2007全国高中数学联赛平面几何证法2
- 格式:doc
- 大小:80.50 KB
- 文档页数:2
(高中)平面几何常用基本定理1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边及另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=.4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段及这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin .7. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .8. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)9. 弦切角定理:弦切角等于夹弧所对的圆周角.10.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)11.布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC ⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.12.点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线及⊙O交于点A、B,则PA·PB= |d2-r2|.“到两圆等幂的点的轨迹是及此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.13.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.14.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE交AB于P、Q,求证:MP=QM.15.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.16.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1 、⊙A1 、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1 、⊙A1 、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2 、⊙A2 、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2 、⊙A2 、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.17.九点圆(Ninepointround或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心及各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;18.(2)九点圆的圆心在欧拉线上,且恰为垂心及外心连线的中点;(3)三角形的九点圆及三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.19.欧拉(Euler)线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.20.欧拉(Euler)公式:设三角形的外接圆半径为R,内切圆半径为r,外心及内心的距离为d,则d2=R2-2Rr.21.锐角三角形的外接圆半径及内切圆半径的和等于外心到各边距离的和.22. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 23. 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;24.(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; 25. (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; 26.(4)设G 为△ABC 的重心,则 27.③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点); 28. ④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;29. ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).30. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (C c B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++31. 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;32.(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上; 33. (3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;34. (4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.35. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;36. 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;37. (2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;38. (3)三角形一内角平分线及其外接圆的交点到另两顶点的距离及到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;39. (4)设I 为△ABC 的内心,,,,c AB b AC a BC ===A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则a c b KD IK KI AK ID AI +===; 40. (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.41. