弹簧压轴题(非常实用)

  • 格式:doc
  • 大小:136.00 KB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要方法。

在有关弹簧类问题中,要特别注意使用如下特点和规律:

1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的周期性、对称性及特殊点的应用。如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度方向发生改变的时刻。若关联物与接触面间光滑,当

弹簧恢复原长时,物体速度最大,弹性势能为零。若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。若关联物同时处在电磁场中,要注重过程分析。

5、两端均有关联物的弹簧,弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相同,弹簧具有最大的弹性势能;当弹簧恢复原长时,相关联物体的速度相差最大,弹簧对关联物体的作用力为零。若物体再受阻力时,弹力与阻力相等时,物体速度最大。针对此类问题,要立足运动和受力分析,在解题方法上以动量定理、动量守恒定律和动能定理等为首选。

下面我们结合例题来分析一下弹簧类问题的研究方法。

1.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地面上.平衡时,弹簧的压缩量为x。,如图4所示.一物块从钢板正上方距离为3x。处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到达的最高点与O点的距离.

解析:设质量为m的物块与钢板碰撞时的速度为v。,由机械能守恒得:

设表示质量为m的物块与钢板碰撞后一起开始向下运动的速度,因碰

撞时问极短,由动量守恒得:

刚碰完时弹簧的弹性势能为当它们一起回到O点时,弹簧无形变,弹性势能为零,根据题给条件,这时物块与钢板的速度为零,由机械能守恒得:

设表示质量为2m的物块与钢板碰撞后开始一起向下运动的速度,则有:

当质量为2m的物块与钢板一起回到O点时,弹簧的弹力为0,物块与钢板只受到重力作用,加速度为g,过O点,钢板受到弹簧向下的拉力作用,加速度大于g,由于物块与钢板不粘连,物块不可能受到钢板的拉力,其加速度仍为g,故在0点物块与钢板分离,分离后,物块只受重力作用.

设:质量为2m的物块脱离钢板后,上升的最大高度为h,因机械能守恒,故有:

2.A 、B 两个矩形木块用轻弹簧相连接,弹簧的劲度系数为k ,木块A 的质量为m ,物块B 的质量为2m 。将它们竖直叠放在水平地

面上,如图所示。

(1)用力将木块A 竖直向上提起,木块A 向上提起多大高度时,木块B 将离开水平地面。

(2)如果将另一块质量为m 的物块从距A 高H 处自由落下,C 与A 相碰后,立即与A 结合成一起,然后将弹簧压缩,也可以使

木块B 刚好离开地面。如果C 的质量减为m/2,要使B 不离开水平地面,它自由落下的高度距A 不能超过多少?

18、(1)A 、B 用轻弹簧相连接,竖直放置时,弹簧被压缩,由A 受重力和弹力

平衡得弹簧压缩量x1=k mg

.

A 提起到

B 将要离开水平地面时,弹簧伸长,由B 重力和弹力平衡得弹簧伸长量x2=k mg

2.

A 向上提起的高度为x1+x2=k mg

3

(2)C 自由落下到与A 相碰前的速度为v=gH 2

C 与A 相碰后一起向下运动的初速度设为v1,有mv=(m+m)v1

C 和A 具有的动能为mgH v m m 21)(2121=+

C 和A 将弹簧压缩后,再伸长,到B 刚好离开地面,这个过程中,A 和C 上升了x1+x2,重力势能增加了2mg(x1+x2),弹簧的弹性势能增加量设为EP 。

有 mgH 21=2mg(x1+x2)+EP

若C 的质量变为m/2(称为D 物块),设D 从距A 高h 处自由落下,将使B 刚好

能离开水平地面。这时D 与A 自由落下与B 相碰前具有的动能为mgh 61。

D 与A 上升(x1+x2)距离时,速度刚好为零,则有mgh 61=23mg(x1+x2)+EP

解得h=

.(05年全国)如图,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,A .B 都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。现在挂钩上升一质量为3m 的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升。若将C 换成另一个质量为)(21m m +的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g 。

解:开始时,A .B 静止,设弹簧压缩量为x 1,有kx 1=m 1g ①

挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有

kx 2=m 2g ②

B 不再上升,表示此时A 和

C 的速度为零,C 已降到其最低点。由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为

ΔE =m 3g(x 1+x 2)-m 1g(x 1+x 2) ③

C 换成

D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得 12 (m 3+m 1)v 2+12

m 1v 2=(m 3+m 1)g(x 1+x 2)-m 1g(x 1+x 2)-ΔE ④ 由③ ④ 式得12

(m 3+2m 1)v 2=m 1g(x 1+x 2) ⑤ 由①②⑤式得v=2m 1(m 1+m 2)g 2

(2m 1+m 3)k

⑥ 评分标准:①②各2分 ,③④⑤各4分 、⑥3分

剖析:开始时,A 、B 静止,设弹簧压缩量为x 1,由平衡条件有 k x 1=m 1g ① 挂C 并释放后,C 向下、A 向上运动,设B 刚要离地时弹簧伸长量为x 2,由平衡条件有k x 2=m 2 g ②

B 离开地面但不再上升,表示此时A 和

C 的速度为零,C 已降到其最低点.由于A 、B 、C 和弹簧构成的系统机械能守恒,C 向下、A 向上移动的距离均为(x 1+ x 2),所以与初状态相比,弹簧弹性势能的增加量为

ΔE = m 3g (x 1+ x 2)- m 1g (x 1+ x 2) ③

同理:C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,也为ΔE . 由机械能守恒定律有 (m 1+ m 3)υ2 / 2 +m 1υ2 / 2

=(m 1+ m 3)g (x 1+ x 2)- m 1g (x 1+ x 2)-ΔE ④

由③④式得(2m 1+ m 3)υ2 / 2 = m 1g (x 1+ x 2)⑤

由①②⑤式得 )2()(2312

211m m k g m m m v ++= 答案)

2()(2312

211m m k g m m m v ++= 4如图所示,在足够长的光滑水平轨道上静止三个小木块A 、B 、C ,质量分别

为m A =1kg ,m B =1kg ,m C =2kg ,其中B 与C

用一个轻弹簧固定连接,开始