选修3-5第⼀章动量知识点总结 动量是⾼中物理选修3-5课本的重点知识,为了帮助同学学好动量知识点,下⾯店铺给⼤家带来的⾼中物理选修3-5第⼀章动量知识点,希望对你有帮助。
⾼中物理动量知识点 1、动量:可以从两个侧⾯对动量进⾏定义或解释: ①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的⼀种量度。
动量的表达式P=mv。
动量是⽮量,其⽅向就是瞬时速度的⽅向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律:当系统不受外⼒作⽤或所受合外⼒为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,⼀般常⽤等号左右分别表⽰系统作⽤前后的总动量。
运⽤动量守恒定律要注意以下⼏个问题: ①动量守恒定律⼀般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在⼀个⾮常短的时间内,系统内部各物体相互作⽤⼒,远⽐它们所受到外界作⽤⼒⼤,就可以把这些物体看作⼀个所受合外⼒为零的系统处理, 在这⼀短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时⼀个物体系内各物体的速度必须是相对于同⼀惯性参照系的,⼀般取地⾯为参照物。
④动量是⽮量,因此“系统总动量”是指系统中所有物体动量的⽮量和,⽽不是代数和。
⑤动量守恒定律也可以应⽤于分动量守恒的情况。
有时虽然系统所受合外⼒不等于零,但只要在某⼀⽅⾯上的合外⼒分量为零,那么在这个⽅向上系统总动量的分量是守恒的。
⑥动量守恒定律有⼴泛的应⽤范围。
只要系统不受外⼒或所受的合外⼒为零,那么系统内部各物体的相互作⽤,不论是万有引⼒、弹⼒、摩擦⼒,还是电⼒、磁⼒,动量守恒定律都适⽤。
系统内部各物体相互作⽤时,不论具有相同或相反的运动⽅向;在相互作⽤时不论是否直接接触;在相互作⽤后不论是粘在⼀起,还是分裂成碎块,动量守恒定律也都适⽤。
3、动量与动能、动量守恒定律与机械能守恒定律的⽐较。
动量与动能的⽐较: ①动量是⽮量, 动能是标量。
高中物理动量十个模型笔记
1、连接体模型:指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
2、斜面模型:用于搞清物体对斜面压力为零的临界条件。
斜面固定,物体在斜面上情况由倾角和摩擦因素决定物体沿斜面匀速下滑或静止。
3、轻绳、杆模型:绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定。
4、超重失重模型:系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量ay);向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)。
5、碰撞模型:动量守恒;碰后的动能不可能比碰前大;对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
6、人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从动量守恒。
7、弹簧振子模型:F=-Kx(X、F、a、V、A、T、f、E、E:等量的变化规律)水平型和竖直型。
8、单摆模型:T=2T(类单摆),利用单摆测重力加速度。
9、波动模型:传播的是振动形式和能量.介质中各质点只在平衡位置附近振动并不随波迁移。
10、"质心"模型:质心(多种体育运动),集中典型运动规律,力能角度。