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;42.外心性质:(1)外心到三角形各顶点距离相等; 43. (2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;44. (3)∆=S abcR 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆及外接圆半径之和.45. 旁心:一内角平分线及两外角平分线交点——旁切圆圆心;设△ABC的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别及AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .46. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 47.三角形中内切圆,旁切圆和外接圆半径的相互关系: 48. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立) 49. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.50. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.51. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CY YA =1. 52. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线及两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M . 53.塞瓦定理的逆定理:(略) 54. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.55. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点.56.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).57.西摩松定理的逆定理:(略)58.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.59.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.60.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC 的点P的西摩松线通过线段PH的中心.61.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(及西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.62.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.63.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.64.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.65.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.66.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .67.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR 的的西摩松线交于及前相同的一点.68.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.69.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC 的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.70.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC 的西摩松线交于一点.71.卡诺定理:通过△ABC的外接圆的一点P,引及△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,及三边的交点分别是D、E、F,则D、E、F三点共线.72.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们及△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN及△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.73.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F 三点共线.74.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW 和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q两点关于圆O互为反点)75.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.76.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.77.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.78.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.79.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M 和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD 的康托尔线.80.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD 的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.81.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.82.费尔巴赫定理:三角形的九点圆及内切圆和旁切圆相切.83.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.84.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点.85.帕斯卡(Paskal)定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线.86. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.87. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.88. 密格尔(Miquel )点:若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.89. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.90. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式:222ABC D 4||R d R S S EF -=∆∆. 斯特瓦尔特定理斯特瓦尔特(stewart)定理设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB^2·DC+AC^2·BD -AD^2·BC=BC·DC·BD。
1、数学竞赛考纲二试1、平面几何根本要求:驾驭高中数学竞赛大纲所确定的全部内容。
补充要求:面积与面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点间隔之与最小的点--费马点。
到三角形三顶点间隔的平方与最小的点--重心。
三角形内到三边间隔之积最大的点--重心。
几何不等式。
简洁的等周问题。
理解下述定理:在周长肯定的n边形的集合中,正n边形的面积最大。
在周长肯定的简洁闭曲线的集合中,圆的面积最大。
在面积肯定的n边形的集合中,正n边形的周长最小。
在面积肯定的简洁闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
复数方法、向量方法。
平面凸集、凸包及应用。
2、代数在一试大纲的根底上另外要求的内容:周期函数与周期,带肯定值的函数的图像。
三倍角公式,三角形的一些简洁的恒等式,三角不等式。
第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简洁的函数方程。
n个变元的平均不等式,柯西不等式,排序不等式及应用。
复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。
圆排列,有重复的排列与组合,简洁的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简洁的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
3、立体几何多面角,多面角的性质。
三面角、直三面角的根本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、外表绽开图。
4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。
二元一次不等式表示的区域。
三角形的面积公式。
圆锥曲线的切线与法线。
圆的幂与根轴。
5、其它抽屉原理。
容斥原理。
极端原理。
集合的划分。
覆盖。
梅涅劳斯定理托勒密定理西姆松线的存在性及性质(西姆松定理)。
赛瓦定理及其逆定理。
2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚 5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n kn n P k C p p k n -=-=,,,…, 一、选择题1.sin 210=( )AB.-C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2) C.D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .13- D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,, 7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( ) A.4B.4C.2D.28.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3 B .2 C .1 D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( )ABCD12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2lim nn S n ∞=→ .全国卷Ⅱ理科数学(必修+选修Ⅱ)二.请把填空题答案写在下面相应位置处:13. 14 15. 16.