海明码和CRC编码的图解和详细计算过程说课讲解
- 格式:doc
- 大小:43.00 KB
- 文档页数:5
1、奇偶校验码二进制数据经过传送、存取等环节,会发生误码(1变成0或0变成1),这就有如何发现及纠正误码的问题。
所有解决此类问题的方法就是在原始数据(数码位)基础上增加几位校验(冗余)位。
一、码距一个编码系统中任意两个合法编码(码字)之间不同的二进数位(bit )数叫这两个码字的码距,而整个编码系统中任意两个码字的的最小距离就是该编码系统的码距。
如图1所示的一个编码系统,用三个bit 来表示八个不同信息中。
在这个系统中,两个码字之间不同的bit 数从1到3不等,但最小值为1,故这个系统的码距为1。
如果任何码字中一位或多位被颠倒了,结果这个码字就不能与其它有效信息区分开。
例如,如果传送信息001,而被误收为011,因011仍是表中的合法码字,接收机仍将认为011是正确的信息。
然而,如果用四个二进数字来编8个码字,那么在码字间的最小距离可以增加到2,如图图 1图 2注意,图8-2的8个码字相互间最少有两bit 因此,如果任何信息的一个数位被颠倒,码字,接收机能检查出来。
例如信息是1001,误收为1011接收机知道发生了一个差错,因为1011不是一个码字(表中没有)。
然而,差错不能被纠正。
的,正确码字可以是1001,1111,0011或1010能确定原来到底是这4个码字中的那一个。
也可看到,在这个系统中,偶数个(2或4)差错也无法发现。
为了使一个系统能检查和纠正一个差错,必须至少是“3”。
最小距离为3时,或能纠正一个错,或能检二个错,但不能同时纠一个错和检二个错。
错和检错能力的进一步提高需要进一步增加码字间的最小距离。
图8-3的表概括了最小距离为1至7的码的纠错和图3检错能力。
码距越大,纠错能力越强,但数据冗余也越大,即编码效率低了。
所以,选择码距要取决于特定系统的参数。
数字系统的设计者必须考虑信息发生差错的概率和该系统能容许的最小差错率等因素。
要有专门的研究来解决这些问题。
二、奇偶校验奇偶校验码是一种增加二进制传输系统最小距离的简单和广泛采用的方法。
奇偶校验码、海明校验码和循环冗余校验码(CRC)奇偶校验码是 奇校验码 和 偶校验码 的统称.它们都是通过在要校验的编码上加⼀位校验位组成.如果是 奇校验 加上校验位后,编码中1的个数为 奇数个如果是 偶校验 加上校验位后,编码中1的个数为 偶数个⽔平奇偶校验是将若⼲字符组成⼀个信息块,对该信息块的字符中对应的位分别进⾏奇偶校验,下表给出了⽔平奇偶校验⽰例。
例:原编码 奇校验 偶校验0000 0000 1 0000 00010 0010 0 0010 11100 1100 1 1100 01010 1010 1 1010 0如果发⽣ 奇数 个位传输出错,那么编码中1的个数就会发⽣变化.从⽽校验出错误. 要求从新传输数据.⽬前应⽤的 奇偶校验码 有3种.⽔平奇偶校验码对每⼀个数据的编码添加校验位,使信息位与校验位处于同⼀⾏.垂直奇偶校验码把数据分成若⼲组,⼀组数据排成⼀⾏,再加⼀⾏校验码.针对每⼀⾏列采⽤ 奇校验 或 偶校验例: 有32位数据10100101 00110110 11001100 10101011垂直奇校验 垂直偶校验数据 10100101 1010010100110110 0011011011001100 1100110010101011 10101011校验为00001011 11110100⽔平垂直奇偶校验码就是同时⽤⽔平校验和垂直校验例:奇校验 奇⽔平 偶校验 偶⽔平数据 10100101 1 10100101 000110110 1 00110110 011001100 1 11001100 010101011 0 10101011 1校验 00001011 0 11110100 1然后是 海明校验码海明码也是利⽤奇偶性来校验数据的.它是⼀种多重奇偶校验检错系统,它通过在数据位之间插⼊k个校验位,来扩⼤码距,从⽽实现检错和纠错.设原来数据有n位,要加⼊k位校验码.怎么确定k的⼤⼩呢?k个校验位可以有pow(2,k) (代表2的k次⽅) 个编码,其中有⼀个代表是否出错.剩下pow(2,k)-1个编码则⽤来表⽰到底是哪⼀位出错.