数学专题-----规律探究题
- 格式:ppt
- 大小:641.50 KB
- 文档页数:22
初中数学规律探究题一、规律探究的知识点及分类: (一)条件探索型1、(2007呼和浩特市)在四边形ABCD 中,顺次连接四边中点E F G H ,,,,构成一个新的四边形,请你对四边形ABCD 填加一个条件,使四边形EFGH 成为一个菱形.这个条件是 __ .2、(2007荆门市)将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1.(1)四边形ABCD 是平行四边形吗?说出你的结论和理由:________________________.(2)如图2,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平行四边形吗?说出你的结论和理由:_________________________________________.(3)在Rt △BCD 沿射线BD 方向平移的过程中,当点B 的移动距离为______时,四边形ABC 1D 1为矩形,其理由是_____________________________________;当点B 的移动距离为______时,四边形ABC 1D 1为菱形,其理由是____________________________.(图AB DEFGHC图4CADB 图3CADB 图2 D 1C 1B 1CADB图13、图4用于探究)3、(2006广东)如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,BC ∥OA ,OA =7,AB =4,∠ COA =60°,点P 为x 轴上的—个动点,点P 不及点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当点P 运动什么位置时,使得∠CPD =∠OAB ,且AB BD =85,求这时点P 的坐标.(二)结论探索型4、(2007北京市)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形. (1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠. 请你写出图中一个及A ∠相等的角,并猜想图中哪个四边形 是等对边四边形;(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.5、(07山东滨州)如图1所示,在ABC △中,2AB AC ==,90A =∠,O 为BC 的中点,动点E 在BA 边上自由移动,动点F 在AC 边上自由移动.(1)点E F ,的移动过程中,OEF △是否能成为45EOF =∠的等腰三角形?若能,请指出OEF △为等腰三角形时动点E F ,的位置.若不能,请说明理由.(2)当45EOF =∠时,设BE x =,CF y =,求y 及x 之间的函数解析式,写出x 的取值范围.(3)在满足(2)中的条件时,若以O 为圆心的圆及AB 相切(如图2),试探究直线EF 及⊙O 的位置关系,并证明你的结论.6、(2006年绵阳市)在正方形ABCD 中,点P 是CD 上一动点,连结PA ,分别过点B 、D 作BE ⊥PA 、DF ⊥PA ,垂足分别为E 、F ,如图①.(1)请探索BE 、DF 、EF 这三条线段长度具有怎样的数量关系.若点P 在DC •的延长线上(如图②),那么这三条线段的长度之间又具有怎样的数量关系?若点P 在CD •的延长线上呢(如图③)?请分别直接写出结论;(2)请在(1)中的三个结论中选择一个加以证明.BOADEC图1O图27、(2005年泰州)图1是边长分别为4 3 和3的两个等边三角形纸片ABC 和C ′D ′E ′叠放在一起(C 及C ′重合).(1)操作:固定△ABC ,将△C ′D ′E ′绕点C 顺时针旋转30°得到△CDE ,连结AD 、BE ,CE 的延长线交AB 于F (图2);探究:在图2中,线段BE 及AD 之间有怎样的大小关系?试证明你的结论.(2)操作:将图2中的△CDE ,在线段CF 上沿着CF 方向以每秒1个单位的速度平移,平移后的△CDE 设为△PQR (图3);探究:设△PQR 移动的时间为x 秒,△PQR 及△ABC 重叠部分的面积为y ,求y 及x 之间的函数解析式,并写出函数自变量x 的取值范围.(3)操作:图1中△C ′D ′E ′固定,将△ABC 移动,使顶点C 落在C ′E ′的中点,边BC 交D ′E ′于点M ,边AC 交D ′C ′于点N ,设∠AC C ′=α(30°<α<90°=(图4);探究:在图4中,线段C ′N ·E ′M 的值是否随α的变化而变化?如果没有变化,请你求出C ′N ·E ′M 的值,如果有变化,请你说明理由.E ′图1C BAD ′图2FED CA图2 Q PRA CF 图3图3D ′E ′图4MNBAGC C /(C /)(C /QEDAP(三)存在探索型8、(2006武汉市)已知:二次函数y =x 2(m +1)x +m 的图象交x 轴于A (x 1,0)、B (x 2,0)两点,交y 轴正半轴于点C ,且x 12 +x 22 =10.⑴求此二次函数的解析式; ⑵是否存在过点D (0,25)的直线及抛物线交于点M 、N ,及x 轴交于点E ,使得点M 、N 关于点E 对称?若存在,求直线MN 的解析式;若不存在,请说明理由.9、(2007乐山)如图(13),在矩形ABCD 中,4AB =,10AD =.直角尺的直角顶点P 在AD 上滑动时(点P 及A D ,不重合),一直角边经过点C ,另一直角边AB 交于点E .我们知道,结论“Rt Rt AEP DPC △∽△”成立.(1)当30CPD =∠时,求AE 的长;(2)是否存在这样的点P ,使DPC △的周长等于AEP △周长的2倍?若存在,求出DP 的长;若不存在,请说明理由.10、(2007呼和浩特市)如图,在矩形ABCD 中,22AB =1AD =.点P 在AC 上,PQ BP ⊥,交CD 于Q ,PE CD ⊥,交于CD 于E .点P 从A 点(不含A )沿AC 方PA E BCD向移动,直到使点Q 及点C 重合..为止. (1)设AP x =,PQE △的面积为S .请写出S 关于x 的函数解析式,并确定x 的取值范围.(2)点P 在运动过程中,PQE △的面积是否有最大值,若有,请求出最大值及此时AP 的取值;若无,请说明理由.(四)规律探索型11、图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后及原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n +++++=. 图 1 图 2 图 3 图4如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,求图4中所有圆圈中各数的绝对值之和.(五)销售中的盈亏问题探究1:销售中的盈亏.第2层 第1层 …… 第n 层某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要解决这类问题必须理解并熟记下列式子: (1)商品利润=商品售价-商品进价. (2)=商品利润率.(3)打x 折的售价=原售价×10x . 对探究1提出的问题,你先大体估算盈亏,再通过准确计算检验你的判断.分析:卖这两件衣服总的是盈利还是亏损,取决于这两件衣服售价多少,•进价多少,若售价大于进价,就盈利,反之就亏损.现已知这两件衣服总售价为60×2=120(元),现在要求出这两件衣服的进价. 这里盈利25%=,亏损25%就是盈利-25%.本问题中,设盈利25%的那件衣服的进价是x 元,它的商品利润就是0.25x 元,根据进价+利润=售价,列方程得: x+0.25x=60 解得 x=48以下由学生自己填写.类似地,可以设另一件衣服的进价为y 元,它的利润是-0.25y 元;根据相等关系可列方程是y-0.25y=60解得y=80.两件衣服共进价128元,而两件衣服的售价和为120元,进价大于售价,•由此可知卖这两件衣服总的盈亏情况是亏损8元.解方程后得出的结论及你先前的估算一致吗?点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.例如盈利25%的一件进价为40元,那么这一件盈利40%×25%=10(•元)•,•亏损25%的一件进价为80元,那么这一件亏损了80×25%=20(元),总的还是亏损10元,这就是说,亏损25%的一件进价如果比盈利25%的一件进价高,那么总的是亏损,•反之才盈利.你知道这两件衣服哪一件进价高吗?一件是盈利25%后,才卖60元,那么这件衣服进价一定比60元低.另一件亏损25%后,还卖60元,说明这件衣服进价一定比60•元高,•由此可知亏损25%的这件进价高,所以卖这两件衣服总的还是亏损.(六)球赛积分问题例1.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?例2、在一次数学竞赛中,共有60题选择题,答对一题得2分。
七年级数学专题-----规律探究题题型一:数字变化类问题1 •观察下列按顺序排列的等式:引二1-*,2誌-書,巧€ 一+,4冷一+ 试猜想第n个等式(n为正整数):a n= ______________________ .2. 下表中的数字是按一定规律填写的,表中a的值应是____ .1 2 3 5 8 13 a-2 3 5 8 13 21 34 …3. ___ 观察下面的单项式:a,- 2a2, 4a3,- 8a4, ••根据你发现的规律,第8个式子是.4. 有一组等式:1222 3232,22326272,32 42 122132,4252202212……请观察它们的构成规律,用你发现的规律写出第8个等式为__________5. 把奇数列成下表,13113213L59152333111725h-itn! ■ b ■2737—39——根据表中数的排列规律,则上起第8行,左起第6列的数是5.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。
而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据。
已知二进十进位制0123456• • •请将二进制数10101010(二)写成十进制数为_______ .6 •观察下列各数,它们是按定规律排列的,则第n个数是15 3116?眈'7.观察一列单项式:1x, 3x2, 5x2, 7x, 9x2, 11x2,…,则第2013个单项式是8•有这样一组数据a i, a2, a3, •• a,满足以下规律:且I三・❻尸—-—3 勒二 ~-—j …,且—-------- (n多且n为正整数),贝U宠。
1312 1 _ J1 _a2n1 - a n_ L的值为________ (结果用数字表示).9. 观察下列各式的计算过程:5X 5=0X 1 X 100+25,15X 15=1X 2X 100+25,25X 25=2X 3X 100+25,35X 35=3X 4X 100+25,请猜测,第n个算式(n为正整数)应表示为_____________________________ 10. 如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是A. M=mnB. M=n(m+1)C. M=mn+1D. M=m(n+1)11. 观察下列等式:31=3, 32=9, 33=27, 34=81, 35=243, 36=729, 37=2187… 解答下列问题:3+32+33+3仃+32013的末位数字是()A. 0B. 1C. 3D. 712. ____________________________________________ 如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是_______________________________ .13. 将连续正整数按以下规律排列,则位于第 7行第7列的数x 是85篦一如邕二苑董三列策囚列篝三到邕七扪・・・第一行 136 10 1521 n 重二行 2 5 9 14 20 27 :第三行 413 15--- ■策四行712 1$25■・■11 17 2415 23 ■ ■•2215•电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个 方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数 字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD 中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的 区别),如图甲中的“ 3”表示它的周围八个方块中仅有 3个埋有雷.图乙第一行 从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 ___________________________ .(请填入方块上的字母)16. 如图,在△ ABC 中,/ A=m°,/ ABC 和/ACD 的平分线交于点 A,得/ A;/ ABC 和/ACD 的平分线交于点 A ,得/ A;…/A2012BC 和/A 2012CD 的平分线交于 点 A ?013,贝 A 2013= ______ 度。
中考数学题型归类与解析专题31 规律探究题一、单选题1.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( ) A .23-B .13C .12-D .23【答案】D【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值. 【解析】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅, 会发现是以:213,,32-,循环出现的规律, 202136732=⨯+,2021223a a ∴==, 故选:D .【小结】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.2.(2021·湖北中考真题)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A.2025B.2023C.2021D.2019【答案】B【分析】根据数字的变化关系发现规律第n行,第n列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.【解析】解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【小结】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.3.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【解析】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时的分子为5,分母为23110+=∴这个数为51102=故选:D .【小结】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.4.(2021·湖北中考真题)根据图中数字的规律,若第n 个图中的143q =,则p 的值为()A .100B .121C .144D .169【答案】B【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【解析】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-, ∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【小结】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.5.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【分析】根据物质所剩的质量与时间的规律,可得答案.【解析】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【小结】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.6.(2021·四川达州市·中考真题)在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11A OB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( )A .()202020202,2-B .()202120212,2C .()202020202,2-D .()201120212,2-【答案】C由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.【解析】解:由题意,点A 每6次绕原点循环一周,20216371......5÷=,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒ ,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=22, ()2020202020212,2A ∴,故选:C .【小结】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.7.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯, 故答案选:B .【小结】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题8.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________. 【答案】12n n +【分析】 根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【解析】解:根据题意可知:第一项:1111122=+, 第二项:2112242=+, 第三项:3113382=+, 第四项:41144162=+, …则第n 项是12n n +; 故答案为:12n n +. 