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC △中,已知内角A π=3,边BC =B x =,周长为y .(1)求函数()yf x =的解析式和定义域;(2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小. 20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.AEBCFSD21.(本小题满分12分) 设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数.22.(本小题满分12分)已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B二、填空题13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3, 2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin cos sin 2y x x x ⎛⎫=+++ ⎪ ⎪2⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值18.解:(1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故 01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=- 于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===. 1180202100C C 160(1)C 495P ξ===. 2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥.又AB ⊥平面SAD,所以AB DH ⊥,而AB AG A = , 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角tan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系xyz .设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,02b EF a ⎛⎫=- ⎪⎝⎭,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭ ,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD , 所以EF ∥平面SAD .(2)不妨设(100)A ,,, 则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点AEBCFSD H G M111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥ 又1002EA ⎛⎫=- ⎪⎝⎭ ,,,0EA EF EA EF =,⊥,所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.cos MD EA MD EA MD EA <>==,. 所以二面角A EF D --的大小为20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即2r ==. 得圆O 的方程为224x y +=. (2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=. (2)(2)PA PB x y x y =----- ,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一:由(1)可知302n a <<,故0n b >.那么,221n nb b +- 2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,,因为132n n a a +-=, 所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32na a - 即 1n nb b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使 23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根.记 32()23g t t at a b =-++,则 2()66g t t at '=- 6()t t a =-. 当t 变化时,()()g t g t ',变化情况如下表:当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2at t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。
2007全国高中数学联赛平面几何:证法2:充分性,若P 是△ABC 的垂心,由于△BDF 、△CDE 的外心分别是BP 、CP 的中点,因此,△ABC 的九点圆过F E O O ,,,21,即F E O O ,,,21四点共圆。
必要性。
若F E O O ,,,21四点共圆,则 180121=∠+∠EFO E O O 。
因为21,O O 分别是BP 、CP 的中点,所以21O O ∥BC ,且BCA APE AFE ∠=∠=∠, 所以E PO P O O E O O 22121∠+∠=∠PCE PCB ∠+∠=2PCE BCA ∠+∠=,11180BFO AFE EFO ∠-∠-=∠PBF BCA ∠-∠-=180,故ECP FPB ∠=∠。
方法1:由于△BP F ∽△CPE ,则CB DACDAB PEPF CDBP cos cos sin sin =∠∠==。
因为AC AB <,所以1cos cos ≠CB 。
故点P 在阿波罗尼斯(Apolonius )圆上。
注意到AD 在BC 的上方与该圆恰有一个交点,且△ABC 的垂心H 满足,CB H B DH C D CHBH cos cos sin sin =∠∠=,故P 与H 重合,即P 是△ABC 的垂心。
