函数类型及图像
- 格式:doc
- 大小:12.73 KB
- 文档页数:2
2023函数及其图象•函数的基本概念•函数的图像•不同类型函数的图像目录•函数图像的应用•函数图像的艺术01函数的基本概念设x和y是两个变量,D是一个给定的集合,在D上有唯一确定的y值与x对应,则称y是x的函数,记作y=f(x)。
集合D称为函数的定义域,x称为自变量,y称为因变量。
函数的定义函数的表示方法图象法用图象表示函数,如f(x)=x^2的图象为开口向上的抛物线。
表象法用表格表示函数,如t=sin(x)。
解析法用等式表示函数,如y=2x+1。
函数的分类•常数函数:f(x)=c(c为常数)•一次函数:f(x)=kx+b(k,b为常数,k≠0)•二次函数:f(x)=ax^2+bx+c(a,b,c为常数,a≠0)•反比例函数:f(x)=k/x(k为常数,k≠0)•幂函数:f(x)=x^a(a为常数)•指数函数:f(x)=a^x(a为常数,a>0且a≠1)•对数函数:f(x)=log_a x(a为常数,a>0且a≠1)•复合函数:f(x)=u(x)+g(x),其中u和g都是简单函数。
02函数的图像1函数图像的概念23将函数表达式中自变量与因变量之间的关系用图形表示出来。
函数图像在平面直角坐标系中,以横轴表示自变量,纵轴表示因变量。
坐标系根据函数表达式的性质,图像呈现不同形状,如直线、曲线、折线等。
函数图像的形状描点法根据函数表达式,求出一些自变量对应的因变量值,然后在坐标系上描出对应的点,最后用平滑的曲线或直线将这些点连接起来。
图示法利用计算器或编程语言,直接在计算机上绘制出函数图像。
绘制函数图像的方法函数图像的变换伸缩将函数图像按比例进行缩放,可以是横向或纵向。
平移将函数图像沿横轴或纵轴方向移动一定距离。
翻折将函数图像以某一条直线或点为对称中心进行翻折。
复合变换以上变换可以同时进行,也可以多次进行。
旋转将函数图像按一定角度顺时针或逆时针旋转一定角度。
03不同类型函数的图像线性函数一次函数的图像是直线,表达式为$y=kx+b$,其中$k$是斜率,$b$是截距。
高中数学14种函数图像和性质知识解析新人教A版必修1高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
函数的图像和变换函数是数学中非常重要的概念,它描述了一种映射关系,将一个集合的元素映射到另一个集合的元素上。
在数学函数的图像和变换中,我们将探讨不同类型的函数以及它们在平面直角坐标系中的图像和变换。
一、常见的函数类型1. 线性函数:线性函数是最简单的函数类型,它的表达式可以写为y=ax+b,其中a和b为常数。
线性函数的图像是一条直线,斜率a决定了直线的斜率方向和倾斜程度,常数b决定了直线与y 轴的交点。
2. 幂函数:幂函数是由形如y=x^n的表达式定义的函数,其中n为常数。
当n为正数时,幂函数的图像呈现递增或递减的曲线,曲线的陡峭程度取决于n的大小。
当n为负数时,曲线则在x轴正方向和y轴正方向之间交替。
3. 指数函数:指数函数由形如y=a^x的表达式定义,其中a为常数且大于0且不等于1。
指数函数的图像是一条通过点(0,1)的递增曲线,沿着x轴正方向迅速上升。
4. 对数函数:对数函数是指满足y=log_a(x)的函数,其中a为正实数且不等于1。
对数函数的图像是一条递增曲线,曲线的陡峭程度由底数a的大小决定。
5. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等。
这些函数的图像是关于坐标轴对称的波动曲线。
二、函数的图像变换函数的图像可以通过一系列变换实现形状、位置或大小的改变。
以下是常见的函数图像变换:1. 平移:通过在函数表达式中加上常数c,可以使得函数图像沿着x轴或y轴平移。
例如,对于线性函数y=x+1,如果我们在函数表达式中加上常数1,则函数图像整体上移1个单位。