【小结】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.9.(2021·陕西)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为______.【答案】-2【分析】先通过计算第一行数字之和得到各行、各列及各条对角线上的三个数字之和,再利用第二列三个数之和得到a 的值.【解析】解:由表第一行可知,各行、各列及各条对角线上的三个数字之和均为1616--+=-,∴626a -++=-,∴2a =-,故答案为:2-.【小结】本题考查了数字之间的关系,解决本题的关键是读懂题意,正确提取表中数据,找到它们之间的关系等,该题对学生的观察分析能力有一定的要求,同时也考查了学生对有理数的和差计算的基本功. 10.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】2m m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和. 【解析】由题意规律可得:2399100222222++++=-. ∵1002=m∴23991000222222=2m m +++++==, ∵22991001012222222+++++=-,∴10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=. ……∴1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=①12310022222S ++++=② ②-①,得10021S -=∴10010110110199992222222m m m ++++=+++=()100221m m m -=- 故答案为:2m m -.【小结】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.11.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【解析】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,...第n 个图形中的黑色圆点的个数为()12n n +, 则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,..., 其中每3个数中,都有2个能被3整除, 33÷2=16...1, 16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275, 故答案为:1275. 【小结】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.12.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:2335472,2,2,2a b a b a b a b +-+-,…,则第n 个式子是___________. 【答案】()12112n n n a b +-+-⋅【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【解析】解:∵当n 为奇数时,()111n +-=;当n 为偶数时,()111n +-=-,∴第n 个式子是:()1211?2n n n a b +-+-.故答案为:()1211?2n n n a b +-+-【小结】本题考查了多项式的知识点,认真观察式子的规律是解题的关键.13.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3 【分析】通过观察每一个数字等于它上方相邻两数之和. 【解析】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律, 例如:第3行中的2,等于它上方两个相邻的数1,1相加, 即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加, 即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加, 即空缺数为:3, 故答案是:3. 【小结】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题. 14.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________. 【答案】()221n n --. 【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【解析】解:∵22110=-,22321=-, 22532=-,…∴第n 个等式为:()22211n n n -=--故答案是:()221n n --. 【小结】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.15.(2021·黑龙江中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1) 2n n-.【解析】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【小结】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1)2n n-.16.(2021·四川中考真题)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【解析】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,...拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【小结】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.17.(2021·四川中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得. 【解析】解:∵第1个图形中黑色三角形的个数1, 第2个图形中黑色三角形的个数3=1+2, 第3个图形中黑色三角形的个数6=1+2+3, 第4个图形中黑色三角形的个数10=1+2+3+4, ……∴第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去), ∴第20个图形共有210个小球. 故答案为:20. 【小结】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .18.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n 【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可. 【解析】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯ 第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯ 第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯ 第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯ …由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+故答案为:2n 2+2n . 【小结】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.19.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0). 【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可. 【解析】解:如图,过点N 作NM ⊥x 轴于M 将1x =代入直线解析式y x =中得1y = ∴1OM MN ==,MON ∠=45° ∵1ONM =∠90° ∴1ON NM = ∵1ON NM ⊥ ∴11OM MM == ∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0) 同理可以求出3M 的坐标为(8,0) 同理可以求出n M 的坐标为(2n ,0) ∴2021M 的坐标为(20212,0) 故答案为:(20212,0).【小结】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律. 20.(内蒙古呼伦贝尔2021年中考数学试卷)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过点1B 作11B A x ⊥轴,垂足为1A ,以11A B 为边向右作正方形1112A B C A ,延长21A C 交直线l 于点2B ;以22A B 为边向右作正方形2223A B C A ,延长32A C 交直线l 于点3B ;……;按照这个规律进行下去,点2021B 的坐标为___________.【答案】202020202019202033(,)22【分析】由题意分别求出A 1、A 2、A 3、A 4……A n 、B 1、B 2、B 3、B 4……B n 、的坐标,根据规律进而可求解. 【解析】解:∵点1B 在直线1:2l y x =上,点1B 的横坐标为2,过点1B 作11B A x ⊥轴,垂足为1A , ∴1(2,0)A ,1(2,1)B ,∴A 1B 1=1, 根据题意,OA 2=2+1=3, ∴2(3,0)A ,23(3,)2B , 同理,39(,0)2A ,399(,)24B ,427(,0)4A ,42727(,)48B……由此规律,可得:123(,0)2n n n A --,112133(,)22n n n n n B ----,∴20211202112021202122021133(,)22B ----即2020202020212019202033(,)22B ,故答案为:202020202019202033(,)22.【小结】本题考查一次函数的应用、正方形的性质、点的坐标规律,理解题意,结合图象和正方形的性质,探索点的坐标规律是解答的关键.21.(2021·湖北中考真题)如图,在平面直角坐标系中,动点P 从原点O 出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点()11,1P --;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点2P ;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点3P ;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点4P ,…,按此作法进行下去,则点2021P 的坐标为___________.【答案】(1011,1011)--【分析】先根据点坐标的平移变换规律求出点2345,,,P P P P 的坐标,再归纳类推出一般规律即可得.【解析】解:由题意得:2(12,12)P -+-+,即2(1,1)P ,3(13,13)P --,即3(2,2)P --,4(24,24)P -+-+,即4(2,2)P ,5(25,25)P --,即5(3,3)P --,观察可知,点1P 的坐标为(1,1)--,其中1211=⨯-, 点3P 的坐标为(2,2)--,其中3221=⨯-,点5P 的坐标为(3,3)--,其中5231=⨯-,归纳类推得:点21n P -的坐标为(,)n n --,其中n 为正整数,2021210111=⨯-,∴点2021P 的坐标为(1011,1011)--,故答案为:(1011,1011)--.【小结】本题考查了点坐标的平移变换规律、点坐标的规律探索,正确归纳类推出一般规律是解题关键. 22.(2021·内蒙古通辽市·中考真题)如图,11OA B ,122A A B ,233A A B △…,1n n n A A B -都是斜边在x 轴上的等腰直角三角形,点1A ,2A ,3A ,…,n A 都在x 轴上,点1B ,2B ,3B ,…,n B 都在反比例函数()10y x x=>的图象上,则点n B 的坐标为__________.(用含有正整数n 的式子表示)【答案】 【分析】根据等腰直角三角形的性质,得到1B 的横,纵坐标相等,在结合反比例函数解析式求得该点的坐标,再根据等腰三角形的性质和反比例函数的解析式首先求得各个点的坐标,发现其中的规律,从而得到答案.【解析】11OB A △为等腰三角形∴直线1OB 的解析式为y x = 由题意得:1y x y x =⎧⎪⎨=⎪⎩解得1x =()111B ∴,1OB ∴=112OA ∴==()12,0A ∴122A A B △为等腰三角形∴设直线12A B 的解析式为y x b =+02b ∴=+,解得2b =-∴直线12A B 的解析式为2y x =- ∴21y x y x =-⎧⎪⎨=⎪⎩解得1x =)21B ∴21222B A A y ∴==∴点2A ()233A A B △为等腰三角形∴设直线23A B 的解析式为1y x b =+∴10b =解得1b =-∴直线23A B的解析式为y x =-1y x y x ⎧=-⎪⎨=⎪⎩解得x =∴3B 综上可得:点()111B ,,点)21B,点3B总结规律可得n B 坐标为:故答案为:【小结】 本题综合考查了等腰直角三角形的性质以及结合反比例函数的解析式求得点的坐标,解答本题的关键是找出其中的规律求出坐标.23.(2021·山东菏泽市·中考真题)如图,一次函数y x =与反比例函数1y x=(0x >)的图象交于点A ,过点A 作AB OA ⊥,交x 轴于点B ;作1//BA OA ,交反比例函数图象于点1A ;过点1A 作111A B A B ⊥交x 轴于点B ;再作121//B A BA ,交反比例函数图象于点2A ,依次进行下去,……,则点2021A 的横坐标为_______.【分析】由点A 是直线y x =与双曲线1y x=的交点,即可求出点A 的坐标,且可知45AOB ∠=︒,又AB AO ⊥可知AOB ∆是等腰直角三角形,再结合1BA OA //可知11BA B ∆是等腰直角三角形,同理可知图中所有三角形都是等腰直角三角形,由求2021A 的坐标,即n A 的坐标(n =1,2,3……),故想到过点2021A 作20212021A C x ⊥轴,即过n A 作n n A C x ⊥轴.设1A 的纵坐标为()10m m >,则1A 的横坐标为2m +,再利用点1A 在双曲线上即可求解1A 坐标,同理可得2021A 的坐标.【解析】解:过n A 作n n A C x ⊥轴于点n C点A 是直线y x =与双曲线1y x=的交点 1y x y x =⎧⎪∴⎨=⎪⎩解得11x y =⎧⎨=⎩ ()1,1A ∴1,45OC AC AOC ∴==∠=︒AB AO ⊥∴AOB ∆是等腰直角三角形∴22OB AC ==1BA OA //∴11BA B ∆是等腰直角三角形∴111AC BC =设1A 的纵坐标为()10m m >,则1A 的横坐标为12m +点1A 在双曲线上∴()1121m m +=解得11m =设2A 的纵坐标为()20m m >,则2A的横坐标为12222m m m ++=∴()221m m =解得2m =同理可得3m =由以上规律知:n m =2021m ∴=2021A∴2021A =【小结】本题考察一次函数、反比例函数、交点坐标的求法、等腰直角三角形的性质、一元二次方程的应用和规律探究,属于综合几何题型,难度偏大.解题的关键是结合等腰直角三角形的性质做出辅助线,并在计算过程中找到规律.24.(2021·山东中考真题)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过点1B 作1B l ⊥,交x 轴于点1A ,以11A B 为边,向右作正方形1121A B B C ,延长21B C 交x 轴于点2A ;以22A B 为边,向右作正方形2232A B B C ,延长32B C 交x 轴于点3A ;以33A B 为边,向右作正方形3343A B B C ,延长的43B C 交x 轴于点4A ;…;按照这个规律进行下去,则第n 个正方形1n n n n A B B C +的边长为________(结果用含正整数n 的代数式表示).【答案】1322n -⎛⎫ ⎪⎝⎭【分析】 根据题中条件,证明所有的直角三角形都相似且确定相似比,再具体算出前几个正方形的边长,然后再找规律得出第n 个正方形的边长.【解析】 解:点1B 在直线1:2l y x =上,点1B 的横坐标为2, ∴点1B 纵坐标为1.1OB ∴==分别过1B ,14,,C C ⋅⋅⋅作x 轴的垂线,分别交于14,,,D D D ⋅⋅⋅,下图只显示一条;111111190,B DA C DB B OD A B D ∠=∠=︒∠=∠,∴111Rt B DO Rt A DB ∽类似证明可得,图上所有直角三角形都相似,有11111211112n n n nC A BD B A C A OD OB C A C A +====⋅⋅⋅=, 不妨设第1个至第n 个正方形的边长分别用:12,,,n l l l ⋅⋅⋅来表示,通过计算得:112OB l ==1211233222l l l C A =+==,22322333222l l l C A ⎛⎫=+== ⎪⎝⎭⋅⋅⋅ 111133222n n n n n n l l l C A ----⎛⎫=+== ⎪⎝⎭按照这个规律进行下去,则第n 个正方形1n n n n A B B C +的边长为1322n -⎛⎫ ⎪⎝⎭,132n -⎛⎫ ⎪⎝⎭.【小结】 本题考查了三角形相似,解题的关键是:利用条件及三角形相似,先研究好前面几个正方形的边长,再从中去找计算第n 个正方形边长的方法与技巧.25.