方法2:由ECP FBP ∠=∠cos cos ,可得BPAB APBPAB⋅-+2222CPAC APCPAC⋅-+=2222,所以ECPCP AC FBPAP AB S S CDBD ACPABP ∠⋅∠⋅==∆∆sin 21sin 21222222APCPADAP BP AB -+-+=2222222222)()(PD AD CDPDCDADPD AD BD PD BD AD --+++--+++=PDAD CDPD AD BD ⋅+⋅+=222222,于是BDPD AD BD ⋅+CDPD AD CD ⋅+=,从而)(DC BD DCBD PD AD CD BD -⋅⋅=-,因为0≠-DC BD ,所以ADDCBD PD ⋅=。
全国高中数学联赛重难点专题——平面几何毕达哥拉斯(一)万物皆数.公元前520年左右,毕达哥拉斯(Pythagoras ,公元前560~前480,希腊数学家、哲学家、天文学家、音乐理论家)在克罗托内广收门徒,建立了一个宗教、政治、学术合一的团体——毕达哥拉斯学派.学派内进行数学、哲学研究及政治活动,直到公元前4世纪中叶,繁荣兴旺达一个世纪以上.他们将抽象的数作为万物的本原,研究数的目的是想通过揭示数的奥秘来探索宇宙的永恒真理.他们对数进行了深入研究,注意到数与音乐和谐之间的关系、数与几何图形的团系、数与天体运行的关系等,发展完全数、亲和数、无理数等结果.毕达哥拉斯学派关于数的认识很有特点.他们把13610⋅⋅⋅,,,,称为三角形数,把14916⋅⋅⋅,,,,称为正方形数,把151222⋅⋅⋅,,,,称为五边形数.平面几何技巧(一)名人名言毕达哥拉斯学派发现形数之间的关系,如:命题1 从1开始,相继的奇数之和是一个正方形数;命题2 正方形数是两个相继的三角形数之和;命题3 第n个五边形数等于第1n−个三角形的3倍加上n.这些命题的正确性只要分析形数的构型就可以得出.毕达哥拉斯(二)令毕达格拉斯学派引以为傲的应该是“毕达哥拉斯定理”的发现,即:直角三角形两直角边的平方和等于斜边的平方—我国称为“勾股定理”.毕达哥拉斯定理可谓数学史上的第一块里程碑,它揭示了三角形边长的数量和形状的关系,后来成为解析几何的“距离公式”,并在高维空间的数学中有着重要作用,因此被人们誉为数学大厦的“拱心石”.毕达哥拉斯定理已有4000多年的历史,它的证明方法多达400余种,这中间有著名画家达·芬奇的杰作,也有一位盲童的贡献,甚至爱因斯坦也和毕氏定理有过邂逅.有一次雅可比叔叔向爱因斯坦讲了毕氏定理得内容,而未讲任何证明.他的侄儿理解所涉及的关系,并感到基于一种理由可推导出来.......这个小孩在三个星期中用其全部的思维力量去证明这一定理.他专注到三角形的相似性(从直角三角形的一个顶点向斜边作垂线)得到了一个证明.为此他久久地激动不已!这虽然仅涉及一个非常古老的著名定理,他却经历了发现者的首次快乐.据说毕氏学派为了纪念这一发现,要杀掉一百头牛来庆贺.但是,他们却没有想到,由毕达哥拉斯定理引发的关于无理数的发现,却使毕达哥拉斯学派陷入困境.根据“毕达哥拉斯定理”,单位正方形对角线的长应为2,那么2是什么性质的数呢?知识串讲三点共线是平面几何中典型的问题,证明点共线的思路:1.从角考虑:证得以中间一点为顶点,两侧两点所在射线所成的角为平角;证得以中间一点为顶点且作一直线,其余两点所在射线构成对顶角;证得以一点为顶点且作一射线,其余两点所在射线与前一条射线所成的两个角相等.2.从线考虑:证第三点在过另两点的直线上;证得三点两两连线与同一直线垂直或平行;证得三点两两连结的线段有和或差关系.3.从形考虑:证得三点所成的三角形面积为零;证得以一点为位似中心,其余两点为位似变换的一对对应点.4.从有关结论考虑:注意到梅涅劳斯等.5.从方法上考虑:可考虑反证法、同一法、面积法等.【例1】如图,在直角三角形ABC 中,CH 为斜边AB 上的高,以A 为圆心,AC 为半径作圆A ,过B 作圆A 的任一割线交圆A 于D ,E ,交CH 于F (D 在B ,F 之间);又作ABG ABD ∠=∠,G 在圆周上,G 与D 在AB 两侧.求证:E ,H ,G 三点共线.【例2】如图,在ABC △中,90BAC ∠=︒,点E 在ABC △的外接圆Γ的弧BC (不含点A )内,AE EC >.连接EC 并延长至点F ,使得EAC CAF ∠=∠,连接BF 交圆Γ于点D ,连接ED ,记DEF△的外心为O .求证:A C O ,,三点共线.【例3】H 是ABC △垂心,P 是任一点,由H 向PA ,PB ,PC 引垂线HL ,HM ,HN 与BC ,CA ,BA 的延长线相交于X ,Y ,Z .证明:X ,Y ,Z 三点共线.G HDFEC BAΓFEDCB AOHZYXNM L PCBA例题精选【例4】设A ,B ,C ,D 是平面上四点,如果对平面上任何点P 都满足不等式:PA PD PB PC ++≥,那么B ,C ,A ,D 四点共线.【例5】如图,设四边形ABCD 外切于圆O ,对角线AC 和BD 中点分别为M ,N .试证:M ,N ,O 三点共线.【例6】如图,设AC ,CE 是正六边形ABCDEF 的两条对角线,点M ,N 分别内分AC ,CE,使AM CN AC CE ==B ,M ,N 共线.【例7】已知,C D 是以AB 为直径的半圆O 上的两个点,弦,AD BC 交于点E ,,F G 分别是,AC BD 延长线上的点,且满足AF BG AE BE ⋅=⋅,若,AEF BEG ∆∆的垂心分别为12,H H ,证明⑴12,AH BH 的交点K 在圆O 上;⑵,,F K G 三点共线.ANMFEDC BA1. 锐角ABC △中,B C ∠=∠,O H 、分别是其外心、垂心,求证:BOH △的外心在直线AB 上.2. 如图,作ABC △的外接圆,连接弧AC ︵中点与AB ︵和BC ︵中点的弦,分别与AB 边交于D ,与BC 边交于E .证明:D ,E ,三角形内心共线.IE D MN LCBA真题再现希尔伯特我们必须知道,我们必将知道.这是1930年希尔伯特(D ·Hilbert,1862~1943,德国数学家)在科尼斯堡讲演的最后一句话,题为《认识自然和逻辑》.无论从哪个角度看,这都是伟大而有决定意义的诗句,表达了数学家探索数学的决心和信心.