2. 反转:通过对函数表达式中的x或y取相反数,可以使函数图像在x轴或y轴方向上发生反转。
例如,对于线性函数y=x,如果我们将函数表达式中的x替换为-x,则函数图像将在y轴上对称。
3. 缩放:通过在函数表达式中乘以常数d,可以实现函数图像的缩放。
如果d大于1,则函数图像会在坐标轴方向上拉伸;如果d介于0和1之间,则会在坐标轴方向上收缩。
函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
指数函数幂函数对数函数图像指数函数、幂函数和对数函数是高中数学中重要的函数类型,它们在数学和实际应用中都有广泛的应用。
其图像具有一定的特点,本文将对这三种函数的图像特点进行详细介绍。
一、指数函数的图像指数函数是形如$f(x)=a^x$的函数,其中$a>0$且$aeq1$。
指数函数的图像通常具有如下特点:1. 当$a>1$时,指数函数的图像是增长的,当$a<1$时,指数函数的图像是衰减的。
2. 当$x=0$时,指数函数的值为1。
3. 当$xrightarrowinfty$时,当$a>1$时,指数函数的值趋近于无穷大,当$a<1$时,指数函数的值趋近于0。
4. 当$xrightarrow-infty$时,当$a>1$时,指数函数的值趋近于0,当$a<1$时,指数函数的值趋近于无穷大。
5. 指数函数的图像一定过点$(0,1)$。
二、幂函数的图像幂函数是形如$f(x)=x^a$的函数,其中$a$可以是正整数、负整数、分数或小数。
幂函数的图像通常具有如下特点:1. 当$a>0$时,幂函数的图像是增长的,当$a<0$时,幂函数的图像是衰减的。
2. 当$x=0$时,幂函数的值为0或1。
3. 当$xrightarrowinfty$时,当$a>0$时,幂函数的值趋近于无穷大,当$a<0$时,幂函数的值趋近于0。
4. 当$xrightarrow-infty$时,当$a$为偶数时,幂函数的值趋近于无穷大,当$a$为奇数时,幂函数的值趋近于$-infty$或$infty$。
5. 幂函数的图像过点$(0,0)$或$(0,1)$。
三、对数函数的图像对数函数是形如$f(x)=log_ax$的函数,其中$a>0$且$aeq1$。
对数函数的图像通常具有如下特点:1. 对数函数的定义域为$x>0$,值域为$(-infty,infty)$。
2. 当$x=a$时,对数函数的值为1。
常见函数类型的图像分析在数学中,函数是一种将一个集合中的每个元素映射到另一个集合中的规则。
函数的图像则是表示函数规则在平面上的表现形式。
通过对常见函数类型的图像进行分析,我们可以深入了解这些函数的特点和行为。
1. 常数函数常数函数是指在定义域上输出恒定值的函数。
例如,f(x) = 2 是一个常数函数。
常数函数的图像是一条水平线段,不随输入变化而改变。
2. 线性函数线性函数是指函数的增长率恒定的函数,其图像是一条直线。
一般地,线性函数可以表示为 f(x) = ax + b,其中 a 和 b 是常数。
线性函数的图像是一条斜率为 a 的直线,且与 y 轴相交于点 (0, b)。
3. 幂函数幂函数是指以自然数为指数的函数。
例如,f(x) = x^2 是一个幂函数。
幂函数的图像形状因指数的奇偶性而有所不同。
当指数为偶数时,幂函数的图像向上开口,且通过点 (0, 0)。
当指数为奇数时,幂函数的图像通过点 (0, 0),并在第一、三象限上延伸。
4. 指数函数指数函数是指以一个常数为底数的函数。
例如,f(x) = 2^x 是一个指数函数。
指数函数的图像是一个递增或递减的曲线,随着自变量的增大或减小而迅速增长或减小。
当底数大于 1 时,指数函数递增;当底数介于 0 和 1 之间时,指数函数递减。
5. 对数函数对数函数是指与指数函数相反的函数。
例如,f(x) = log(x) 是一个对数函数。
对数函数的图像是一条曲线,随着自变量的增大而缓慢增长。