因为n个数据位和k个校验位都可能出错所以k满⾜ pow(2,k)-1 >= n+k设 k个校验码为 P1,P2…Pk, n个数据位为D0,D1…Dn产⽣的海明码为 H1,H2…H(n+k)如有8个数据位,根据pow(2,k)-1 >= n+k可以知道k最⼩是4那么得到的海明码是H12 H11 H10 H9 H8 H7 H6 H5 H4 H3 H2 H1D7 D6 D5 D4 P4 D3 D2 D1 P3 D0 P2 P1然后怎么知道Pi校验哪个位呢.⾃⼰可以列个校验关系表海明码 下标 校验位组H1(P1) 1 P1H2(P2) 2 P2H3(D0) 1+2 P1,P2H4(P3) 4 P3H5(D1) 1+4 P1,P2H6(D2) 2+4 P2,P3H7(D3) 1+2+4 P1,P2,P3H8(P4) 8 P4H9(D4) 1+8 P1,P4H10(D5) 2+8 P2,P4H11(D6) 1+2+8 P1,P2,P4H12(D7) 4+8 P3,P4从表中可以看出P1校验 P1,D0,D1,D3,D4,D6P2校验 P2,D0,D2,D3,D5,D6P3校验 P3,D1,D2,D3,D7P4校验 P4,D4,D5,D6,D7其实上表很有规律很容易记要知道海明码Hi由哪些校验组校验可以把i化成 ⼆进制数 数中哪些位k是1,就有哪些Pk校验如H7 7=0111 所以由P1,P2,P3H11 11=1011 所以由P1,P2,P4H3 3=0011 所以由P1,P2那看看Pi的值怎么确定如果使⽤偶校验,则P1=D0 xor D1 xor D3 xor D4 xor D6P2=D0 xor D2 xor D3 xor D5 xor D6P3=D1 xor D2 xor D3 xor D7P4=D4 xor D5 xor D6 xor D7其中xor是异或运算奇校验的话把偶校验的值取反即可.那怎么校验错误呢.其实也很简单. 先做下⾯运算.G1 = P1 xor D0 xor D1 xor D3 xor D4 xor D6G2 = P2 xor D0 xor D2 xor D3 xor D5 xor D6G3 = P3 xor D1 xor D2 xor D3 xor D7G4 = P4 xor D4 xor D5 xor D6 xor D7如果⽤偶校验那么 G4G3G2G1 全为0是表⽰⽆错误(奇校验全为1)当不全为0表⽰有错 G4G3G2G1 的⼗进制值代表出错的位.如 G4G3G2G1 =1010 表⽰H10(D5)出错了.把它求反就可以纠正错误了.下⾯举⼀个⽐较完全的例⼦:设数据为01101001,试⽤4个校验位求其偶校验⽅式的海明码.传输后数据为011101001101,是否有错?P1=D0 xor D1 xor D3 xor D4 xor D6=1 xor 0 xor 1 xor 0 xor 1=1P2=D0 xor D2 xor D3 xor D5 xor D6=1 xor 0 xor 1 xor 1 xor 1=0P3=D1 xor D2 xor D3 xor D7=0 xor 0 xor 1 xor 0=1P4=D4 xor D5 xor D6 xor D7=0 xor 1 xor 1 xor 0=0所以得到的海明码为0 1 1 0 0 1 0 0 1 1 0 1传输后为011101001101G1 = P1 xor D0 xor D1 xor D3 xor D4 xor D6=1G2 = P2 xor D0 xor D2 xor D3 xor D5 xor D6=0G3 = P3 xor D1 xor D2 xor D3 xor D7=0G4 = P4 xor D4 xor D5 xor D6 xor D7=1所以1001代表9即H9出错了,对它求反011001001101 和我们算的⼀样.由此可见 海明码 不但有检错还有纠错能⼒下⾯说下最后⼀种 CRC即 循环冗余校验码CRC码利⽤⽣成多项式为k个数据位产⽣r个校验位进⾏编码,其编码长度为n=k+r所以⼜称 (n,k)码. CRC码⼴泛应⽤于数据通信领域和磁介质存储系统中.CRC理论⾮常复杂,⼀般书就给个例题,讲讲⽅法.