正如1962年库朗(R.Courant,1988~1972,德国数学家)在纪念希尔伯特诞生100周年大会上发表的演讲“我确信,希尔伯特那具有感染力的乐观主义,即使到今天也在数学中保持着它的生命力.唯有希尔伯特精神,才会引导数学继往开来,不断成功.”此外1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的演讲.他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题.这23个问题被称为“希尔伯特问题”,称为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响并积极地推动作用.希尔伯特是一位正直的数学家,第一次世界大战前夕,他拒绝在德国政府为进行欺骗宣传而发表的《告文明世界书》上签字.战争期间,他敢于公开发表文章悼念“敌人的数学家”达布(Darboux ,1842~1917,法国数学家).希特勒上台后,他抵制并上书反对纳粹政府排斥和迫害犹太科学家的政策.由于纳粹政府的反动政策日益加剧,许多科学家被迫移居外国,曾经盛极一时的哥廷根学派衰落了,希尔伯特也于1943年在孤独中逝世.然而,希尔伯特的精神却在历史深处发出永远的回响,那就是他在科尼斯堡演说的最后一句话:我们必须知道,我们必将知道.直线共点也是平面几何中的典型问题,也常从角、线、形、有关结论等几个方面去考虑. 1.先设其中的两条直线交于某点,再证这个交点在第三、第四……条直线上; 2.欲证直线12,,,k l l l L 共点,先在i l 上取一特殊点,再证其余直线都过此点; 3.设法证两两相交直线的交点重合;4.运用三角形的巧合点(三角形的五心)证直线共点;平面几何技巧(二)名人名言知识串讲5.注意到特殊图形或多边形的中心的性质,证直线共点于图形中的特殊点; 6.运用旋转、对称等变换的保结合性证明直线共点; 7.运用赛瓦定理之逆定理证直线共点; 8.运用反证法等证明直线共点.【例1】设O 是ABC △内一点,点O 关于A ∠,B ∠,C ∠的内平分角线的对称点分别为A ',B ',C '.证明:AA ',BB ',CC '相交于一点.【例2】如图,设平面上两不相等的圆1O 和圆2O 相交于A ,B 两点,又设两外公切线分别切圆1O 于1P ,1Q ,切圆2O 于2P ,2Q .而1M ,2M 分别为12PQ ,22PQ 的中点,分别延长1AM ,1AO 交圆1O 于C ,E ,分别延长2AM ,2AO 交圆2O 于D ,F .求证:AB ,EF ,CD 三线共点.【例3】如图,已知等圆1O 与圆2O 交于A ,B ,O 为AB 中点,过O 引圆1O 的弦CD 交圆2O 于P ,过O 引圆2O 的弦EF 交圆1O 于Q .求证:AB ,CQ ,EP 三线交于一点.C 'B 'A 'OCBQ 2Q12P 1M1M 2F EDCO 2O 1BA 例题精选【例4】如图,设ABC △为锐角三角形,H 为自A 向边BC 所引高的垂足,以AH 为直径的圆,分别交边AB ,AC 于M ,N (且与A 不同),过A 作直线A L 垂直于MN .类似地作出直线B L 与C L .证明:A L ,B L ,C L 共点.【例5】如图,四边形ABCD 内接于圆O ,对角线AC 与BD 相交于P ,设ABP △,BCP △,CDP △与DAP △的外心分别是1O ,2O ,3O ,4O .求证:OP ,13O O ,24O O 三直线共点.L CL BL A ENM HCBAO 2【例6】已知ABC △的重心为G ,证明,,AG BG CG 分别关于,,A B C ∠∠∠的角平分线对称的三条直线交于一点P .【例7】在凸六边形ABCDEF 中,对角线,,AD BE CF 中的每一条都将六边形分成面积相等的两部分,求证:这三条对角线交于一点.1. 如图,圆O 内切于ABC △,1A ,1B ,1C 分别为BC ,CA ,AB 边上的切点.AO ,BO ,CO 分别交圆于2A ,2B ,2C .求证:12A A ,12B B ,12C C 共点.2. 如图,一圆交ABC △的边,,BC CA AB 分别于1A 与2A ,1B 与2B ,1C 与2C ,如果由点111,,A B C 分别引,,BC CA AB 的垂线相交于一点,则过点2,22,A B C 的垂线也相交于一点.OA 2B 2C 2C 1B 1A 1CBA真题再现3. 已知ABC ∆的外心为O ,90A ∠<︒,P 为OBC ∆的外接圆上且在ABC ∆内部的任意一点,以OA 为直径的圆分别与AB ,AC 交于点D ,E , OD ,OE 分别与PB ,PC 或其延长线交于点F ,G ,求证A ,F ,G 三点共线.CB平面几何技巧(三)名人名言…………将来写上你们自己的……知识串讲证明点共圆应从以下几方面考虑:1.圆的定义:到同一点的距离相等;2.线段的同侧张角相等时,张角顶点与线段的端点共圆;3.凸四边形对角互补,或凸四边形的外角等于它的内对角,则四个顶点共圆;4.相交弦定理、切割线定理的逆定理的运用;5.托勒密定理的逆定理;6.注意到特殊图形(如矩形、等腰梯形)的顶点共圆;7.与有外接圆的多边形相似的多边形的顶点共圆;8.用同一法等其它方法证明四点共圆.例题精选【例1】圆O 内切于四边形ABCD ,与不平行的两边BC 、AD 分别切于E 、F 点.设直线AO 与线段EF 相交于K 点,直线DO 与线段EF 相交于N 点,直线BK 与直线CN 相交于M 点.证明:O 、K 、M 和N 四点共圆.【例2】在凸五边形ABCDE 中,已知AB DE =,BC EA =,AB EA ≠,且B C D E ,,,四点共圆. 证明:若AC AD =,则A B C D ,,,四点共圆.反过来也成立.【例3】如图,在Rt ABC △中,90C ∠=︒,CH AB ⊥,H 为垂足,圆1O 和圆2O 分别是AHC △和BHC △的内切圆,两圆的另外一条外公切线分别交AC ,BC 于P ,Q .求证:P ,A ,B ,Q 四点共圆.NMK O F EDCBAEDCBA【例4】如图所示,若给出平面上一个锐角ABC △,以AB 为直径的圆与AB 边的高线CC '及其延长线交于M ,N ,以AC 为直径的圆与AC 边上的高线及其延长线交于P ,Q .