(2021·湖北中考真题)如图,过反比例函数()0,0k y k x x=>>图象上的四点1P ,2P ,3P ,4P 分别作x 轴的垂线,垂足分别为1A ,2A ,3A ,4A ,再过1P ,2P ,3P ,4P 分别作y 轴,11P A ,22P A ,33P A 的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为1S ,2S ,3S ,4S ,1122334OA A A A A A A ===,则1S 与4S 的数量关系为_____________.【答案】414S S =.【分析】设1122334OA A A A A A A ====m ,则O 2A =2m ,O 3A =3m ,O 4A =4m ,由点1P ,2P ,3P ,4P 都在反比例函数()0,0k y k x x =>>图象上,可求得11k A P m =,222k A P m =,333k A P m =,444k A P m=,根据矩形的面积公式可得1111k OA A P k S m m =⋅=⋅=,1222222k k A A A P m m S =⋅=⋅=,2333333k k A A A P m m S =⋅=⋅=,3444444k k A A A P m m S =⋅=⋅=,由此即可得414S S =. 【解析】设1122334OA A A A A A A ====m ,则O 2A =2m ,O 3A =3m ,O 4A =4m ,∵点1P ,2P ,3P ,4P 都在反比例函数()0,0k y k x x=>>图象上, ∴11k A P m =,222k A P m =,333k A P m =,444k A P m=, ∴1111k OA A P k S m m =⋅=⋅=,1222222k k A A A P m m S =⋅=⋅=,2333333k k A A A P m m S =⋅=⋅=,3444444k k A A A P m m S =⋅=⋅=, ∴414S S =.故答案为:414S S =.【小结】本题考查了反比例函数图象上点的特征,根据反比例函数图象上点的特征求得11k A P m =、222k A P m =、333k A P m =、444k A P m=是解决问题的关键. 26.(2021·四川)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.【答案】3875【分析】计算出△AOB 的各边,根据旋转的性质,求出OB 1,B 1B 3,...,得出规律,求出OB 21,再根据一次函数图像上的点求出点B 21的纵坐标即可.【解析】解:∵AB ⊥y 轴,点B (0,3),∴OB =3,则点A 的纵坐标为3,代入34y x =-, 得:334x =-,得:x =-4,即A (-4,3),∴OB =3,AB =4,OA ,由旋转可知:OB =O 1B 1=O 2B 1=O 2B 2=…=3,OA =O 1A =O 2A 1=…=5,AB =AB 1=A 1B 1=A 2B 2=…=4, ∴OB 1=OA +AB 1=4+5=9,B 1B 3=3+4+5=12,∴OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,34a -),则OB 21129=, 解得:5165a =-或5165(舍),则335163874455a ⎛⎫-=-⨯-= ⎪⎝⎭,即点B 21的纵坐标为3875, 故答案为:3875. 【小结】 本题考查了一次函数图象上点的坐标特征,旋转以及直角三角形的性质,求出△OAB 的各边,计算出OB 21的长度是解题的关键.27.(2021·山东东营市·中考真题)如图,正方形1ABCB 中,AB =AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】20202(3【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【解析】∵AB 与直线l 所夹锐角为60︒,正方形1ABCB 中,AB =∴∠11B AA =30°,∴11B A =1B A tan30°=,∴111AA -;∵11B A =1,∠122B A A =30°,∴22B A =11B A tan30°=133⨯=,∴2112=2A A -⨯;∴线段20202021A A =20211202022()33-⨯=,故答案为:2020. 【小结】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.28.(2021·黑龙江中考真题)如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1A C 为一边,在BC 的延长线上作菱形111A CC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得1S =,2S =……由此规律可得242n n S -,然后问题可求解.【解析】解:∵四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD ,∵120ABC ∠=︒,∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒,∵1DA CD =,∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆……. 202020202021A D A ∆都为等边三角形,过点B 作BE ⊥CD 于点E ,如图所示:∴sin 2BE BC BCD =⋅∠=,∴112112A D BE A S D =⋅==,同理可得:22221244S A D ==⨯=22332444S A D ===……;∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-=;故答案为40382【小结】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.29.(2021·吉林长春市·中考真题)如图,在平面直角坐标系中,等腰直角三角形AOB 的斜边OA 在y 轴上,2OA =,点B 在第一象限.标记点B 的位置后,将AOB 沿x 轴正方向平移至111AO B 的位置,使11A O 经过点B ,再标记点1B 的位置,继续平移至222A O B △的位置,使22A O 经过点1B ,此时点2B 的坐标为__________.【答案】()3,1【分析】根据已知条件结合等腰直角三角形的性质先求出点B ()1,1,点1B ()2,1,即可得出点B 向右每次平移1个单位长度,而2B 为点B 向右平移2个单位后的点,根据点平移规律即可得到答案【解析】如图过点B 作BC OA ⊥,△AOB 为等腰直角三角形,斜边OA 在y 轴上,2OA =1BC ∴=,11CO BO ==()1,1B ∴ AOB 向右平移至111AO B ,点B 在11A O 上,同理可得点1B 的坐标为()2,1AOB ∴每次向右平移1个单位,即点B 向右每次平移1个单位,2B ∴为点B 向右平移2个单位后的点2B ∴点的坐标为()3,1故答案为:()3,1【小结】本题考查了等腰直角三角形的性质,以及坐标与图像变换—平移,在平面直角坐标系中,图形的平移与图像上某点的平移相同,平移中点的变化规律是:横坐标右移加,左移减,纵坐标上移加,下移减. 30.(2021·湖北荆门市·中考真题)如图,将正整数按此规律排列成数表,则2021是表中第____行第________列.【答案】64 5【分析】找到第n 行第n 列的数字,找到规律,代入2021即可求解【解析】通过观察发现:1=1 3=1+26=1+2+310=1+2+3+4……故第n 行第n 列数字为:1(1)2n n +, 则第n 行第1列数字为:1(1)(1)2n n n +--,即1(1)2n n -+1 设2021是第n 行第m 列的数字,则:1(1)2021()2m m n n n +=<- 即24421)0(n n m +=-,可以看作两个连续的整数的乘积,2263=396964=4096,,m n ,为正整数,64n ∴=当64n =时,=5m故答案为:64,5【小结】本题考查了规律探索,通过观察发现特殊位置的数字之间的关系,找到规律,通过计算确定行数,再根据方程求得列数,能正确发现规律是解题的关键.31.(2021·湖南湘西土家族苗族自治州·中考真题)古希腊数学家把1,3,6,10,15,21,…这样的数叫做三角形数,因为它的规律性可以用如图表示.根据图形,若把第一个图形表示的三角形数记为11a =,第二个图形表示的三角形数记为23a =,…,则第n 个图形表示的三角形数n a =___.(用含n 的式子表达)【答案】()12n n + 【分析】由题意易得11a =,2123a =+=,31236a =++=,4123410a =+++=;…..;然后由此规律可得第n 个图形表示的三角形数.【解析】解:由图及题意可得:11a =,2123a =+=,31236a =++=,4123410a =+++=;…..∴第n 个图形表示的三角形数()112342n a n n n +=++++⋅⋅⋅⋅+=; 故答案为()12n n +. 【小结】本题主要考查图形规律,解题的关键是根据给出的图形得到基本的规律,然后进行求解即可. 32.(2021·内蒙古鄂尔多斯市·中考真题)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n +5(n 为正整数)”,再代入n =30即可得出结论.【解析】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n +1)+(n −1)2+2=n 2−n +5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【小结】本题考查了规律型:图形的变化类,根据各图形中“〇”个数的变化找出变化规律“a n =n 2−n +5(n 为正整数)”是解题的关键.33.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n -1),下方规律为n 2,结合两部分即可得出答案.【解析】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n -1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【小结】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.。
中考数学高频考点《规律探究题》专项测试卷-带答案(14道)一、单选题1.(2023·辽宁阜新·统考中考真题)如图,四边形1OABC 是正方形 曲线12345C C C C C 叫作“正方形的渐开线” 其中12C C 23C C 34C C 45C C …的圆心依次按O A B 1C 循环.当1OA =时 点2023C 的坐标是( )A .)12(022--,B .)20231(-,C .)12(023--,D .(2022)0,2.(2023·四川绵阳·统考中考真题)如下图,将形状 大小完全相同的“●”和线段按照一定规律摆成以下图形 第1幅图形中“●”的个数为1a 第2幅图形中“●”的个数为2a 第3幅图形中“●”的个数为3a … 以此类推 那么123191111a a a a +++⋅⋅⋅+的值为( )A .2021B .6184C .589840D .4317603.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m - 第2次操作后得到整式串m n n m - m - 第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( ) A .m n +B .mC .n m -D .2n4.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-5.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41……A .2003B .2004C .2022D .2023二 填空题6.(2023·辽宁锦州·统考中考真题)如图,在平面直角坐标系中 四边形1121A B B C 2232A B B C 3343A B B C 4454A B B C …都是平行四边形 顶点1B 2B 3B 4B 5B …都在x 轴上 顶点1C 2C 3C 4C …都在正比例函数14y x =(0x ≥)的图象上 且21212B C A C = 32322B C A C = 43432B C A C = … 连接12A B 23A B 34A B 45A B … 分别交射线1OC 于点1O 2O 3O 4O … 连接12O A 23O A 34O A … 得到122O A B ∆ 233O A B ∆ 344O A B ∆ ….若()12,0B ()23,0B ()13,1A ,则202320242024O A B ∆的面积为 .7.(2023·江苏宿迁·统考中考真题)如图,ABC 是正三角形 点A 在第一象限 点()0,0B ()1,0C .将线段CA 绕点C 按顺时针方向旋转120︒至1CP 将线段1BP 绕点B 按顺时针方向旋转120︒至2BP 将线段2AP 绕点A 按顺时针方向旋转120︒至3AP 将线段3CP 绕点C 按顺时针方向旋转120︒至4CP ……以此类推,则点99P 的坐标是 .8.(2023·黑龙江大庆·统考中考真题)1261年 我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表 人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图 根据图中各式的规律 7()a b +展开的多项式中各项系数之和为 . 9.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .10.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)11.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在平面直角坐标系中 点A 在y 轴上 点B 在x 轴上4OA OB == 连接AB 过点O 作1OA AB ⊥于点1A 过点1A 作11A B x ⊥轴于点1B 过点1B 作12B A AB ⊥于点2A 过点2A 作22A B x ⊥轴于点2B 过点2B 作23B A AB ⊥于点3A 过点3A 作33A B x ⊥轴于点3B … 按照如此规律操作下去,则点2023A 的坐标为 .12.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .13.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .三 解答题14.(2023·山东潍坊·统考中考真题)[材料阅读] 用数形结合的方法 可以探究23...n q q q q +++++的值 其中01q <<.例求2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.方法1:借助面积为1的正方形 观察图①可知2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于该正方形的面积即23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.方法2:借助函数1122y x =+和y x =的图象 观察图①可知 2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于1a 2a 3a … n a …等各条竖直线段的长度之和即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1所以 23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【实践应用】任务一 完善2322223333n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的求值过程.方法1:借助面积为2的正方形 观察图①可知2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.方法2:借助函数2233y x =+和y x =的图象 观察图①可知 因为两个函数图象的交点的坐标为______所以 2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.任务二 参照上面的过程 选择合适的方法 求23233334444⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.任务三 用方法2 求23n q q q q +++++的值(结果用q 表示).【迁移拓展】 51+的矩形是黄金矩形 将黄金矩形依次截去一个正方形后 得到的新矩形仍是黄金矩形.观察图① 直接写出2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.参考答案一、单选题1.(2023·辽宁阜新·统考中考真题)如图,四边形1OABC 是正方形 曲线12345C C C C C 叫作“正方形的渐开线” 其中12C C 23C C 34C C 45C C …的圆心依次按O A B 1C 循环.当1OA =时 点2023C 的坐标是( )A .)12(022--,B .)20231(-,C .)12(023--,D .(2022)0,【答案】A【分析】由题得点的位置每4个一循环 经计算得出2023C 在第三象限 与3C 7C 11C …符合同一规律 探究出3C 7C 11C ...的规律即可.【详解】解:由图得123450110()()()()(140)205C C C C C ---,,,,,,,,, 67(506)1()C C --,,, … 点C 的位置每4个一循环202350543=⨯+①2023C 在第三象限 与3C 7C 11C … 符合规律()11n --+,①2023C 坐标为)12(022--,. 故选:A .