现在简单介绍下它的原理:在k位信息码后接r位校验码,对于⼀个给定的(n,k)码可以证明(数学⾼⼿⾃⼰琢磨证明过程)存在⼀个最⾼次幂为 n-k=r 的多项式g(x)根据g(x)可以⽣成k位信息的校验码,g(x)被称为 ⽣成多项式⽤C(x)=C(k-1)C(k-2)…C0表⽰k个信息位把C(x)左移r位,就是相当于 C(x)*pow(2,r)给校验位空出r个位来了.给定⼀个 ⽣成多项式g(x),可以求出⼀个校验位表达式r(x)C(x)*pow(2,r) / g(x) = q(x) + r(x)/g(x)⽤C(x)*pow(2,r)去除⽣成多项式g(x)商为q(x)余数是r(x)所以有C(x)*pow(2,r) = q(x)*g(x) + r(x)C(x)*pow(2,r) + r(x)就是所求的n位CRC码,由上式可以看出它是⽣成多项式g(x)的倍式.所以如果⽤得到的n位CRC码去除g(x)如果余数是0,就证明数据正确.否则可以根据余数知道 出错位 .在CRC运算过程中,四则运算采⽤ mod 2运算(后⾯介绍),即不考虑进位和借位.所以上式等价于C(x)*pow(2,r) + r(x) = q(x)*g(x)继续前先说下基本概念吧.1.多项式和⼆进制编码x的最⾼次幂位对应⼆进制数的最⾼位.以下各位对应多项式的各幂次.有此幂次项为1,⽆为0. x的最⾼幂次为r时, 对应的⼆进制数有r+1位例如g(x)=pow(x,4) + pow(x,3) + x + 1对应⼆进制编码是 110112.⽣成多项式是发送⽅和接受⽅的⼀个约定,也是⼀个⼆进制数,在整个传输过程中,这个数不会变.在发送⽅,利⽤ ⽣成多项式 对信息多项式做 模2运算 ⽣成校验码.在接受⽅利⽤ ⽣成多项式 对收到的 编码多项式 做 模2运算 校验和纠错.⽣成多项式应满⾜:a.⽣成多项式的最⾼位和最低位必须为1b.当信息任何⼀位发⽣错误时,被⽣成多项式模2运算后应该使余数不为0c.不同位发⽣错误时,应该使余数不同.d.对余数继续做模2除,应使余数循环.⽣成多项式很复杂不过不⽤我们⽣成下⾯给出⼀些常⽤的⽣成多项式表N K 码距d G(x)多项式 G(x)7 4 3 x3+x+1 10117 4 3 x3+x2+1 11017 3 4 x4+x3+x2+1 111017 3 4 x4+x2+x+1 1011115 11 3 x4+x+1 1001115 7 5 x8+x7+x6+x4+1 11101000131 26 3 x5+x2+1 10010131 21 5 x10+x9+x8+x6+x5+x3+1 1110110100163 57 3 x6+x+1 100001163 51 5 x12+x10+x5+x4+x2+1 10100001101011041 1024 x16+x15+x2+1 110000000000001013.模2运算a.加减法法则0 +/- 0 = 00 +/- 1 = 11 +/- 0 = 11 +/- 1 = 0注意:没有进位和借位b.乘法法则利⽤模2加求部分积之和,没有进位c.除法法则利⽤模2减求部分余数没有借位每商1位则部分余数减1位余数最⾼位是1就商1,不是就商0当部分余数的位数⼩于余数时,该余数就是最后余数.例 11101011)1100000101111101011101010110010(每商1位则部分余数减1位,所以前两个0写出)0000010(当部分余数的位数⼩于余数时,该余数就是最后余数)最后商是1110余数是010好了说了那么多没⽤的理论.下⾯讲下CRC的实际应⽤例: 给定的⽣成多项式g(x)=1011, ⽤(7,4)CRC码对C(x)=1010进⾏编码.由题⽬可以知道下列的信息:C(x)=1010,n=7,k=4,r=3,g(x)=1011C(x)*pow(2,3)=1010000C(x)*pow(2,3) / g(x) = 1001 + 011/1011所以r(x)=011所以要求的编码为1010011例2: 上题中,数据传输后变为1000011,试⽤纠错机制纠错.1000011 / g(x) = 1011 + 110/1011不能整除,所以出错了. 因为余数是110查1011出错位表可以知道是第5位出错.对其求反即可.循环冗余校验码CRC(Cyclic Redundancy Code)采⽤⼀种多项式的编码⽅法。
海明码的计算方法海明码是一种具有纠错功能的校验码。
本文简单地介绍海明码的计算方法。
海明码的目的是能够纠正一位误码。