对数函数的底数决定了函数的增长速度。
6. 正弦函数和余弦函数正弦函数和余弦函数是常见的三角函数。
正弦函数的图像是一条周期性的波浪曲线,振幅为 1,且与 x 轴的交点位于 (0, 0)。
余弦函数与正弦函数非常相似,但图像的相位差为π/2。
通过对这些常见函数类型的图像进行分析,我们可以发现它们的特点和规律。
这有助于我们更好地理解和应用函数概念,在解决实际问题时能够更加灵活地运用各类函数。
初等函数及其图像初等函数是中学数学中常见的函数类型,它们广泛应用于各个领域的数学问题中。
本文将介绍几种常见的初等函数及其图像,帮助读者更好地理解初等函数的性质和特点。
一、线性函数线性函数是最简单的一种初等函数,其表达式为:y = kx + b,其中k和b为常数。
线性函数的图像是一条直线,斜率k决定了直线的倾斜程度,而常数b则表示直线与y轴的截距。
二、二次函数二次函数是指形如y = ax^2 + bx + c的函数,其中a、b和c都是常数且a ≠ 0。
二次函数的图像是一个抛物线,开口方向根据a的正负决定。
当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
抛物线的顶点坐标为(-b/2a, f(-b/2a))。
三、指数函数指数函数是以指数形式定义的函数,通常写作y = a^x,其中a为正实数且不等于1。
指数函数的图像呈现出逐渐增长或逐渐减小的特点。
当a > 1时,指数函数递增;当0 < a < 1时,指数函数递减。
指数函数与y轴交于点(0, 1),在x轴的负半轴上无界限逼近于x轴。
四、对数函数对数函数是指以对数形式定义的函数,一般写作y = loga(x),其中a为正数且不等于1,x为正实数。
对数函数的图像呈现出逐渐变缓的特点。
当a > 1时,对数函数递增;当0 < a < 1时,对数函数递减。
对数函数的图像与y轴交于点(1, 0),在x轴的正半轴上无界限逼近于x 轴。
五、三角函数三角函数是以角度或弧度作为自变量的函数,主要包括正弦函数、余弦函数和正切函数等。
这些函数的图像呈现出周期性的特点。
正弦函数和余弦函数的图像是周期为2π的波浪线,正弦函数在原点取最小值,余弦函数在原点取最大值。
正切函数的图像是以间隔π为周期的振荡线。
六、反比例函数反比例函数是指形如y = k/x的函数,其中k为非零常数。
反比例函数的图像呈现出一条双曲线,曲线与x轴和y轴都有渐进线。
5.4.1 正弦函数、余弦函数的图像(基础知识+基本题型)知识点一 正弦函数的图象 1.正弦曲线的几何作法正弦函数sin ,y x x R 的图象如图,我们把正弦函数的图象叫做正弦曲线.如图,在直角坐标系的x 轴上取一点1O ,以1O 为圆心,单位长为半径作圆,从圆1O 与x 轴的交点A 起,把圆1O 分成12等份(份数越多,画出的图象越精确).过圆1O 上各分点作x 轴的垂线,得到对应于0,,,,,2632等角的正弦线,相应地,再把x 轴上从0到2这一段分成12等份,把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合,再把这些正弦线的终点用光滑曲线连接起来,即得sin ,[0,2]y x x 的图象.2.用“五点法”作sin ,[0,2]y x x 的简图在函数sin ,[0,2]y x x 的图象上,起关键作用的点有五个:(0,0),(,1)2,(,0),3(,1)2,(2,0). 一般地,在精确度要求不高时,我们常常先找出这五个关键点,再用光滑的曲线将它们连接起来,就得到正弦函数在[0,2]上的简图.这种方法叫“五点法”.【提示】(1)“五点法”作三角函数图象的实质是分别找到函数图象的最高点、最低点及三个平衡点,这五个点大致确定了函数图象的位置与形状.(2)用“五点法”作sin ,[0,2]y x x 的图象后,将其向左右平移(每次2个单位长度),可得出sin ,y x x R 的图象.