【点睛】本题考查了点的坐标的规律的探究 理解题意求出坐标是解题关键.2.(2023·四川绵阳·统考中考真题)如下图,将形状 大小完全相同的“●”和线段按照一定规律摆成以下图形 第1幅图形中“●”的个数为1a 第2幅图形中“●”的个数为2a 第3幅图形中“●”的个数为3a … 以此类推 那么123191111a a a a +++⋅⋅⋅+的值为( )A .2021B .6184C .589840D .431760【答案】C【分析】首先根据图形中“●”的个数得出数字变化规律 进而求解即可. 【详解】解:1313a2824a 31535a 42446a…()2n a n n =+ ①123191111a a a a +++⋅⋅⋅+ 11111132435461921=++++⋅⋅⋅+⨯⨯⨯⨯⨯11111111111232435461921⎛⎫=-+-+-+-+⋅⋅⋅+- ⎪⎝⎭ 11111222021⎛⎫=+-- ⎪⎝⎭589840=故选①C .【点睛】此题考查图形的变化规律 找出图形之间的联系 找出规律是解题的关键.3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作: 第1次操作后得到整式串m n n m - 第2次操作后得到整式串m n n m - m - 第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( ) A .m n + B .mC .n m -D .2n【答案】D【分析】先逐步分析前面5次操作 可得整式串每四次一循环 再求解第四次操作后所有的整式之和为:0m n n m m n n m ++----+= 结合202345053÷=⋅⋅⋅ 从而可得答案.【详解】解:第1次操作后得到整式串m n n m - 第2次操作后得到整式串m n n m - m - 第3次操作后得到整式串m n n m - m - n - 第4次操作后得到整式串m n n m - m - n - n m -+ 第5次操作后得到整式串m n n m - m - n -n m -+m⋅⋅⋅⋅⋅⋅归纳可得:以上整式串每六次一循环 ①202363371÷=⋅⋅⋅①第2023次操作后得到的整式中各项之和与第1次操作后得到整式串之和相等 ①这个和为2m n n m n ++-= 故选D【点睛】本题考查的是整式的加减运算 代数式的规律探究 掌握探究的方法 并总结概括规律并灵活运用是解本题的关键.4.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B【分析】利用图形寻找规律()211,1n A n n --- 再利用规律解题即可. 【详解】解:第1圈有1个点 即1(0,0)A 这时10a = 第2圈有8个点 即2A 到()91,1A 第3圈有16个点 即10A 到()252,2A 依次类推 第n 圈 ()211,1n A n n ---由规律可知:2023A 是在第23圈上 且()202522,22A ,则()202320,22A 即2023202242a =+= 故A 选项不正确 2024A 是在第23圈上 且()202421,22A 即2024212243a =+= 故B 选项正确第n 圈 ()211,1n A n n --- 所以2122n a n -=- 故C D 选项不正确 故选B .【点睛】本题考查图形与规律 利用所给的图形找到规律是解题的关键.5.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004 C .2022 D .2023【答案】C【分析】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致.【详解】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致 故202023在第20列 即20b = 向前递推到第1列时 分数为201912023192042-=+ 故分数202023与分数12042在同一行.即在第2042行,则2042a =. ①2042202022.a b -=-= 故选:C .【点睛】本题考查了数字类规律探索的知识点 解题的关键善于发现数字递变的周期性和趋向性.二 填空题6.(2023·辽宁锦州·统考中考真题)如图,在平面直角坐标系中 四边形1121A B B C 2232A B B C 3343A B B C 4454A B B C …都是平行四边形 顶点1B 2B 3B 4B 5B …都在x 轴上 顶点1C 2C 3C 4C …都在正比例函数14y x =(0x ≥)的图象上 且21212B C A C = 32322B C A C = 43432B C A C = … 连接12A B 23A B 34A B 45A B … 分别交射线1OC 于点1O 2O 3O 4O … 连接12O A 23O A 34O A … 得到122O A B ∆ 233O A B ∆ 344O A B ∆ ….若()12,0B ()23,0B ()13,1A ,则202320242024O A B ∆的面积为 .【答案】2023202494【分析】根据题意和图形可先求得12312290A B B B B A ∠∠=︒= 34323290A B B B B A ∠∠=︒=45434390A B B B B A ∠∠=︒=11190n n n n n n B A B B A B +--∠∠=︒= 333,02B ⎛⎫⨯ ⎪⎝⎭2433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭3533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭233,02n n B -⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ 从而得2022202433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ 2023202533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭2023202220232024202533333222B B ⎛⎫⎛⎫⎛⎫=⨯-⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭2022202220232024143332342O n B ⎛⎫⎛⎫=== ⎪⎪⨯⎝⎭⨯⨯⎭⎝ 利用三角形的面积公式即可得解.【详解】解:①()12,0B ()23,0B ()13,1A①点()13,1A 与点()23,0B 的横坐标相同 12OB = 12321B B =-= 121A B = 23OB = ①12A B x ⊥轴 ①1290A B O ∠=︒ ①21212B C A C = ①21212B C A C = ①四边形1121A B B C 2232A B B C 3343A B B C 4454A B B C …都是平行四边形 ①1122A B A B ∥ 222A C OB ∥ 233A B OB ∥ 2223A B C B = 1121A B B C = ①112223A B B A B B ∠=∠ 12212C A C C B O ∠=∠ 12212C C A C OB ∠=∠ 2222111232B A B A B A BC == ①12212C C A C OB ∠∽ ①21222212232OB C B OB C A C A B B === ①23211322B B OB ==⨯①1222123232B B B B B A B C == 3233322OB OB ==⨯ ①212312A A B B B B ∽ ①12312290A B B B B A ∠∠=︒= ①333,02B ⎛⎫⨯ ⎪⎝⎭同理可得34323290A B B B B A ∠∠=︒= 45434390A B B B B A ∠∠=︒=11190n n n n n n B A B B A B +--∠∠=︒=2433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭3533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭233,02n n B -⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭①2022202433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ 2023202533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭①2023202220232024202533333222B B ⎛⎫⎛⎫⎛⎫=⨯-⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭①2022202333,2O n ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭在14y x =上 ①2022202220232024143332342O n B ⎛⎫⎛⎫=== ⎪⎪⨯⎝⎭⨯⨯⎭⎝①202320242024202320232202302240464220242025404820240211333222223944O A B SB O A B ⎛⎫⎛⎫=⋅=⨯⨯== ⎪ ⎪⎝⨯⎭⎝⎭故答案为:2023202494.【点睛】本题考查相似三角形的判定及性质 平行四边形的性质 坐标与图形 坐标规律 熟练掌握相似三角形的判定及性质以及平行四边形的性质是解题关键.7.(2023·江苏宿迁·统考中考真题)如图,ABC 是正三角形 点A 在第一象限 点()0,0B ()1,0C .将线段CA 绕点C 按顺时针方向旋转120︒至1CP 将线段1BP 绕点B 按顺时针方向旋转120︒至2BP 将线段2AP 绕点A 按顺时针方向旋转120︒至3AP 将线段3CP 绕点C 按顺时针方向旋转120︒至4CP ……以此类推,则点99P 的坐标是 .【答案】(49,503-【分析】首先画出图形 然后得到旋转3次为一循环 然后求出点99P 在射线CA 的延长线上 点100P 在x 轴的正半轴上 然后利用旋转的性质得到99100CP = 最后利用勾股定理和含30︒角直角三角形的性质求解即可.【详解】如图所示由图象可得 点1P 4P 在x 轴的正半轴上 ①.旋转3次为一个循环 ①99333÷=①点99P 在射线CA 的延长线上 ①点100P 在x 轴的正半轴上 ①()1,0C ABC 是正三角形 ①由旋转的性质可得 11AC CP == ①112BP OC CP =+=①()12,0P ①212BP BP ==①3223AP AP OP AO ==+= ①433314CP CP CA AP ==+=+= ①445BP BC CP =+= ①()45,0P①同理可得 ()78,0P ()1011,0P ①()100101,0P ①100101BP = ①1001011100CP =-=①由旋转的性质可得 99100CP = ①如图所示 过点99P 作99P E x ⊥轴于点E①60ACB ∠=︒ ①9930EP C ∠=︒ ①991502EC P C == ①49EO EC OC =-= 229999503P E P C EC -=①点99P 的坐标是(49,503-. 故答案为:(49,503-.【点睛】本题考查了坐标与图形变化-旋转 勾股定理 等边三角形的性质.正确确定每次旋转后点与旋转中心的距离长度是关键.8.(2023·黑龙江大庆·统考中考真题)1261年 我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表 人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图 根据图中各式的规律 7()a b +展开的多项式中各项系数之和为 . 【答案】128【分析】仿照阅读材料中的方法将原式展开 即可得出结果. 【详解】根据题意得:()5a b +展开后系数为:1,5,10,10,5,1 系数和:515101051322+++++==()6a b +展开后系数为:1,6,15,20,15,6,1系数和:61615201561642++++++==()7a b +展开后系数为:1,7,21,35,35,21,7,1系数和:71721353521711282+++++++== 故答案为:128.【点睛】此题考查了多项式的乘法运算 以及规律型:数字的变化类 解题的关键是弄清系数中的规律. 9.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .【答案】(3【分析】先确定前几个点的坐标 然后归纳规律 按规律解答即可.【详解】解:由图形可得:()()()()()()2356892,0,3,0,5,0,6,0,8,0,9,0,A A A A A A 如图:过1A 作1A B x ⊥轴①12,OA A①111cos601,sin603,OB OA A B OA =︒⨯==︒⨯= ①(13A ,同理:(((47104,3,3,10,3,A A A -①点1A 的横坐标为1 点2A 的横坐标为2 点3A 的横坐标为3 ……纵坐标三个一循环 ①2023A 的横坐标为2023 ①202336741÷= 674为偶数①点2023A 在第一象限 ①(20233A . 故答案为(3.【点睛】本题主要考查了等边三角形的性质 解直角三角形 坐标规律等知识点 先求出几个点 发现规律是解答本题的关键.10.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=- 进而即可求解. 【详解】解:依题意 ()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-, ①123n a a a a ++++=()21432122n n n n n n +-==-=- 故答案为:22n n -.【点睛】本题考查了图形类规律 找到规律是解题的关键.11.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在平面直角坐标系中 点A 在y 轴上 点B 在x 轴上4OA OB == 连接AB 过点O 作1OA AB ⊥于点1A 过点1A 作11A B x ⊥轴于点1B 过点1B 作12B A AB ⊥于点2A 过点2A 作22A B x ⊥轴于点2B 过点2B 作23B A AB ⊥于点3A 过点3A 作33A B x ⊥轴于点3B … 按照如此规律操作下去,则点2023A 的坐标为 .【答案】20212021114,22⎛⎫- ⎪⎝⎭【分析】根据题意 结合图形依次求出123,,A A A 的坐标 再根据其规律写出2023A 的坐标即可. 【详解】解:在平面直角坐标系中 点A 在y 轴上 点B 在x 轴上 4OA OB == OAB ∴是等腰直角三角形 45OBA ∠=︒1OA AB ⊥1OA B ∴是等腰直角三角形同理可得:1111,OA B A B B 均为等腰直角三角形 1(2,2)A ∴根据图中所有的三角形均为等腰直角三角形 依次可得:()2342211113,1,4,,4,,2222A A A ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭由此可推出:点2023A 的坐标为20212021114,22⎛⎫- ⎪⎝⎭.故答案为:20212021114,22⎛⎫- ⎪⎝⎭.【点睛】本题主要考查了平面直角坐标系中点的坐标特征 以及点的坐标变化规律问题 等腰直角三角形的性质 解题的关键是依次求出123,,A A A 的坐标 找出其坐标的规律.12.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .【答案】23【分析】解直角三角形得出30AOB ∠=︒ 60BOC ∠=︒ 求出3ABC S 证明111ABC A B C ∽△△222ABC A B C ∽ 得出1114A B C ABCSS= ()22222242A B C ABCABCSSS=⋅=⋅ 总结得出()2222n n nn n A B C ABCABCSSS== 从而得出202320232023220232323A B C S⨯=【详解】解:①22OB =①()22,0B ①AB x ⊥轴①点A 的横坐标为2①13:l y =①点A 32622①2633tan 22AB AOB OB ∠==①30AOB ∠=︒ ①2:3l y x =①设(),C C C x y ,则3C C y x ①tan 3CCy BOC x ∠==①60BOC ∠=︒①1cos602222OC OB =⨯︒==3sin 60226BC OB =⨯︒==①130AOC BOC AOB ∠=∠-∠=︒ ①1AOB AOC ∠=∠ ①OA 平分BOC ∠ ①12AC l ⊥ AB OB ⊥ ①126AC AB ==①1AB AC = OA OA = ①1Rt Rt OAB OAC ≌ ①122OC OB ==①112222CC OC OC =-=①12ABCOABACC BOCSSSS=--126126122226222=⨯⨯--3①2BC l ⊥ ①90BCO ∠=︒①906030CBO ∠=︒-︒=︒ ①112B C l ⊥ 2BC l ⊥ 222B C l ⊥ ①2112B B C C B C ∥∥①112230C B O C B O CBO ∠=∠=∠=︒ ①1122C B O C B O CBO AOB ∠=∠=∠=∠ ①1AO AB = 112AO A B = ①AB x ⊥轴 11A B x ⊥轴①112OB OB = 1212OB OB =①AB x ⊥轴 11A B x ⊥轴 22A B x ⊥轴①1122AB A B A B ∥∥ ①11112AB OB A B OB ==22214AB OB A B OB == ①2112B B C C B C ∥∥ ①11112BC OB B C OB ==22214BC OB B C OB == ①1111AB BCA B B C = ①111903060ABC A B C ∠=∠=︒-︒=︒ ①111ABC A B C ∽△△ 同理222ABC A B C ∽ ①1114A B C ABCS S=()22222242A B C ABC ABCSSS=⋅=⋅ ①()2222n n nn n A B C ABCABCS SS==①202320232023220232323A B C S⨯=故答案为:23【点睛】本题主要考查了三角形相似的判定和性质 解直角三角形 三角形面积的计算 平行线的判定和性质 一次函数规律探究 角平分线的性质 三角形全等的判定和性质 解题的关键是得出一般规律()2222n n nn n A B C ABCABCSSS==.13.