假设信息码共有 n 位,海明码共有 h 位,那么总共的码长为 n + h 位。
为能检测出 n + h 位编码中其中一位的错误,海明码必须能够表示至少 n + h + 1 种状态,其中 n + h 种表示 n + h 位编码中有一位错误,另外还需要一种来表示整个编码正确无误。
则海明码的长度需要满足下列关系:2 h>= n + h + 1于是根据这个式子我们可以得出以下的关系表:h 2 3 4 5 6 7 8n 1 2~4 5~11 12~26 27~57 58~120 121~247以 4 位信息位为例,由上表可以看出需要的海明码长度为 3。
设信息位为 x4x3x2x1,添加的 3 位海明码为 a3a2a1,信息码和海明码组合之后得到的码为 H7H6H5H4H3H2H1。
错误无H1H2H3H4H5H6H7C101010101C1= H1+ H3+ H5+ H7= 0C200110011C2= H2+ H3+ H6+ H7= 0C300001111C3= H4+ H5+ H6+ H7= 0如上表,在H1~H7中添加的 3 位海明码使得 C1~C3的值为零。
其中C1~C3为校验和。
这样当 Hn 传输出错时,有 (C3C2C1)2= n。
令 H1 = a1, H2= a2, H4= a3,则得出H 7H6H5H4H3H2H1= x4x3x2a3x1a2a1将上面的关系代入C1~C3的计算公式,得到C 1 = H1+ H3+ H5+ H7= a1+ x1+ x2+ x4= 0C 2 = H2+ H3+ H6+ H7= a2+ x1+ x3+ x4= 0C 3 = H4+ H5+ H6+ H7= a3+ x2+ x3+ x4= 0即a 1 + x1+ x2+ x4= 0a 2 + x1+ x3+ x4= 0a 3 + x2+ x3+ x4= 0即a 3 = x4+ x3+ x2a 2 = x4+ x3+ x1a 1 = x4+ x2+ x1。
海明码详解这两天也在研究海明码的问题,把我的理解说给你吧,按照我说的可以顺利得到海明码步骤:一、确定校验码的位数k二、确定校验码的位置三、数据的位置四、求出校验位的值首先,海明码的作用是:在编码中如果有错误,可以表达出第几位出了错,二进制的数据只有0和1,修改起来很容易,求反即可,这需要加入几个校验位。
重要的知识点:海明码的组成,不是简单的在后面加上校验位,海明码≠数据位+检验位那检验位该怎么加呢?它是根据总的位置来加的,加在【2的几次幂】的位置上,这个位置不是我们通常的从右向左数位置,刚好相反,是从左右如下图:P是校验位, D是数据位:原始的数据是:101101 校验位是插到了 1 2 4 8这几个位置上的。
位置M1M2M3M4M5M6M7M8M9M10甲P1 P2 D1P3 D2D3D4P4 D5D6乙10 110 1步骤一、确定校验码的位数k公式:m+k+1≤2^k (m是数据位的位数,K是要加的校验位的位数数据长是4位,校验码就是3位4+k+1≤2^kK最小只能是3数据长是5,6,7,8,9,校验码就是4位5+k+1≤2^kK最小就只能取4101101 数据位是6位,那校验位应该是4位,那总位数是:6+4=10位步骤二、确定校验码的位置位置M1M2M3M4M5M6M7M8M9M10甲P1 P2 D1P3 D2D3D4P4 D5D6乙10 110 1(图1)注意:【位置是从左----------右编码】(网上好多都反了,都是从右往左的,这应该是错的)校验位就插在2的幂次方的位置上。
4个检验位就是插到,2的0次方=1,2的1次方=2,2的2次方=4,2的3次方=8的位置上。
始上(图1)步骤三、数据的位置数据位置就按顺序写入进去就OK了,不要写到校验位就是的了。
步骤四、求出校验位的值也就是求图1中:p1 p2 p3 p4 的值。
那这几个数该如何求值呢?这里就要引进一个线性码的概念了,就是这4位校验码和图1中的那些位置上的数有关系呢?这里有一个进制转换的问题要先解决:因为是4位校验码,所以我们可以s4 s3 s2 s1 这个数来表示这个4位校验码,也就是p4 p3 p2 p1M1号位是十进制的1 转成四位二进制数就是:0001 即M1 和s1有关系同样的道理M2 变成四位二进制数: 0010 0010----s4 s3 s2 s1 s2的位置上是1 ,所以M2和S2有关系。