求证:M ,N ,P ,Q 四点共圆.【例5】如图,1O ⊙,与2O ⊙相交于点C ,D ,过点D 的一条直线分别与1O ⊙,2O ⊙相交于点A ,B ,点P 在1O ⊙的弧AD ︵上,PD 与线段AC 的延长线交于点M ,点Q 在2O ⊙的弧BD ︵上,QD 与线段BC的延长线交于点N .O 是ABC △的外心,且MN OD ⊥,求证:P ,Q ,M ,N 四点共圆.AB 'C 'CBAQP NMN【例6】过ABC △顶点A ,C ,且与BC ,BC 交于K ,N (K 与N 不同). ABC △外接圆和BKN △外接圆相交于B 和M .求证:90BMO ∠=︒.【例7】四边形ABCD 内接于圆,BCD △,ACD △,ABD △,ABC △的内心依次记为,,,A B C D I I I I . 试证:A B C D I I I I 是圆内接四边形.NMKOCBAI DI CI BI ADCBA真题再现1. 梯形ABCD是圆内接梯形.AB CD△内.射线AG和BG分别交圆于P和Q.过G∥.G在BCD且平行于AB的直线分别交BD和BC于R和S.求证:若BG平分CBD,则P、Q、R、S四点共圆.。
2007年全国高中数学联合竞赛一试一、填空题:本大题共6个小题,每小题6分,共36分。
2007*1、如图,在正四棱锥ABCD P -中,060=∠APC ,则二面角C PB A --的平面角的余弦值为A.71 B.71- C.21 D.21-◆答案:B★解析:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。
连结CM 、AC ,则∠AMC 为二面角A−PB−C 的平面角。
不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。
在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。
2007*2、设实数a 使得不等式2232a a x a x ≥-+-对任意实数x 恒成立,则满足条件的a 所组成的集合是A.⎥⎦⎤⎢⎣⎡-31,31 B.⎥⎦⎤⎢⎣⎡-21,21 C.⎥⎦⎤⎢⎣⎡-31,41 D.[]3,3-◆答案:A★解析:令a x 32=,则有31||≤a ,排除B 、D 。
由对称性排除C ,从而只有A 正确。
一般地,对R k ∈,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的R k ∈成立。
由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。
2007*3、将号码分别为9,,2,1 的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从袋中再摸出一个球,其号码为b 。
则使不等式0102>+-b a 成立的事件发生的概率等于A.8152 B.8159 C.8160 D.8161◆答案:D ★解析:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为8192=个。
高中数学竞赛校本教材20平面几何证明work Information Technology Company.2020YEAR§20平面几何证明1.线段或角相等的证明(1)利用全等△或相似多边形;(2)利用等腰△;(3)利用平行四边形;(4)利用等量代换;(5)利用平行线的性质或利用比例关系(6)利用圆中的等量关系等。
2.线段或角的和差倍分的证明(1)转化为相等问题。
如要证明a=b±c,可以先作出线段p=b±c,再去证明a=p,即所谓“截长补短”,角的问题仿此进行。
(2)直接用已知的定理。
例如:中位线定理,Rt△斜边上的中线等于斜边的一半;△的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。
3.两线平行与垂直的证明(1)利用两线平行与垂直的判定定理。
(2)利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。
(3)利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。
例题讲解1.从⊙O外一点P向圆引两条切线PA、PB和割线PCD。
从A点作弦AE平行于CD,连结BE交CD于F。
求证:BE平分CD。
2.△ABC内接于⊙O,P是弧 AB上的一点,过P作OA、OB的垂线,与AC、BC分别交于S、T,AB交于M、N。
求证:PM=MS充要条件是PN=NT。
3.已知A为平面上两半径不等的圆O1和O2的一个交点,两外公切线P1P2、Q1Q2分别切两圆于P1、P2、Q1、Q2,M1、M2分别为P1Q1、P2Q2的中点。
求证:∠O1AO2=∠M1AM2。
4.在△ABC中,AB>AC,∠A的外角平分线交△ABC的外接圆于D,DE⊥AB于E,求证:AE=。
5.∠ABC的顶点B在⊙O外,BA、BC均与⊙O相交,过BA与圆的交点K引∠ABC 平分线的垂线,交⊙O于P,交BC于M。
求证:线段PM为圆心到∠ABC平分线距离的2倍。
6.在△ABC中,AP为∠A的平分线,AM为BC边上的中线,过B作BH⊥AP于H,AM的延长线交BH于Q,求证:PQ∥AB。
黄先开辅导地位:历届考生公认的“线性代数第一人”,北京理工大学应用数学系硕士,中国科学院数学与系统科学研究院获博士,美国哈佛大学访问学者,现任北京工商大学数学系主任、教授。
授课特点:理论扎实,表达独到,基础为纲,技巧为器,言简意赅,重点突出,伐毛洗髓,效果极佳名师风采:曾被评为北京市优秀青年骨干教师;1997年被授予“有突出贡献的部级青年专家”称号;曾在国内外一级刊物上发表论文30余篇,单独完成以及合作完成数学专著10多部。
曹显兵辅导地位:考研数学辅导的“概率第一人”;数学系教授,中国科学院数学与系统科学类)》稿.(1) 】【【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】当0x +→时,有1(1)~-=--1~;2111~.22x -= 利用排除法知应选(B). 【评注】 本题直接找出ln的等价无穷小有些困难,但由于另三个的等价无穷小很容易得到,因此通过排除法可得到答案。