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .【答案】()2023,1-【分析】将四分之一圆弧对应的A 点坐标看作顺时针旋转90︒ 再根据A 1A 2A 3A 4A 的坐标找到规律即可.【详解】①A 点坐标为()1,1 且1A 为A 点绕B 点顺时针旋转90︒所得 ①1A 点坐标为()2,0又①2A 为1A 点绕O 点顺时针旋转90︒所得 ①2A 点坐标为()0.2-又①3A 为2A 点绕C 点顺时针旋转90︒所得 ①3A 点坐标为()3,1-又①4A 为3A 点绕A 点顺时针旋转90︒所得 ①4A 点坐标为()1,5由此可得出规律:n A 为绕B O C A 四点作为圆心依次循环顺时针旋转90︒ 且半径为1 2 3 n每次增加1. ①202355053÷=故2023A 为以点C 为圆心 半径为2022的2022A 顺时针旋转90︒所得 故2023A 点坐标为()2023,1-. 故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索 通过点的变化探索出坐标变化的规律是解题的关键.三 解答题14.(2023·山东潍坊·统考中考真题)[材料阅读] 用数形结合的方法 可以探究23...n q q q q +++++的值 其中01q <<.例求2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.方法1:借助面积为1的正方形 观察图①可知2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于该正方形的面积即23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.方法2:借助函数1122y x =+和y x =的图象 观察图①可知 2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于1a 2a 3a … n a …等各条竖直线段的长度之和即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1所以 23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【实践应用】任务一 完善2322223333n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的求值过程.方法1:借助面积为2的正方形 观察图①可知2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.方法2:借助函数2233y x =+和y x =的图象 观察图①可知 因为两个函数图象的交点的坐标为______所以 2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.任务二 参照上面的过程 选择合适的方法 求23233334444⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.任务三 用方法2 求23n q q q q +++++的值(结果用q 表示).【迁移拓展】 51+的矩形是黄金矩形 将黄金矩形依次截去一个正方形后 得到的新矩形仍是黄金矩形.观察图① 直接写出2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.【答案】任务一、方法1:2 方法2:()2,2 2 任务二 3 任务三 1qq- [迁移拓展] 51- 【分析】任务一、仿照例题 分别根据方法1 2进行求解即可 任务二 借助函数3344y x =+和y x =得出交点坐标 进而根据两个函数图象的交点到x 轴的距离.因为两个函数图象的交点()2,2到x 轴的距为2 即可得出结果任务三 参照方法2 借助函数y qx q =+和y x =的图象 得出交点坐标 即可求解 [迁移拓展]观察图①第一个正方形的面积为051111-⨯==⎝⎭ 第二个正方形的面积为2251511⎫+-=⎪⎪⎝⎭⎝⎭ ……进而得出则2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值等于长51+的矩形减去1个面积为1的正方形的面积 即可求解. 【详解】解:任务一、方法1:借助面积为2的正方形 观察图①可知2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2故答案为:2. 方法2:借助函数2233y x =+和y x =的图象 观察图①可知 因为两个函数图象的交点的坐标为()2,2所以 2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2.故答案为:()2,2 2.任务二:参照方法2 借助函数3344y x =+和y x =的图象 3344y x y x⎧=+⎪⎨⎪=⎩ 解得:33x y =⎧⎨=⎩ ①两个函数图象的交点的坐标为()3,3232333334444⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.任务三 参照方法2 借助函数y qx q =+和y x =的图象 两个函数图象的交点的坐标为,11q q q q ⎛⎫⎪--⎝⎭①231n qq q q q q +++++=- [迁移拓展]根据图① 第一个正方形的面积为051111-⨯==⎝⎭ 第二个正方形的面积为2251511⎫+-=⎪⎪⎝⎭⎝⎭ …… 则2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭51+的矩形减去1个面积为1的正方形的面积即24625151515151511122n⎛⎫----+-+++++=⨯-= ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【点睛】本题考查了一次函数交点问题 正方形面积问题 理解题意 仿照例题求解是解题的关键.。
常考的规律探究问题题型解读|模型构建|通关试练模型01数与式、图形的规律问题数式规律和图形规律探究问题的特点是:问题的结论不是直接给出,而是给出一组具有某种特定关系的数、式、图形,或是给出图形有关的操作变化过程,或某一具体的问题情境等,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.模型02平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)平面直角坐标系中的规律探究问题由于问题背景的不同,这类题的解题策略是:由特例观察、分析、归纳一般规律,然后利用规律解决问题.具体思维过程是“特殊---一般----特殊”.这类问题体现了“特殊与一般”的数学思想方法,解答时往往体现“探索、归纳、猜想”等思维特点,对分析问题、解决问题的能力具有很高的要求.模型01数与式、图形的规律问题考|向|预|测数与式、图形的规律问题该题型主要以选择、填空形式出现,难度系数不大,需要学生学会分析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”,应结合各式或图形的序号进行前后对比分析.主要考查学生阅读理解、观察图形的变化规律的能力,关键是通过归纳与总结,得到其中的规律,利用规律解决问题.答|题|技|巧第一步:读懂题意,标序号;第二步:根据已有规律模仿或归纳推导隐藏规律,析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”;第三步:猜想规律与“序号”之间的对应关系,并用关于“序号”的式子表示出来;第四步:验证所归纳的结论,利用所学数学知识解答1(2023·湖南)观察下列按顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16,⋯,试猜想第n个等式(n为正整数):a n=.2(2023·安徽)(规律探究)如下图,是由若干个边长为1的小正三角形组成的图形,第(2)个图比第(1)个图多一层,第(3)个图比第(2)个图多一层,依次类推.(1)第(9)个图中阴影三角形的个数为;非阴影三角形的个数为.(2)第n个图形中,阴影部分的面积与非阴影部分的面积比是441∶43,求n.(3)能否将某一个图形中的所有小三角形重新拼接成一个菱形,如果能,请指出是第几个图形,如果不能说明理由.模型02平面直角坐标系中的规律问题考|向|预|测平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型需要分析变化规律得到一般的规律(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等).主要考查对点的坐标变化规律,一般我们需要结合所给图形,找到点或图形的变化规律或者周期性,最后利用正确运用数的运算.答|题|技|巧第一步:观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步:分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步:周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步:利用有理数的运算解题旋转型1(2023·四川)如图所示,矩形ABOC的顶点O为坐标原点,BC=2,对角线OA在第二象限的角平分线上.若矩形从图示位置开始绕点O以每秒45°的速度顺时针旋转,则第2025秒时,点A的对应坐标为()A.2,0B.0,2C.2,2D.-2,-2平移型2(2023·杭州)如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),⋯⋯,按这样的运动规律,动点P 第2018次运动到点A.(2018,0)B.(2017,0)C.(2018,1)D.(2017,-2)翻滚型3(2023·安徽)如图所示,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯都是等边三角形,其边长依次为2,4,6,⋯其中点A 1的坐标为2,0 ,点A 2的坐标为1,-3 ,点A 3的坐标为0,0 ,点A 4的坐标为2,23 ,⋯,按此规律排下去,则点A 100的坐标为()A.1,503B.1,513C.2,503D.2,5131(2023·山东)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,我们把第2行从左到右数第1个定为a 2,1 ,我们把第4行从左到右数第3个定为a 4,3 ,由图我们可以知道:a 2,1 =1,a 4,3 =3,按照图中数据规律,a 8,5 +a 9,6 的值为.2(2023·河南)如图,找出其变化的规律,则第1349个图形中黑色正方形的数量是.摆成,⋯⋯;按图中所示规律,第n个图需要棋子枚.五角星的个数为()A.n2+1B.n2-1C.2n-1D.2n+15(2023·广东)正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2022次后,数轴上2022这个数所对应的点是()A.A点B.B点C.C点D.D点6(2023·辽宁)如图,在平面直角坐标系中,直线l:y=3x+3与两坐标轴交于A、B两点,以AB为边作等边△ABC,将等边△ABC沿射线AB方向作连续无滑动地翻滚.第一次翻滚:将等边三角形绕B点顺时针旋转120°,使点C落在直线l上,第二次翻滚:将等边三角形绕点C顺时针旋转120°,使点A落在直线l上⋯⋯当等边三角形翻滚2023次后点A的对应点坐标是()A.2023,20233D.2021,20243C.2021,20223B.2022,202437(2023·河南)如图,矩形ABCD的顶点A、B分别在x轴、y轴上,其坐标分别为-6,0,、0,-8AD=20,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点D的坐标为()A.10,12D.12,-10C.-12,10B.-10,-128(2023·江西吉安·期末)规律探究题:如图是由一些火柴棒摆成的图案:按照这种方式摆下去,摆第2023个图案用几根火柴棒()A.8093B.8095C.8092D.80919(23-24·河南新乡·期末)汉字文化正在走进人们的日常消费生活.如图所示图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律则图⑩中共有圆点的个数是()A.63B.75C.88D.10210(23-24·湖北武汉·期末)已知点A0-1,3,记A0关于直线m(直线m上各点的横坐标都为0)的对称点为A1,A1关于直线n(直线n上各点的纵坐标都为1)的对称点为A2,A2关于直线p(直线p上各点的横坐标都为-2)的对称点为A3,A3关于直线q(直线q上各点的纵坐标都为3)的对称点为A4,A4关于直线m的对称点为A5,A5关于直线n的对称点为A6,⋯⋯依此规律A2023的坐标是()A.2021,-2021D.-2025,2027C.-2021,-2017B.-2025,-202111(23·山东济宁·期末)如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P,作P1P2⊥OP1,且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2⋯依此法继续作下去,得OP2021=()A.2023B.2022C.2021D.202012(23·广西贵港·期末)请看杨辉三角,并观察下列等式:(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4根据前面各式的规律,则(a+b)6=.13(23-24·辽宁沈阳·期中)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律,则图⑧中共有圆点的个数是.14(2023·四川资阳·一模)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.15(22-23·江苏)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表(图①),即杨辉三角.现在将所有的奇数记“1”,所有的偶数记为“0”,则前4行如图②,前8行如图③,求前32行“1”的个数为.16(2023九年级上·全国·期末)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x 轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4⋯,依次进行下去,则点A2023的坐标为.17(22-23九年级上·全国·期末)(规律探究题)下表是按一定规律排列的一列方程,仔细观察,大胆猜想,科学推断,完成练习.序号方程方程的解1x2-2x-3=0x1=-1,x2=32x2-4x-12=0x1=-2,x2=63x2-6x-27=0x1=-3,x2=9⋯⋯⋯(1)这列方程中第10个方程的两个根分别是x1=,x2=.(2)这列方程中第n个方程为.18(22-23·福建莆田·期中)探究规律题按照规律填上所缺的单项式并回答问题:(1)a,-2a2,3a3,-4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)试计算:当a=-1时,a+(-2a2)+3a3+(-4a4)+⋯+99a99+(-100a100)的值.19(23-24·河南安阳)探究规律,完成相关题目.定义“*”运算:(+2)*(+4)=+(22+42);(-4)*(-7)=+(-4)2+(-7)2;(-2)*(+4)=-(-2)2+(+4)2;(+5)*(-7)=-(+5)2+(-7)2;0*(-5)=(-5)*0=(-5)2;(+3)*0=0*(+3)=(+3)2.0*0=02+02=0(1)归纳*运算的法则:两数进行*运算时,.(文字语言或符号语言均可)特别地,0和任何数进行*运算,或任何数和0进行*运算,(2)计算:+1*0*-2.(3)是否存在有理数m,n,使得m-1*n+2=0,若存在,求出m,n的值,若不存在,说明理由.20(23-24·浙江杭州·期中)探究规律,完成相关题目:小明说:“我定义了一种新的运算,叫※(加乘)运算.”然后他写出了一些按照※(加乘)运算的运算法则进行运算的算式:(+5)※(+2)=+7;(-3)※(-5)=+8;(-3)※(+4)=-7;(+5)※(-6)=-11;(0)※(+8)=8;(0)※(-8)=8;(-6)※(0)=6;(+6)※(0)=6.小亮看了这些算式后说:“我知道你定义的※(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)观察以上式子,类比计算:①-1 2※-15=,-23※+1 =;(2)计算:(-2)※[0※(-1)];(括号的作用与它在有理数运算中的作用一致,写出必要的运算步骤)(3)若1-a※b-3=0.计算:1a×b +1a+2×b+2+1a+4×b+4+1a+6×b+6+1的值.a+8×b+8常考的规律探究问题题型解读|模型构建|通关试练模型01数与式、图形的规律问题数式规律和图形规律探究问题的特点是:问题的结论不是直接给出,而是给出一组具有某种特定关系的数、式、图形,或是给出图形有关的操作变化过程,或某一具体的问题情境等,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.