海明码详解①海明校验的基本思想将有效信息按某种规律分成若干组,每组安排一个校验位,做奇偶测试,就能提供多位检错信息,以指出最大可能是哪位出错,从而将其纠正。
实质上,海明校验是一种多重校验。
②海明校验的特点它不仅具有检测错误的能力,同时还具有给出错误所在准确位置的能力。
一.校验位的位数校验位的位数与有效信息的长度有关设:N--为校验码的位数 K--是有效信息位 r--校验位(分成r组作奇偶校验,能产生r位检错信息)海明码应满足 N=K+r≤2r-1 若r=3 则N=K+r≤7 所以K≤4二.分组原则`在海明码中,位号数(1、2、3、……、n)为2的权值的那些位,即:1(20)、2(21)、 4(22)、8(23)、…2r-1位,作为奇偶校验位并记作: P1、P2、P3 、P4、…Pr,余下各位则为有效信息位。
例如: N=11 K=7 r=4 相应海明码可示意为位号 1 2 3 4 5 6 7 8 9 10 11P占位P1 P2 × P3 × × × P4 × × ×其中×均为有效信息,海明码中的每一位分别被P1P2P3P4… Pr 中的一至若干位所校验,其规律是:第i位由校验位位号之和等于i的那些校验位所校验如:海明码的位号为3,它被P1P2(位号分别为1,2)所校验海明码的位号为5,它被P1P3(位号分别为 1,4)所校验归并起来: 形成了4个小组,每个小组一个校验位,校验位的取值,仍采用奇偶校验方式确定。
如表2·6 、表2·7所示:三.编码、查错、纠错原理以4位有效信息(b1、b2、b3、b4)和3位校验位(P1、P2、P3)为例: K=4 r=3 海明序号 1 2 3 4 5 6 7海明码 P1 P2 b1 P3 b2 b3 b4根据表2-8可以看到(1)每个小组只有一位校验位,第一组是P1、第二组是P2、第三组是P3。
一、海明码检错/纠错基本思想海明码(Hamming Code)是一个可以有多个校验位,具有检测并纠正一位错误代码的纠错码,所以也仅用于信道特性比较好的环境中,如以太局域网。
它的检错、纠错基本思想如下:(1)将有效信息按某种规律分成若干组,每组安排一个校验位通过异或运算进行校验,得出具体的校验码(2)在接收端同样通过异或运算看各组校验结果是否正确,并观察出错的校校组,或者多个出错的校验组的共同校验位,得出具体的出错比特位(3)对错误位取反来将其纠正二、海明码计算海明码计算要按以下步骤来进行:计算校验码位数→确定校验码位置→确定校验码1. 计算校验码位数假设用N表示添加了校验码位后整个传输信息的二进制位数,用K代表其中有效信息位数,r表示添加的校验码位数,它们之间的关系应满足:N=K+r≤2r-1(是为了确保r位校验码能校验全部的数据位,因为r位校验码所能表示的最大十进制数为2r-1,同时也确保各位码本身不被其他校验码校验)信息码位数12~45~1112~2627~5758~120121~247校验码位数2 3 4 5 6 7 82. 确定校验码位置海明码的校验码的位置必须是在2n次方位置(n从0 开始,分别代表从左边数起分别是第1、2、4、8、16……),信息码也就是在非2n次方位置3. 确定校验码校验位置选择原则:第i位校验码从当前校验码位开始,每次连续校验i位后再跳过i位,然后再连续校验i位,再跳过i位,以此类推。
确定每个校验码所校验的比特位:P1校验码位校验的码字位为:第1位(也就是P1本身)、第3位、第5位、第7位、第9位、第11位、第13位、第15位,……。
P2校验码位校验的码字位为:第2位(也就是P2本身)、第3位,第6位、第7位,第10位、第11位,第14位、第15位,……。
P3校验码位校验的码字位为:第4位(也就是P4本身)、第5位、第6位、第7位,第12位、第13位、第14位、第15位,第20位、第21位、第22位、第23位,……。
1、奇偶校验码二进制数据经过传送、存取等环节,会发生误码(1变成0或0变成1),这就有如何发现及纠正误码的问题。
所有解决此类问题的方法就是在原始数据(数码位)基础上增加几位校验(冗余)位。
一、码距一个编码系统中任意两个合法编码(码字)之间不同的二进数位(bit)数叫这两个码字的码距,而整个编码系统中任意两个码字的的最小距离就是该编码系统的码距。
如图1所示的一个编码系统,用三个bit来表示八个不同信息中。