知识点二 余弦函数的图象 1.利用图象变换作余弦函数的图象 由诱导公式六,有cos sin()2y x x .因此,将正弦函数sin ,y x x R 的图象向右平移2个单位长度,就得到函数sin()cos ,2y x x x R 的图象. 我们把余弦函数cos ,y x x R 的图象叫做余弦曲线,如图所示.2.用“五点法”作cos ,[0,2]y x x 的简图在函数cos ,[0,2]y x x 的图象上,起关键作用的点是它与x 轴的交点、函数图象的最高点和最低点,它们的坐标依次为:(0,1),(,0)2,(,1),3(,0)2,(2,1).用光滑的曲线将它们连接起来,就得到余弦函数在[0,2]上的简图.【提示】(1)作余弦函数图象时,可通过正弦函数的图象平移得到,但要注意平移的单位长度. (2)作x R 的余弦函数图象,可由cos ,[0,2]y x x 的图象左右平移得到,也可由 sin ,y x x R 的图象向左平移2个单位长度得到.考点一 通过图象变换作函数的图象 【例1】作函数32sin y x π⎛⎫=+⎪⎝⎭的图象. 解:3sin |cos |2y x x π⎛⎫=+= ⎪⎝⎭cos 22,Z 22,3cos 22,Z .22x k x k k x k x k k ππππππππ⎧⎛⎫-+≤≤+∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<<+∈ ⎪⎪⎝⎭⎩故|cos |y x =的图象实际就是cos y x =的图象在x 轴下方的部分翻折到x 轴上方后得到的图象,如图由于余弦函数的图象是利用诱导公式依据图象变换画出的,故掌握利用诱导公式化简三角函数式也是画三角函数图象的切入点。
函数类型及图像
函数是数学中重要的概念,在很多应用中都有着重要的作用。
函数是由一些特定的变量来决定另一个变量的一种依赖关系,它可以用来表达某种物理规律或事物间的关系。
函数可以用解析式或图像来表述,不同的表述方式有着不同的特性和优势。
函数类型可分为常数函数、线性函数、平方函数、立方函数、多项式函数、指数函数和对数函数等等。
常数函数是特殊的线性函数,它是所有变量均相等的函数。
线性函数是一种简单的函数,它的图形是一条直线,其特征为变量的比例性增长以及满足首项定理。
平方函数与线性函数的图形相似,但它是一个二次函数,变量增长必须满足平方定律。
立方函数与线性函数和平方函数的图形相似,但它是一个三次函数,变量增长必须满足立方定律。
多项式函数的图像比线性函数的图像更加复杂,但它的特征是变量增长是所有幂次的函数的综合。
指数函数的图形是一条曲线,变量的增长必须满足指数定律。
对数函数的图形也是一条曲线,变量的增长必须满足对数定律。
不同类型的函数可以用图像来表述其特性和能力,从而更加直观地展示其变量之间的依赖关系。
如常数函数的图像就是一条水平线,表示变量之间没有任何依赖关系;线性函数的图像是一条直线,表示变量间呈现线性增长关系;平方函数的图像是一条右上凹下凹的曲线,表示变量间变量按平方增长;多项式函数的图像是一条右上凹下凹的曲线,表示变量间按多项式函数增长关系;指数函数的图像是一条上凹下凸的曲线,表示变量间按指数函数增长;对数函数的图像是一条
上凸下凹的曲线,表示变量间按对数函数增长关系。
图像不仅可以表述函数的特性,还可以用于求函数极值点、判断函数单调性,从而更好地分析推导函数。
函数图像还可以用于数学模型分析和科学研究,在图像处理、生物信息处理、市场营销中都有广泛的应用,因此掌握和熟练使用图像的相关知识成为当今世界的科学研究以及工程实践的基础。
以上就是有关函数类型及图像的介绍,希望能够给读者有所帮助。
函数的图像除了可以用于简单的图形表述外,还可以用于分析函数的特性,从而进一步推导函数模型并利用其应用于工程实践和科学研究,期望读者能够熟练掌握并活用函数图像的相关知识,获得成功与成就。