模型02平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)平面直角坐标系中的规律探究问题由于问题背景的不同,这类题的解题策略是:由特例观察、分析、归纳一般规律,然后利用规律解决问题.具体思维过程是“特殊---一般----特殊”.这类问题体现了“特殊与一般”的数学思想方法,解答时往往体现“探索、归纳、猜想”等思维特点,对分析问题、解决问题的能力具有很高的要求.模型01数与式、图形的规律问题考|向|预|测数与式、图形的规律问题该题型主要以选择、填空形式出现,难度系数不大,需要学生学会分析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”,应结合各式或图形的序号进行前后对比分析.主要考查学生阅读理解、观察图形的变化规律的能力,关键是通过归纳与总结,得到其中的规律,利用规律解决问题.答|题|技|巧第一步:读懂题意,标序号;第二步:根据已有规律模仿或归纳推导隐藏规律,析各式或图形中的“变”与“不变”的规律--重点分析“怎样变”;第三步:猜想规律与“序号”之间的对应关系,并用关于“序号”的式子表示出来;第四步:验证所归纳的结论,利用所学数学知识解答1(2023·湖南)观察下列按顺序排列的等式:a 1=1-13,a 2=12-14,a 3=13-15,a 4=14-16,⋯,试猜想第n 个等式(n 为正整数):a n =.【答案】1n -1n +2.【详解】根据题意可知,a 1=1-11+2,a 2=12-12+2,a 3=13-13+2,a 4=14-14+2,⋯∴a n =1n -1n +2.2(2023·安徽)(规律探究)如下图,是由若干个边长为1的小正三角形组成的图形,第(2)个图比第(1)个图多一层,第(3)个图比第(2)个图多一层,依次类推.(1)第(9)个图中阴影三角形的个数为;非阴影三角形的个数为.(2)第n 个图形中,阴影部分的面积与非阴影部分的面积比是441∶43,求n .(3)能否将某一个图形中的所有小三角形重新拼接成一个菱形,如果能,请指出是第几个图形,如果不能说明理由.【详解】(1)第(1)(2)(3)个图中阴影部分小三角形的个数分别是:1+3=22,1+3+5=32,1+3+5+7=42,由此可推测第(9)个图中阴影部分小三角形的个数是(9+1)2=102=100(个),空白三角形的个数为2×(9+2-1=21);故答案为:100;21;(2)第n 个图形中阴影三角形与非阴影三角形的个数比是:n +1 22n +2 -1=44143,解得,n =20或n =-6443(舍去)经检验,n =20符合要求,所以,n =20;(3)设第(m )个图形可重新拼成一个菱形,第(m )个图形总的三角形个数为m +2 2=m 2+4m +4, 由于可以拼一个菱形,则是一含有60度角的菱形,即两个等边三角形构成的菱形,每个等边三角形中含小三角形数为x 2,则有:2x 2=m +2 2解得,m =±2x -2∴m 不是正整数,∴不可能拼成一个菱形.例3.(2023·江西)规律探究与猜想:①方程x 2-3x +2=0的解为x 1=1,x 2=2;②方程x 2-5x +6=0的解为x 1=2,x 2=3;③方程x 2-7x +12=0的解为x 1=3,x 2=4;④方程x 2-9x +20=0的解为x 1=4,x 2=5;⋯⋯(1)根据以上各方程及其解的特征,请解答下列问题:①方程x2-19x+90=0的解为______.②第个方程为______,其解为______.(2)请用公式法解方程x2-9x+20=0,验证猜想结论的正确性.【详解】(1)解:方程x2-3x+2=x2+(-1-2)x+(-1)×(-2)=(x-1)(x-2)=0,解为x1=1,x2=2;方程x2-5x+6=x2+(-2-3)+(-2)×(-3)=(x-2)(x-3)=0,解为x1=2,x2=3;方程x2-7x+12=x2+(-3-4)+(-3)×(-4)=(x-3)(x-4)=0,解为x1=3,x2=4;⋯①x2-19x+90=x2+(-9-10)+(-9)×(-10)=(x-9)(x-10)=0,解为x1=9,x2=10;②第个方程为x2+-n-(n+1)x+(-n)×-(n+1)=(x-n)x-(n+1)=0∴第个方程为x2-(2n+1)x+n2+n=0,解为x1=n,x2=n+1.(2)解:x2-9x+20=0Δ=(-9)2-4×1×20=1,∴x1=9-12=4,x2=9+12=5.故结论正确.模型02平面直角坐标系中的规律问题考|向|预|测平面直角坐标系中的规律问题(旋转、平移、翻滚、渐变等)该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型需要分析变化规律得到一般的规律(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等).主要考查对点的坐标变化规律,一般我们需要结合所给图形,找到点或图形的变化规律或者周期性,最后利用正确运用数的运算.答|题|技|巧第一步:观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步:分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步:周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步:利用有理数的运算解题旋转型1(2023·四川)如图所示,矩形ABOC的顶点O为坐标原点,BC=2,对角线OA在第二象限的角平分线上.若矩形从图示位置开始绕点O以每秒45°的速度顺时针旋转,则第2025秒时,点A的对应坐标为()A.2,0B.0,2C.2,2D.-2,-2【答案】B 【详解】解:∵四边形ABOC 是矩形,∴OA =BC =2,∵每秒旋转45°,8次一个循环,2025÷8=253⋅⋅⋅⋅⋅⋅1,∴第2025秒时,点A 的对应点A 2025落在y 轴正半轴上,∴点A 2025的坐标为0,2 .故选:B .平移型2(2023·杭州)如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),⋯⋯,按这样的运动规律,动点P 第2018次运动到点A.(2018,0)B.(2017,0)C.(2018,1)D.(2017,-2)【答案】B 【详解】解:∵2018÷4=504余2,∴第2014次运动为第505循环组的第2次运动,横坐标为504×4+2-1=2017,纵坐标为0,∴点的坐标为(2017,0).故选B .翻滚型3(2023·安徽)如图所示,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯都是等边三角形,其边长依次为2,4,6,⋯其中点A 1的坐标为2,0 ,点A 2的坐标为1,-3 ,点A 3的坐标为0,0 ,点A 4的坐标为2,23 ,⋯,按此规律排下去,则点A 100的坐标为()A.1,503D.2,513C.2,503B.1,513【答案】C【详解】解:观察所给图形,发现x轴上方的点是4的倍数,∵100÷4=25,∴点A100在x轴上方,∵A3A4=4,∴A54,0,∵A5A7=6,∴A7-2,0,∵A8A7=8,∴点A8的坐标为2,43,同理可知,点A4n的坐标为2,2n3,∴点A100的坐标为2,503. 故选:C.1(2023·山东)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,我们把第2行从左到右数第1个定为a2,1,我们把第4行从左到右数第3个定为a4,3=,由图我们可以知道:a2,1 1,a4,3+a9,6的值为.=3,按照图中数据规律,a8,5【详解】解:如图所示,按照图中数据规律,a8,5=35,a9,6=56,∴a8,5+a9,6=35+56=91,故答案为:912(2023·河南)如图,找出其变化的规律,则第1349个图形中黑色正方形的数量是.【答案】2024个【详解】解:根据题意,可得当n为偶数时,第n个图形中黑色正方形的数量为n+n2个,当n为奇数时,第n个图形中黑色正方形的数量为n+n+12个,∴n=1349时,黑色正方形的个数为1349+1349+12=2024个.故答案为:2024个.3(2023·陕西)如图,第1个图用了6枚棋子摆成;第2个图用了9枚棋子摆成;第3个图用了12枚棋子摆成,⋯⋯;按图中所示规律,第n个图需要棋子枚.【答案】3(n+1)【详解】根据题意有,第1个图形棋子数为:3+3×1,第2个图形棋子数为:3+3×2,第3个图形棋子数为:3+3×3,⋯⋯,第n个图形棋子数为:3+3×n=3(n+1),∴第n个图需要棋子3(n+1)枚,故答案为:3(n+1).4(2023·云南)如图图形是同样大小的小五角星按一定规律组成的,按此规律排列,则第n个图形中小五角星的个数为()A.n2+1B.n2-1C.2n-1D.2n+1【答案】A【详解】解:则第1个图形中小五角星的个数为:12+1=2;则第4个图形中小五角星的个数为:1+22=5;则第3个图形中小五角星的个数为:1+32=10;则第4个图形中小五角星的个数为:1+42=17;⋯⋯;则第n个图形中小五角星的个数为:1+n2,故选:A.5(2023·广东)正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2022次后,数轴上2022这个数所对应的点是()A.A点B.B点C.C点D.D点【答案】A【详解】解:当正六边形在转动第一周的过程中,F、E、D、C、B、A分别对应的点为1、2、3、4、5、6,∴翻转6次为一循环,∵2021÷6=337,∴数轴上2022这个数所对应的点是A点.故选:A.6(2023·辽宁)如图,在平面直角坐标系中,直线l:y=3x+3与两坐标轴交于A、B两点,以AB为边作等边△ABC,将等边△ABC沿射线AB方向作连续无滑动地翻滚.第一次翻滚:将等边三角形绕B点顺时针旋转120°,使点C落在直线l上,第二次翻滚:将等边三角形绕点C顺时针旋转120°,使点A落在直线l上⋯⋯当等边三角形翻滚2023次后点A的对应点坐标是()A.2023,20233D.2021,20243B.2022,20243C.2021,20223【答案】D【详解】解:∵直线l:y=3x+3与两坐标轴交于A、B两点,∴A-1,0,,B0,3∴AB=2,OA=1,OB=3,=3,OA∴∠BAO=60°,如图,等边△ABC经过第1次翻转后,A1-1,23,过点A2作A2M⊥x轴于点M,则AA2=3AB=6,∵∠A2AM=60°,=3,∴AM=AA2cos∠A2AM=6×12A2M=AA2sin∠A2AM=6×3=33,2等边△ABC经过第2次翻转后,A23,33,等边△ABC经过第3次翻转后,点A仍在点A2处,∴每经过3次翻转,点A向右平移3个单位,向上平移33个单位,∵2023÷3=674⋯⋯1,第2次与第3次翻转后点A处在同一个点,∴点A经过2023次翻转后,向右平移了3×674=2022个单位,向上平移了33×674+23=20243个单位,∴等边三角形翻滚2023次后点A的对应点坐标是2021,20243,故选:D.7(2023·河南)如图,矩形ABCD的顶点A、B分别在x轴、y轴上,其坐标分别为-6,0、0,-8,AD=20,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点D的坐标为()A.10,12B.-10,-12C.-12,10D.12,-10【答案】B 【详解】解:如图,过点D 作DT ⊥x 轴于点T .矩形ABCD 的顶点A 、B 分别在x 轴、y 轴上,其坐标分别为-6,0 、0,-8 ,∴OA =6,OB =8,∴AB =OA 2+OB 2=10,∵∠ATD =∠AOB =∠BAD =90°,∴∠DAT +∠BAO =90°,∠BAO +∠ABO =90°,∴∠DAT =∠ABO ,∴△ATD ∽△BOA ,∴AD AB =AT OB =DT OA,即2010=AT 8=DT 6,∴AT =16,DT =12,∴OT =AT -OA =16-6=10,∴D 10,12 ,∵矩形ABCD 绕点O 顺时针旋转,每次旋转90°,则第1次旋转结束时,点D 的坐标为12,-10 ;则第2次旋转结束时,点D 的坐标为-10,-12 ;则第3次旋转结束时,点D 的坐标为-12,10 ;则第4次旋转结束时,点D 的坐标为10,12 ;⋯发现规律:旋转4次一个循环,∴2022÷4=505⋯2,则第2021次旋转结束时,点D 的坐标为-10,-12 .故选:B .8(2023·江西吉安·期末)规律探究题:如图是由一些火柴棒摆成的图案:按照这种方式摆下去,摆第2023个图案用几根火柴棒()A.8093B.8095C.8092D.8091【答案】A 【详解】观察图形的变化可知:摆第1个图案要用火柴棒的根数为:5;摆第2个图案要用火柴棒的根数为:9=5+4=5+4×1;摆第3个图案要用火柴棒的根数为:13=5+4+4=5+4×2;⋯则摆第n个图案要用火柴棒的根数为:5+4n-1=4n+1;故第2023个图案要用火柴棒的根数为:4×2023+1=8093故选:A9(23-24·河南新乡·期末)汉字文化正在走进人们的日常消费生活.如图所示图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律则图⑩中共有圆点的个数是()A.63B.75C.88D.102【答案】D【详解】解:由题意知,图①中共有12个圆点,图②中共有12+6=18个圆点,图③中共有12+6+7=25个圆点,图④中共有12+6+7+8=33个圆点,⋯∴图⑩中共有圆点12+6+7+8+9+10+11+12+13+14=102,故选:D.10(23-24·湖北武汉·期末)已知点A0-1,3,记A0关于直线m(直线m上各点的横坐标都为0)的对称点为A1,A1关于直线n(直线n上各点的纵坐标都为1)的对称点为A2,A2关于直线p(直线p上各点的横坐标都为-2)的对称点为A3,A3关于直线q(直线q上各点的纵坐标都为3)的对称点为A4,A4关于直线m的对称点为A5,A5关于直线n的对称点为A6,⋯⋯依此规律A2023的坐标是()A.2021,-2021D.-2025,2027C.-2021,-2017B.-2025,-2021【答案】B【详解】解:∵直线m上各点的横坐标都为0,即直线m为y轴,∴A11,3,在第一象限,∵直线n上各点的纵坐标都为1,即直线n为直线y=1;∴A21,-1,在第四象限,∵直线p上各点的横坐标都为-2,即直线p为直线x=-2,∴A3-5,-1,在第三象限,∵直线q上各点的纵坐标都为3,即直线q为直线y=3,∴A4-5,7,在第二象限,∴A55,7在第三象限,,在第一象限,A65,-5,在第四象限,A7-9,-5∴每四个点坐标所在象限为一个循环,∵2023=4×505+3,∴A2023与A3在同一象限,∵A3-5,-1,A7-9,-5,∴可知,第三象限的点坐标的特征为A n -n +2 ,-n -2 ,∴A 2023-2025,-2021 ,故选:B .11(23·山东济宁·期末)如图,OP =1,过点P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过点P ,作P 1P 2⊥OP 1,且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2⋯依此法继续作下去,得OP 2021=()A.2023B.2022C.2021D.2020【答案】B【详解】解:由勾股定理得:OP 1=OP 2+OP 12=12+12=2,OP 2=OP 12+P 1P 22=(2)2+12=3,OP 3=OP 22+P 2P 32=(3)2+12=2,⋯,依此类推可得:OP n =(OP n -1)2+(P n -1P n )2=(n )2+12=n +1,∴OP 2021=2021+1=2022,故选:B .12(23·广西贵港·期末)请看杨辉三角,并观察下列等式:(a +b )1=a +b(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4根据前面各式的规律,则(a +b )6=.【答案】a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6【详解】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.13(23-24·辽宁沈阳·期中)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点⋯依此规律,则图⑧中共有圆点的个数是.【答案】75【详解】解:在图①中,圆点个数为y1=12个.在图②中,圆点个数为y2=y1+2+4=18个.在图③中,圆点个数为y3=y2+2+5=25个.在图④中,圆点个数为y4=y3+2+6=33个....以次类推,在图⑧中,圆点个数为y8=y7+(2+10)=y6+(2+9)+12=y5+(2+8)+11+12=y4+(2+7)+10+11+12=33+9+10+11+12=75.故答案为:75.14(2023·四川资阳·一模)如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.【答案】40°.【详解】连续左转后形成的正多边形边数为:45÷5=9,则左转的角度是360°÷9=40°.故答案是:40°.15(22-23·江苏)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表(图①),即杨辉三角.现在将所有的奇数记“1”,所有的偶数记为“0”,则前4行如图②,前8行如图③,求前32行“1”的个数为.【答案】243【详解】观察图②和图③可知,前8行中包含3个前4行的图形,中间三角形中的数字均为0,∴前8行中“1”的个数是前4行中“1”的个数的3倍,即前8行中“1”的个数为9×3=27(个),同理可知前16行中“1”的个数是前8行中“1”的个数的3倍,即前16行中“1”的个数为27×3=81(个),前32行中“1”的个数是前16行中“1”的个数的3倍,即前32行中“1”的个数为81×3=243(个),故答案为:243.16(2023九年级上·全国·期末)在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4⋯,依次进行下去,则点A 2023的坐标为.