在这个系统中,两个码字之间不同的bit数从1到3不等,但最小值为1,故这个系统的码距为1。
如果任何码字中一位或多位被颠倒了,结果这个码字就不能与其它有效信息区分开。
例如,如果传送信息001,而被误收为011,因011仍是表中的合法码字,接收机仍将认为011是正确的信息。
然而,如果用四个二进数字来编8个码字,那么在码字间的最小距离可以增加到2,如图图 1图 2注意,图8-2的8个码字相互间最少有两bit因此,如果任何信息的一个数位被颠倒,码字,接收机能检查出来。
例如信息是1001,误收为1011接收机知道发生了一个差错,因为1011不是一个码字(表中没有)。
然而,差错不能被纠正。
的,正确码字可以是1001,1111,0011或1010能确定原来到底是这4个码字中的那一个。
也可看到,这个系统中,偶数个(2或4)差错也无法发现。
为了使一个系统能检查和纠正一个差错,必须至少是“3”。
最小距离为3时,或能纠正一个错,或能检二个错,但不能同时纠一个错和检二个错。
错和检错能力的进一步提高需要进一步增加码字间的最小距离。
图8-3的表概括了最小距离为1至7的码的纠错和检错能力。
图3 码距越大,纠错能力越强,但数据冗余也越大,即编码效率低了。
所以,选择码距要取决于特定系统的参数。
数字系统的设计者必须考虑信息发生差错的概率和该系统能容许的最小差错率等因素。
要有专门的研究来解决这些问题。
二、奇偶校验奇偶校验码是一种增加二进制传输系统最小距离的简单和广泛采用的方法。
计算机组成原理--海明码的编码和校验⽅法(易懂)海明码(也叫汉明码)具有⼀位纠错能⼒。
本⽂以1010110这个⼆进制数为例解释海明码的编码和校验⽅法。
编码 确定校验码的位数x 设数据有n位,校验码有x位。
则校验码⼀共有2x种取值⽅式。
其中需要⼀种取值⽅式表⽰数据正确,剩下2x-1种取值⽅式表⽰有⼀位数据出错。
因为编码后的⼆进制串有n+x位,因此x应该满⾜2x-1 ≥ n+x 使不等式成⽴的x的最⼩值就是校验码的位数。
在本例中,n=7,解得x=4。
确定校验码的位置 校验码在⼆进制串中的位置为2的整数幂。
剩下的位置为数据。
如图所⽰。
位置1234567891011内容x1x21x3010x4110 求出校验位的值 以求x2的值为例。
为了直观,将表格中的位置⽤⼆进制表⽰。
位置00010010001101000101011001111000100110101011内容x1x21x3010x4110 为了求出x2,要使所有位置的第⼆位是1的数据(即形如**1*的位置的数据)的异或值为0。
即x2^1^1^0^1^0 = 0。
因此x2 = 1。
同理可得x1 = 0, x3 = 1, x4 = 0。
位置00010010001101000101011001111000100110101011内容01110100110 因此1010110的海明码为01110100110。
校验 假设位置为1011的数据由0变成了1,校验过程为: 将所有位置形如***1, **1*, *1**, 1***的数据分别异或。
***1: 0^1^0^0^1^1 = 1 **1*: 1^1^1^0^1^1 = 1 *1**: 1^0^1^0 = 0 1***: 0^1^1^1 = 1 以上四组中,如果⼀组异或值为1,说明该组中有数据出错了。
***1 **1* 1***的异或都为1,说明出错数据的位置为1011。
海明码简单分析确定校验位个数海明码的码组长度需要符合:2^r – 1 (r代表校验位个数)为什么是这个公式呢?因为:只有这样才能保证校验位⾜够覆盖整个需要校验的码组。
一、CRC编码1、已知多项式和原报文,求CRC编码,如:使用多项式G(x)=x^5 + x^4 + x +1,对报文10100110进行CRC编码,则编码后的报文是什么?方法与步骤:步骤1:对报文10100110,在末尾添加所给多项式的最高次阶个0,如本题为x^5,则添加5个0,变为:1010011000000。
步骤2:由多项式G(x)=x^5 + x^4 + x +1,得其阶数为1的二进制编码为:110011。