事实上,2000ln(1)ln(1) lim lim limtx x tt tt+++→→→+--==22200212(1)111lim lim 1.1(1)(1)t ttt t tt tt t++→→+-+++-==+-完全类似例题见《经典讲义》P.28例1.63, 例1.64, 例1.65及辅导班讲义例1.6.1x【型。
【又【(3)如图,连续函数y=f(x)在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的下、上半圆周,设()().xF x f t dt=⎰则下列结论正确的是(A)3(3)(2)4F F=--. (B)5(3)(2)4F F=.(C) )2(43)3(FF=-. (D) )2(45)3(--=-FF.【】【答案】应选(C).【分析】 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。
【高中数学竞赛讲座2】解析法证明平面几何解析法,就是用解析几何的方法来解题,将几何问题代数化后求解,但代数问题未必容易,采用解析法就必须有面对代数困难的准备,书写必须非常规范.解析法的主要技巧:1.尽量化为简单的代数问题,尽量利用对称性建系,选择恰当的坐标系与便于使用的方程形式;2.运用各种代数技巧(巧妙消元,利用行列式等)不能一味死算.例1、证明:任意四边形四条边的平方和,等于两条对角线的平方和,在加上对角线中点连线的平方的4倍.例2、给定任一锐角三角形ABC 及高AH ,在AH 上任取一点D ,连结BD 并延长交AC 与E ,又连CD 且延长交AB 于F .证明:∠AHE =∠AHF .例3、在ABC ∆的边AB 上取点1B ,AC 取点1C ,使1AB AB λ=,1AC u AC=.再在11B C 上取点1D ,使1111B D m D C n =(λ,u ,m ,n 都是实数).延长1A D 交BC 于D ,求BD DC .例4、如图,菱形ABCD 的内切圆O 与各边分别切于E ,F ,G ,H ,在弧EF 与GH 上分别作圆O 的切线交AB 于M ,交BC 于N ,交CD 于P ,交DA 于Q ,求证: MQ ∥NP .例5、[29届IMO ]在Rt ABC ∆中,AD 是斜边上的高,M 、N 分别是ABD ∆与ACD ∆与的内心,连接MN 并延长分别交AB 与AC 于K 及L .求证明、:2ABC AKL S S ∆∆≥.课后拓展训练与指导钻研《教程》293~302 例1、例2、例3、例7、例8思考并完成《高二教程》303练习题补充几道题目,请尝试用解析法研究1、(2005全国联赛二试)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC=25,BD=20,BE=7,求AK 的长.2、(全国高中联赛二试)如图,圆O 1和圆O 2与△ABC 的三边所在的三条直线都相切,E 、F 、G 、H 为切点,并且EG 、FH 的延长线交于P 点。
2007全国高中数学联赛平面几何:证法2:
充分性,若P 是△ABC 的垂心,由于△BDF 、△CDE 的外心分别是BP 、CP 的中点,因此,△ABC 的九点圆过F E O O ,,,21,即F E O O ,,,21四点共圆。
必要性。
若F E O O ,,,21四点共圆,则 180121=∠+∠EFO E O O 。
因为21,O O 分别是BP 、CP 的中点,所以21O O ∥BC ,且BCA APE AFE ∠=∠=∠, 所以E PO P O O E O O 22121∠+∠=∠PCE PCB ∠+∠=2PCE BCA ∠+∠=,
11180
BFO AFE EFO ∠-∠-=∠
PBF BCA ∠-∠-=
180
,故ECP FPB ∠=∠。
方法1:由于△BP F ∽△CPE ,则C
B DAC
DAB PE
PF CD
BP cos cos sin sin =∠∠=
=。
因为AC AB <,所以
1cos cos ≠C
B 。
故点P 在阿波罗尼斯(Apolonius )圆上。
注意到AD 在BC 的上方与该圆恰有一个交点,且△ABC 的垂心H 满足,
C
B H B D
H C D CH
BH cos cos sin sin =∠∠=
,
故P 与H 重合,即P 是△ABC 的垂心。
方法2:由ECP FBP ∠=∠cos cos ,可得
BP
AB AP
BP
AB
⋅-+22
2
2
CP
AC AP
CP
AC
⋅-+=
22
2
2
,
所以
ECP
CP AC FBP
AP AB S S CD
BD ACP
ABP ∠⋅∠⋅==
∆∆sin 2
1sin 21
2
2
2
222AP
CP
AD
AP BP AB -+-+=
2
2
2
2
2
22222)()(PD AD CD
PD
CD
AD
PD AD BD PD BD AD --+++--+++=
PD
AD CD
PD AD BD ⋅+⋅+=
22222
2,
于是BD
PD AD BD ⋅+
CD
PD AD CD ⋅+=,从而)(DC BD DC
BD PD AD CD BD -⋅⋅=
-,
因为0≠-DC BD ,所以AD
DC
BD PD ⋅=。
又AD
DC BD HD ⋅=
(其中H 为垂心),则P 与H 重合,即P 是△ABC 的垂心。
方法3:由ECP FBP ∠=∠tan tan , 得)tan(tan PBD ABD FBP ∠-∠=∠PBD
ABD tna PBD ABD ∠∠+∠-∠=
tan 1tan tan
PD AD BD PD AD BD BD
PD BD AD BD PD
BD AD ⋅+-=⋅
+-=
2
)(1,
同理PD AD BD
PD AD DC ECP ⋅+-=
∠2
)(tan ,则
消去PD AD -得BD PD AD BD ⋅+CD
PD
AD CD ⋅+
=,以下同方法2。
在此题充分性的证明中用到了九点圆,即△ABC 三边的中点、三条高线的垂足、三个
顶点与垂心所连线的中点,这九个点在同一个圆上。
在必要性的证明中用到阿波罗尼斯定理:与两定点距离之比等于定比(不等于1)的点的轨迹是一个圆周。
此圆是以其内外定比分点所连线段为直径的圆。