【答案】-1012,10122【详解】解:∵A 点坐标为(1,1),∴直线OA 为y =x ,A 1(-1,1),∵A 1A 2∥OA ,∴直线A 1A 2为y =x +2,解y =x +2y =x 2得x =-1y =1 或x =2y =4 ,∴A 2(2,4),∴A 3(-2,4),∵A 3A 4∥OA ,∴直线A 3A 4为y =x +6,解y =x +6y =x2 得x =-2y =4 或x =3y =9 ,∴A 4(3,9),∴A 5(-3,9)⋯,∴A2023-1012,10122,故答案为:-1012,10122.17(22-23九年级上·全国·期末)(规律探究题)下表是按一定规律排列的一列方程,仔细观察,大胆猜想,科学推断,完成练习.序号方程方程的解1x2-2x-3=0x1=-1,x2=32x2-4x-12=0x1=-2,x2=63x2-6x-27=0x1=-3,x2=9⋯⋯⋯(1)这列方程中第10个方程的两个根分别是x1=,x2=.(2)这列方程中第n个方程为.【答案】(1)-10;30;(2)x2-2nx-3n2=0【详解】(1)由表格中的规律可知,第10个方程的解为x1=-10,x2=30;(2)根据表格中的规律可知,第n个方程的解是x1=-n,x2=3n,∴根据根与系数的关系可知:第n个方程就是x2-2nx-3n2=0.18(22-23·福建莆田·期中)探究规律题按照规律填上所缺的单项式并回答问题:(1)a,-2a2,3a3,-4a4,,;(2)试写出第2017个和第2018个单项式;(3)试写出第n个单项式;(4)试计算:当a=-1时,a+(-2a2)+3a3+(-4a4)+⋯+99a99+(-100a100)的值.【详解】解:(1)由前几项的规律可得:第五项、第六项依次为:5a5,-6a6;(2)第2007个单项式为:2017a2017,第2018个单项式为:-2018a2018;(3)第n个单项式的系数为:n×(-1)n+1,次数为n,故第n个单项式为:(-1)n+1nan.(4)原式=-1-2-3⋯-100=-5050.19(23-24·河南安阳)探究规律,完成相关题目.定义“*”运算:(+2)*(+4)=+(22+42);(-4)*(-7)=+(-4)2+(-7)2;(-2)*(+4)=-(-2)2+(+4)2;;(+5)*(-7)=-(+5)2+(-7)20*(-5)=(-5)*0=(-5)2;(+3)*0=0*(+3)=(+3)2.0*0=02+02=0(1)归纳*运算的法则:两数进行*运算时,.(文字语言或符号语言均可)特别地,0和任何数进行*运算,或任何数和0进行*运算,(2)计算:+1*0*-2.(3)是否存在有理数m,n,使得m-1=0,若存在,求出m,n的值,若不存在,说明理由.*n+2【详解】(1)解:归纳*运算的法则∶两数进行*运算时,同号得正,异号得负,并把两数的平方相加.特别地,0和任何数进行*运算,或任何数和0进行*运算,等于这个数的平方.(2)解:+1 *0*-2 ,=+1 *-2 2,=+1 *4,=+12+42 ,=1+16,=17;(3)解:m -1 *n +2 =0,=±m -1 2+n +2 2 =0,∴m -1=0,n +2=0,解得:m =1,n =-2,20(23-24·浙江杭州·期中)探究规律,完成相关题目:小明说:“我定义了一种新的运算,叫※(加乘)运算.”然后他写出了一些按照※(加乘)运算的运算法则进行运算的算式:(+5)※(+2)=+7;(-3)※(-5)=+8;(-3)※(+4)=-7;(+5)※(-6)=-11;(0)※(+8)=8;(0)※(-8)=8;(-6)※(0)=6;(+6)※(0)=6.小亮看了这些算式后说:“我知道你定义的※(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)观察以上式子,类比计算:①-12 ※-15=,-23 ※+1 =;(2)计算:(-2)※[0※(-1)];(括号的作用与它在有理数运算中的作用一致,写出必要的运算步骤)(3)若1-a ※b -3 =0.计算:1a ×b +1a +2 ×b +2 +1a +4 ×b +4 +1a +6 ×b +6+1a +8 ×b +8的值.【详解】(1)解:①-12 ※-15 =-12 +-15 =12+15=710,故答案为:710.②-23 ※+1 =--23 +1 =-23+1 =-53,故答案为:-53.(2)解:(-2)※[0※(-1)]=-2 ※+1=-1+2=-3.(3)∵1-a ※b -3 =0,∴1-a +b -3 =0,。
初中数学好题分享-数轴规律探究问题
题目:数轴上A、B两点表示的数为a、b,数轴上A、B两点之间的距离为AB。
1.当点A、B在数轴上表示的数a、b满足条件|a+2|=0,|b-4|=0时,求点
A、B之间的距离AB。
2.当点A、B在数轴上表示的数a、b满足条件|a+2|=3,|b-4|=2时,求点
A、B之间的距离AB。
3.猜想:当点A、B在数轴上表示的数a、b满足条件|a+2|=m,|b-4|=n时
(其中m、n为正整数),求点A、B之间的距离AB。
答案:
1.由条件|a+2|=0,|b-4|=0可得,a=-2,b=4。
根据数轴上两点间的距离
公式AB=|a-b|,可得AB=|-2-4|=6。
2.由条件|a+2|=3,|b-4|=2可得,a=1或-5,b=2或6。
当a=1,b=2时,
AB=|1-2|=1;当a=-5,b=2时,AB=|-5-2|=7;当a=1,b=6时,AB=|1-
6|=5;当a=-5,b=6时,AB=|-5-6|=11。
3.由条件可得,点A、B在数轴上表示的数a、b满足条件|a+2|=m,则
a=±m-2;|b-4|=n,则b=±n+4。
所以,当a、b同号时,AB=m+n;当
a、b异号时,AB=m-n。
专题6 数学规律探究问题根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。
解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。
一、数式规律探究通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同位置的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.一般地,常用字母n表示正整数,从1开始。
2.在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律① 1、4、9、16......n2② 1、3、6、10……(1)2n n+数列的变化规律③ 1、3、7、15……2n -1④ 1+2+3+4+…n=(1)2n n+⑤ 1+3+5+…+(2n-1)= n2 数列的和⑥ 2+4+6+…+2n=n(n+1)数式规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例1.观察下列等式:①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……猜想第n个等式为(用含n的式子表示)分析:将等式竖排:1×12=1-12n=12×23=2-23n=23×34=3-34n=34×45=4-45n=4观察相应位置上变化的数字与序列号的对应关系(注意分清正整数的奇偶)易观察出结果为:n ×1n n +=n-1n n +例2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么 32009的个位数字是 。
专题04 有理数运算中的规律探究1.观察下列等式:第1个等式:111111323a æö==´-ç÷´èø第2个等式:2111135235a æö==´-ç÷´èø第3个等式:3111157257a æö==´-ç÷´èø第4个等式:4111179279a æö==´-ç÷´èø……请解答下列问题:(1)按以上规律列出第5个等式:5a =________=_______(2)用含有n 的式子表示第n 个等式:(n 为正整数)n a =______=_______(3)求12341000a a a a a ++++¼+的值.【答案】(1)1911´,1112911æö´-ç÷èø(2)()()12121n n -´+,11122121n n æö´-ç÷-+èø(3)100201【解析】【分析】(1)根据所给的等式的形式求解即可;(2)根据所给的等式,进行总结可得出规律;(3)利用(2)中的规律进行求解即可.(1)解:观察等式找到规律,第5个等式为: 511119112911a æö==´-ç÷´èø故答案为:1911´,1112911æö´-ç÷èø(2)解:Q 第1个等式:111111323a æö==´-ç÷´èø第2个等式:2111135235a æö==´-ç÷´èø第3个等式:3111157257a æö==´-ç÷´èø第4个等式:4111179279a æö==´-ç÷´èø第5个等式:511119112911a æö==´-ç÷´èø……第n 个等式:()()1111212122121n a n n n n æö==´-ç÷-´+-+èø故答案为:()()12121n n -´+,11122121n n æö´-ç÷-+èø(3)解:12341000a a a a a ++++¼+=11123æö´-ç÷èø+111235æö´-ç÷èø+111257æö´-ç÷èø…+1992011112æö´-ç÷èø11111112335199201æö=-+-+×××+-ç÷èø1112201æö=-ç÷èø12002201=´100201=【点睛】本题主要考查数字的变化规律,解题的关键是由所给的等式总结出存在的规律并灵活运用.2.先阅读下列式子的变形规律:111122=-´;1112323=-´;1113434=-´;1111111113111223342233444++=-+-+-=-=´´´然后再解答下列问题:【注:第(1)小题直接写结果,不用写过程】(1)类比计算:1910=´______,120192020=´______,归纳猜想:若n 为正整数,那么猜想()11n n =+______.(2)知识运用,选用上面的知识计算111112233420192020++++´´´´LL 的结果.(3)知识拓展:试着写出111113355779+++´´´´的结果.【答案】(1)11910-;1120192020-;111n n -+(2)20192020(3)49【解析】【分析】(1)根据题意分解形式求解即可;(2)根据式子规律求解即可;(3)将113´分解成11123æö-ç÷èø的形式,其余各式比照该分解形式进行分解,然后求和计算即可.(1)解:由题意知111910910=-´1112019202020192020=-´()11111n n n n =-´++故答案为:11910-;1120192020-;111n n -+.(2)解:1111······+12233420192020+++´´´´1111111111 (223342018201920192020)=-+-+-++-+-211200=-20192020=(3)解:111113355779+++´´´´11111111111123235257279æöæöæöæö=-+-+-+-ç÷ç÷ç÷ç÷èøèøèøèø11111111123355779æö=-+-+-+-ç÷èø11129æö=´-ç÷èø49=【点睛】本题考查了数字类规律的探究.解题的关键在于概括出分解运算规律.3.(1)观察下列各式:123456733,39,327,381,3243,3729,32187,=======L1234561313,13169,132197,1328561,13371293,134826809,======L根据你发现的规律回答下列问题:①20223的个位数字是___________;9913的个位数字是___________;②9943的个位数字是___________;5543的个位数字是___________;(2)自主探究回答问题:①997的个位数字是___________,557的个位数字是___________;②9952的个位数字是___________,5552的个位数字是___________.(3)若n 是自然数,则9955n n -的个位上的数字( )A .恒为0B .有时为0,有时非0C .与n 的末位数字相同D .无法确定【答案】(1)①9;7 ②7;7 (2)①3;3 ②8;8 (3)A【解析】【分析】(1)根据已知式子可以得到末尾数字4个一循环,据此解得即可;(2)可以先列出7的乘方及2的乘方的式子,可以得到末尾数字4个一循环,据此解得即可;(3)根据(1)(2)中的结论可知99n 与55n 个位上的数字相同即可得出答案.【详解】解:(1)①Q 123456733,39,327,381,3243,3729,32187,=======L\3的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环20224505 (2)¸=Q \20223的个位数字是9;Q 1234561313,13169,132197,1328561,13371293,134826809,======L\13的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环99424 (3)¸=Q \9913的个位数字是7;故答案为:9;7;②由①可知尾号为3的数的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\9943的个位数字是7,5543的个位数字是7;故答案为:7;7;(2)①123456777497343724017168077117649...======Q ,,,,,\7的乘方的个位数字依次是7,9,3,1,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\997的个位数字是3,557的个位数字是3故答案为:3;3②123456222428216232264...======Q ,,,,,\2的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环\52的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\9952的个位数字是8,5552的个位数字是8故答案为:8;8(3)由(1)(2)中的结论可知99n 与55n 个位上的数字相同\9955n n -的个位上的数字恒为0故选A .【点睛】本题考查数字的变化规律,找出数字之间的规律是解题的关键.4.观察下列各式:3312189+=+=,而2332(12)9,12(12)+=\+=+;33312336++=,而23332(123)36,123(123)++=\++=++;33331234100+++=,而233332(1234)100,1234(1234)+++=\+++=+++;(1)猜想并填空:3333312345++++=_______2=_______;(2)根据以上规律填空:3333123n ++++=L _______2=_______;(3)求解:333331617181920++++.【答案】(1)(1+2+3+4+5),225(2)()123n ++++L ,()212n n +éùêúëû(3)29700【解析】【分析】观察题中一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,据些规律来求解.(1)根据上述规律填空即可求解;(2)根据上述规律填空,然后把123n ++++L 变为2n 个()1n +相乘来求解;(3)对所求的式子前面加上1到15的立方和,然后根据上述规律分别求出1到15的立方和与16到20的立方和,再求出两数相减即可求解.(1)解:由题意可知:()2333331234512345225++++=++++=.故答案为:(1+2+3+4+5),225;(2)解:()()()1121211222n n n n n n n n +éùæö+++=+++-++-+=éùç÷êúëûèøëûQ L L ()()22333311231232n n n n +éù\+++=++++=êúëûL L .故答案为:()123n ++++L ,()212n n +éùêúëû;(3)解:333331617181920++++()()333333331232012315=+++-+++L L()()221232012315=+++-+++L L 22210120=-29700=故答案为:29700.【点睛】本题考查了探究数字规律,主要要求学生综合运用观察、想象、归纳、推理概括等思维方式,运用总结的规律解决问题的能力.找出规律是解答关键.5.爱读书的乐乐在读一本古书典籍上有这么一段记载:相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方,三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3,4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和=______;(2)若b=4,c=6,求a的值;(3)通过研究问题(1)和(2),利用你发现的规律,将5,7,-5,3,9,-1,11,-3,1这九个数字分别填入图3的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案】(1)-6(2)8(3)图形见解析(答案不唯一)【解析】【分析】(1)根据幻和等于九宫格中最中心数的3倍即可得答案;(2)根据b=4先求出第二行第三列的数字,根据c=6求出第一行第三列的数字,根据对角线求出第一行第一列的数字,最后根据第一行三个数字之和等于幻和即可求解;(3)根据九宫格中所有数字相加,其和为幻和的3倍先求出中心数为3,幻和为9,进一步将数据分成5与1一组,7与-1一组,-5与11一组,9与-3一组,按照此条件分组将数据填入九宫格中即可.(1)解:由题意可知:幻和等于九宫格中最中心数的3倍,∴图2中幻和=-2×3=-6.(2)解:由(1)知幻和为-6,当b=4,c=6时:第二行第三列的数字为:-6-b-(-2)=-6-4+2=-8,第一行第三列的数字为:-6-(-8)-c=-6+8-6=-4,根据对角线可知:第一行第一列的数字为:-6-(-2)-6=-10,∴a=-6-(-10)-(-4)=-6+10+4=8.