步骤3:步骤1中求得的1010011000000对步骤2中求得的110011进行模二除法,所得到的余数即为校验码,把校验码添加在原报文尾部即为所求的编码报文1010011011000,具体如下:2.已知道接收到的CRC编码,求原编码或判断是否出错,如:已知G(x)=x^5 + x^4 + x +1,接收的为1010011011001,问是否出错?步骤一:由多项式G(x)=x^5 + x^4 + x +1,得其阶数为1的二进制编码为:110011。
步骤二:用接收的报文1010011011001对步骤一的110011进行模二除法,看余数是否为0,如为0则正确,如不为0,则出错,计算余数为1,则出错。
如下图:二、海明码1.求海明码,如:求1011海明码。
步骤一:求校验码位数r,公式为:2^r ≥r+k+1的最小r。
题目中为2^3≥3+4+1,所以取r=3,即校验码为3位。
步骤二:画图,并把原码的位编号写成2的指数求和的方式,其中位编号长度为原码和校验码个数之和,从1开始。
校验码插在2的阶码次方的位编号下,且阶小于r。
如下:原码的位编号写成2的指数求和:7=2^2+2^1+2^0;6=2^2+2^1;5=2^2+2^0;3=2^1+2^0;步骤三:求校验位,即每个校验位的值为步骤二中“原码的位编号写成2的指数求和”式子中相应2的阶出现的位编号下原码的值异或。
即:r0=I4异或I2异或I1=1; (2^0次出现在7,5,3位,其对应的值为I4,I2,I1)r1=I4异或I3异或I1=0; (2^1次出现在7,6,3位,其对应的值为I4,I3,I1)r2=I4异或I3异或I2=0; (2^0次出现在7,6,5位,其对应的值为I4,I3,I2)把r0,r1,r2带入海明码,得所求的海明码为:10101012.已知海明码,求原码或判断是否出错并改正错位,如:信息位8位的海明码,接收110010100000时,判断是否出错,并求出发送端信息位。
海明码的计算方法海明码是一种具有纠错功能的校验码。
本文简单地介绍海明码的计算方法。
海明码的目的是能够纠正一位误码。
假设信息码共有 n 位,海明码共有 h 位,那么总共的码长为 n + h 位。
为能检测出 n + h 位编码中其中一位的错误,海明码必须能够表示至少 n + h + 1 种状态,其中 n + h 种表示 n + h 位编码中有一位错误,另外还需要一种来表示整个编码正确无误。
则海明码的长度需要满足下列关系:2 h >= n + h + 1于是根据这个式子我们可以得出以下的关系表:h 2 3 4 5 6 7 8n 1 2~4 5~11 12~26 27~57 58~120 121~247以 4 位信息位为例,由上表可以看出需要的海明码长度为 3。
设信息位为 x4x3x2x1,添加的 3 位海明码为 a3a2a1,信息码和海明码组合之后得到的码为 H7H6H5H4H3H2H1。
错误无 H1 H2H3H4H5H6H7C10 1 0 1 0 1 0 1 C1 = H1 + H3 + H5 + H7 = 0C20 0 1 1 0 0 1 1 C2 = H2 + H3 + H6 + H7 = 0C30 0 0 0 1 1 1 1 C3 = H4 + H5 + H6 + H7 = 0如上表,在H1~H7中添加的 3 位海明码使得 C1~C3的值为零。
其中C1~C3为校验和。
这样当 Hn 传输出错时,有 (C3C2C1)2= n。
令 H1 = a1, H2= a2, H4= a3,则得出H 7H6H5H4H3H2H1= x4x3x2a3x1a2a1将上面的关系代入C1~C3的计算公式,得到C 1 = H1+ H3+ H5+ H7= a1+ x1+ x2+ x4= 0C 2 = H2+ H3+ H6+ H7= a2+ x1+ x3+ x4= 0C 3 = H4+ H5+ H6+ H7= a3+ x2+ x3+ x4= 0即a 1 + x1+ x2+ x4= 0a 2 + x1+ x3+ x4= 0a 3 + x2+ x3+ x4= 0即a 3 = x4+ x3+ x2a 2 = x4+ x3+ x1a 1 = x4+ x2+ x1海明码1.海明码的概念海明码是一种可以纠正一位差错的编码。
海明码和C R C编码的图解和详细计算过程
一、CRC编码
1、已知多项式和原报文,求CRC编码,如:使用多项式G(x)=x^5 + x^4 + x +1,对报文10100110进行CRC编码,则编码后的报文是什么?
方法与步骤:
步骤1:对报文10100110,在末尾添加所给多项式的最高次阶个0,如本题为
x^5,则添加5个0,变为:1010011000000。
步骤2:由多项式G(x)=x^5 + x^4 + x +1,得其阶数为1的二进制编码为:110011。
步骤3:步骤1中求得的1010011000000对步骤2中求得的110011进行模二除法,所得到的余数即为校验码,把校验码添加在原报文尾部即为所求的编码报文1010011011000,具体如下:
2.已知道接收到的CRC编码,求原编码或判断是否出错,如:已知G(x)=x^5 + x^4 + x +1,接收的为1010011011001,问是否出错?
步骤一:由多项式G(x)=x^5 + x^4 + x +1,得其阶数为1的二进制编码为:110011。
步骤二:用接收的报文1010011011001对步骤一的110011进行模二除法,看余数是否为0,如为0则正确,如不为0,则出错,计算余数为1,则出错。
如下图:
二、海明码
1.求海明码,如:求1011海明码。
步骤一:求校验码位数r,公式为:2^r ≥r+k+1的最小r。
题目中为
2^3≥3+4+1,所以取r=3,即校验码为3位。
步骤二:画图,并把原码的位编号写成2的指数求和的方式,其中位编号长度为原码和校验码个数之和,从1开始。
校验码插在2的阶码次方的位编号下,且阶小于r。
如下:
原码的位编号写成2的指数求和:
7=2^2+2^1+2^0;
6=2^2+2^1;
5=2^2+2^0;
3=2^1+2^0;
步骤三:求校验位,即每个校验位的值为步骤二中“原码的位编号写成2的指数求和”式子中相应2的阶出现的位编号下原码的值异或。
即:
r0=I4异或I2异或I1=1; (2^0次出现在7,5,3位,其对应的值为I4,I2,I1)
r1=I4异或I3异或I1=0; (2^1次出现在7,6,3位,其对应的值为I4,I3,I1)
r2=I4异或I3异或I2=0; (2^0次出现在7,6,5位,其对应的值为I4,I3,I2)
把r0,r1,r2带入海明码,得所求的海明码为:1010101
2.已知海明码,求原码或判断是否出错并改正错位,如:信息位8位的海明码,接收110010100000时,判断是否出错,并求出发送端信息位。
步骤一:求校验码位数r,公式为:2^r ≥r+k+1的最小r。
题目中为
2^4≥4+8+1,所以取k=4,即校验码为4位。
步骤二:根据作图,求得信息位编码和发过来的校验码记为r,并由原编码从新计算出新的校验码与发来的校验码r进行异或运算,具体如下:
得到,原码11000100,发送来的校验码r为1000
再根据求R,把原码的位编号写成2的指数求和:
12=2^3+2^2;
11=2^3+2^1+2^0;
10=2^3+2^0;
9=2^3+2^0;
7=2^2+2^1+2^0;
6=2^2+2^1;
5=2^2+2^0;
3=2^1+2^0;
求得:
S3=r3异或(I8异或I7异或I6异或I5)
S2=r2异或(I8异或I4异或I3异或I2)
S1=r1异或(I7异或I6异或I4异或I3异或I1)
S0=r0异或(I7异或I5异或I4异或I2异或I1)
S3S2S1S0,其十进制为0,表示没出错,如果不为零,则其十进制数即为出错的位。
本题S3S2S1S0=1001,十进制为9,即第九位出错。
改过来既为:11010100。