(3)解:将图3中的九宫格分别标记为A~I,如下图所示:由于九宫格中横行、纵向的数字之和均相等,其和叫做幻和,∴九宫格中所有数字相加,其和为幻和的3倍,∴幻和=(5+7-5+3+9-1+11-3+1)÷3=9,又幻和为九宫格中最中心数的3倍,∴最中心的E代表的数为3,∵对角线、横行、纵向的数字之和是幻和的3倍,∴A+I=6,B+H=6,C+G=6,D+F=6,故5与1一组,7与-1一组,-5与11一组,9与-3一组,只需要满足此条件写出来九宫格必然满足题目要求,取A=5、B=7时,此时I=1,H=-1,G=9,C=-3,D=-5,F=11,如下图所示(答案不唯一):【点睛】本题主要考查数字的变化规律,读懂题意,解题的关键是掌握幻方的定义及幻和与中心数的关系即可.6.探究规律,完成相关题目.将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”“洛书”等.如图所示的三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到33´的方格中得到的,其每一行,每一列,每一条对角线上的三个数字之和都相等.(1)设下面的三阶幻方中间的数字是m (其中m 为正整数),请用含m 的代数式将下面的幻方填充完整;(2)若设(1)幻方中9个数的和为S ,则S 与中间的数字m 之间的数量关系为______;(3)现要用9个数:-40,-30,-20,-10,0,10,20,30,40构造一个三阶幻方,请将构造的幻方填写在下面33´的方格中.【答案】(1)答案见解析;(2)9m S =;(3)答案见解析【解析】【分析】(1)由第3列的三个代数式的和为3,m 再利用每行,每列,每一条对角线上的三个代数式之和相等逐一填好其余的空格,即可得到答案;(2)由每行,每列,每一条对角线上的三个代数式之和相等,可得()3123,S m m m =++++-从而可得答案;(3)由(2)的规律先确定最中间的数据0, 把-40,-30,-20,-10,0,10,20,30,40按从小到大的顺序排列,再把第2,4,6,8个数据放在四角的位置,再根据每行,每列,每一条对角线上的三个数之和相等,填好其余空格即可.【详解】解:(1)1m +4m -3m +2m +m 2m -3m -4m +1m -(2)由每行每列及对角线上的三个代数式的和相等可得:()31239,S m m m m =++++-=故答案为:9.S m =(3)幻方如图所示(答案不唯一):10-4030200-20-3040-10【点睛】本题考查的是数或代数式的排列的规律的探究,有理数的加减运算,整式的加减运算,掌握以上知识是解题的关键.7.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是 A .(+3)+(+2)=+5;B .(+3)+(﹣2)=+1;C .(﹣3)﹣(+2)=﹣5;D .(﹣3)+(+2)=﹣1②一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是 .(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示 的点重合;②若数轴上A 、B 两点之间的距离为2018(A 在B 的左侧,且折痕与①折痕相同),且A 、B 两点经折叠后重合,则A 点表示 B 点表示 .③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为 .(用含有a ,b 的式子表示)【答案】(1)①D ; ②﹣1009(2)①﹣2015; ②﹣1008,1010;③2a b+【解析】【分析】(1)①根据有理数的加法法则即可判断;②探究规律,利用规律即可解决问题;(2)①根据对称中心是1,即可解决问题;②由对称中心是1,AB =2018,可知A 点是1左边距1为1009个单位的点表示的数,B 点是1右边距1为1009个单位的点表示的数,即可求出点A 、B 所表示的数;③利用中点坐标公式即可解决问题.(1)解:①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D .②一机器人从数轴原点处O 开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是(﹣1)+(+2)+(﹣3)+(+4)+…+(+2016)+(﹣2017)=1×1008+(﹣2017)=﹣1009,故答案为:﹣1009.(2)①若折叠纸条,表示﹣1的点与表示3的点重合, 132-+=1,∴对称中心为1,∴2017﹣1=2016,∴1﹣2016=﹣2015,∴表示2017的点与表示﹣2015的点重合,故答案为:﹣2015;②∵对称中心为1,AB =2018,∴点A 所表示的数为:1﹣20182=﹣1008,点B 所表示的数为:1+20182=1010,故答案为:﹣1008,1010;③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为2a b+;故答案为:2a b+.【点睛】本题考查了数轴、有理数的加减混合运算、折叠等知识,理解题意,灵活应用所学知识是解决问题的关键.8.观察下面三行数:2,4-,8,16-,32,64-,……; ①0,6-,6,18-,30,66-,……; ②1-,2,4-,8,16-,32,……; ③观察发现:每一行的数都是按一定的规律排列的.通过你发现的规律,解决下列问题.(1)第①行的第8个数是________,第n 个数是________;(2)第②行的第n 个数是________,第③行的第n 个数是________;(3)取每行数的第10个数,计算这三个数的和.【答案】(1)256-;1(1)2n n +- ;(2)1(1)22n n +--, 11(1)2()2n n+-´-或1(1)2n n --;(3)1538-【解析】【分析】(1)第①行有理数是按照1(1)2n n +-排列的;(2)第②行为第①行的数减2;第③行为第①行的数的一半的相反数,分别写出第n 个数的表达式即可;(3)根据各行的表达式求出第10个数,然后相加即可得解.【详解】解:(1)第①行的有理数分别是﹣1×2, ﹣1×22,23, ﹣1×24,…,故第8个数是861522´=-﹣,第n 个数为(﹣2)n (n 是正整数);故答案为:256-;1(1)2n n +- ;(2)第②行的数等于第①行相应的数减2,即第n 的数为1(1)22n n +--(n 是正整数),第③行的数等于第①行相应的数的一半的相反数,即第n 个数是11(1)2()2n n +-´-或1(1)2n n --(n 是正整数);故答案为:1(1)22n n +--, 11(1)2()2n n+-´-或1(1)2n n --;(3)∵第①行的第10个数为101011(1)22--=,第②行的第10个数为1022--,第③的第10个数为1099(1)22-=,所以,这三个数的和为:101092(22)2-+--+1024(10242)512=-+--+102410242512=---+1538=-【点睛】本题是对数字变化规律的考查,认真观察、仔细思考,善用联想是解决这类问题的方法,观察出第②③行的数与第①行的数的联系是解题的关键.9.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7-6|=7-6;|6-7|=-6+7;|-6-7|=6+7(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+2|=;②|-12+15|=;(2)用简单的方法计算:|13-12|+|14-13|+|15-14|+……+|12021-12020|.【答案】(1)①7+2;②1125-;(2)20194042【解析】【分析】(1)①②根据正数的绝对值等于本身,负数的绝对值是其相反数可得答案;(2)根据绝对值的性质化简,再相互抵消可得答案.【详解】解:(1)①∵7+20> ,∴|7+2|=7+2;②∵11025-+< ,∴|-12+15|=1125-;(2)原式=11111111+...+23344520202021-+-+-- ,1122021=- ,=20194042.【点睛】本题考查有理数的混合运算,熟练地掌握运算法则和绝对值的性质是解题关键.10.给定一列数,我们把这列数中的第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,以此类推,第n 个数记为n a (n 为正整数).例如下面这列数1,3,5,7,9中,11a =,23a =,35a =,47a =,59a =.规定运算1123(:)n n sum a a a a a a =+++¼¼+,即从这列数的第一个数开始依次加到第n 个数,如在上面这列数中:1312313(:)59sum a a a a a =++=++=.(1)已知一列数-1,2,-3,4,-5,6,-7,8,-9,10.则110(:)sum a a =______.(2)已知一列有规律的数:1(1)1-´,2(1)2-´,3(1)3-´,4(1)4-´,¼¼,按照规律,这列数可以无限的写下去.①求12021(:)sum a a 的值.②是否有正整数n 满足等式1(:)50n sum a a =-成立?如果有,请直接写出n 的值.如果没有,请说明理由.【答案】(1)5;(2)①-1011;②n =99.【解析】【分析】(1)直接根据题中所给定义运算进行求解即可;(2)①由题意可知()12341,2,3,4, (1)n a a a a a n =-==-==-×,由此可得20212021a =-,然后求解即可;②由题意易得()12345....150nn -+-+-++-×=-,进而求解即可.【详解】解:(1)由题意得:110(:)123456789105sum a a =-+-+-+-+-+=,故答案为5.(2)解:由题意得:()12341,2,3,4, (1)n a a a a a n =-==-==-×,∴12021(:)sum a a =-1+2-3+4···+2020-2021=1×1010-2021=-1011.②由题意得:()12345....150nn -+-+-++-×=-,∴当n 为奇数时,则有11502n n -´-=-,解得:n =99,当n 为偶数时,则有1502n ´=-,解得:100n =-,(不符合题意,舍去),∴综上所述:n =99.【点睛】本题主要考查含乘方的有理数混合运算及数字规律问题,熟练掌握含乘方的有理数混合运算及数字规律问题是解题的关键.11.细心观察下面三个图形,按下述方法找出规律.(1)分别写出前面三个图形四角中四个数的积分别是 、 、 ;(2)分别写出前面三个图形四角中四个数的和分别是、、;(3)请你说明你发现的规律找出第四个正方形中的数,并说明理由.【答案】(1)24,60,120;(2)-10,-13,-16;(3)191,理由见解析【解析】【分析】(1)根据有理数乘法的性质计算,即可得到答案;(2)根据有理数加法的性质计算,即可得到答案;(3)根据有理数乘法和加法的性质计算,并结合前三个图形的数字规律,即可完成求解.【详解】(1)(-1)×(-2)×(-3)×(-4)=24;(-1)×(-3)×(-5)×(-4)=60;(-1)×(-4)×(-5)×(-6)=120;故答案为:24,60,120;(2)(-1)+(-2)+(-3)+(-4)=-10;(-1)+(-3)+(-5)+(-4)=-13;(-1)+(-4)+(-5)+(-6)=-16;故答案为:-10,-13,-16;(3)(-1)×(-5)×(-6)×(-7)=210;(-1)+(-5)+(-6)+(-7)=-19;∵第1个正方形中的数()241014=+-= 第2个正方形中的数()601347=+-=第3个正方形中的数()12016104=+-=∴第四个正方形中的数()21019191=+-=.【点睛】本题考查了有理数加减法、乘法,以及数字规律的知识;解题的关键是熟练掌握有理数加减法和乘法的性质,结合数字规律,从而完成求解.12.一跳蚤P 从数轴上表示﹣2的点A 1开始移动,第一次先向左移动1个单位,再向右移动2个单位到达点A 2;第二次从点A 2向左移动3个单位,再向右移动4个单位到达点A 3;第三次从点A 3向左移动5个单位,再向右移动6个单位到达点A 4,…,点P 按此规律移动,那么:(1)第一次移动后这个点P 在数轴上表示的数是 ;(2)第二次移动后这个点P 在数轴上表示的数是 ;(3)第五次移动后这个点P 在数轴上表示的数是 ;(4)这个点P 移动到点An 时,点An 在数轴上表示的数是 .【答案】(1)﹣1;(2)0;(3)3;(4)﹣2+n .【解析】【分析】(1)根据题意可得第一次移动后这个点P 在数轴上表示的数是﹣1;(2)第二次移动后这个点P 在数轴上表示的数是2120-+´=;(3)第五次移动后这个点P 在数轴上表示的数是2153-+´=;(4)这个点P 移动到点An 时,点An 在数轴上表示的数212n n -+´=-+.【详解】解:(1)记某次向左移动m 个单位长度,则向右移动()1m +个单位长度,从而每次移动的实际量为:123411,m m -+=-+=-++=∵一跳蚤P 从数轴上表示﹣2的点A 1开始移动,第一次先向左移动1个单位,再向右移动2个单位∴211-+=-,即第一次移动后这个点P 在数轴上表示的数是﹣1故答案为﹣1(2)∵2120,-+´=∴第二次移动后这个点P 在数轴上表示的数是0故答案为0(3)∵2153,-+´=∴第五次移动后这个点P 在数轴上表示的数是3故答案为3(4)∵212n n -+´=-+,∴这个点P 移动到点An 时,点An 在数轴上表示的数是﹣2+n 故答案为﹣2+n ,【点睛】本题考查的是点在数轴上的移动规律的探究,有理数的加法运算,掌握数轴上点的移动后对应的数的变化规律是解题的关键.13.探索规律:观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请写出满足上述规律的第6行等式:__________;(2)请猜想1+3+5+7+9+…+39=_____;(写出具体数值)(3)请猜想1+3+5+7+9+…+(2n ﹣1)+(2n +1)=_____;(用含n 的式子表示)(4)请用上述规律计算:51+53+55+…+87+89.(写出计算过程)【答案】(1)1+3+5+7+9+11=62;(2)400;(3)(n +1)2;(4)1400【解析】(1)类比得出第6行等式为:1+3+5+7+9+11=62;(2)由图形可知,从1开始的连续奇数的和等于奇数的个数的平方,然后根据此规律求解即可;(3)利用(1)(2)的规律推出一般规律即可;(4)用从1到89的连续奇数的和减去从1到49的连续奇数的和,进行计算即可得解.【详解】解:(1)第6行等式:1+3+5+7+9+11=62;(2)1至39共有(39+1)÷2=20个奇数,∴1+3+5+7+9+…+39=202=400;(3)1+3+5+7+9+…+(2n -1)+(2n +1)=22112n ++æöç÷èø=(n +1)2;(4)51+53+55+…+87+89=1+3+5+7+…+87+89-(1+3+5+7+…+47+49)=2289149122++æöæö-ç÷ç÷èøèø=452-252=2025-625=1400.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,解决问题.14.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,124,6K K ==,……按此规律排列下去,第n 个图形中实心圆的个数表示为Kn .(1)n K =______(用n 表示):100K =_______(2)我们在用“*”定义一种新运算:对于任意有理数a 和正整数n .规定*2n na K a K a n -++=,例如:223336|36|(3)*2322K K --+-+--+-+-===-.①计算:(26.6)*10-的值;②比较:3*n 与(3)*n -的大小.【答案】(1)2(n +1),202;(2)①-22;②3☆n >(-3)☆n 【解析】【分析】(1)由图形可知:第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,…由此得出第n 个图形中有2(n +1)个实心圆,进一步代入求得答案即可;(2)①根据规定的运算顺序与计算方法,转化为有理数的混合运算计算即可;②根据规定的运算顺序与计算方法分别计算得出结果比较得出结论即可.【详解】解:(1)Q 第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,¼2(1)n K n \=+;1002(1001)202K =´+=;(2)①(26.6)-*10101026.6|26.6|2K K --+-+=26.6(2102)|26.6(2102)|2--´++-+´+=22=-;②n Q 是正整数,224n K n \=+…;3\*n3|3|2n n K K -++=332n nK K -++=3=,(3)-*n3|3|2n n K K --+-+=332n nK K ---+=3=-.n>-*n.所以3*(3)【点睛】此题考查图形的变化规律,有理数的混合运算,找出图形的运算规律,理解规定的运算方法是解决问题的关键.。
备战2023年中考数学必刷真题考点分类专练(全国通用)专题30规律探究问题一.选择题(共10小题)1.(2022•西藏)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是()A.﹣B.C.﹣D.【分析】把第3个数转化为:,不难看出分子是从1开始的奇数,分母是n2+1,且奇数项是正,偶数项是负,据此即可求解.【解析】原数据可转化为:,﹣,,﹣,,﹣,…,∴=(﹣1)1+1,﹣=(﹣1)2+1,=(﹣1)3+1,...∴第n个数为:(﹣1)n+1,∴第10个数为:(﹣1)10+1=﹣.故选:A.2.(2022•牡丹江)观察下列数据:,﹣,,﹣,,…,则第12个数是()A.B.﹣C.D.﹣【分析】根据给出的数据可以推算出第n个数是×(﹣1)n+1所以第12个数字把n=12代入求值即可.【解析】根据给出的数据特点可知第n个数是×(﹣1)n+1,∴第12个数就是×(﹣1)12+1=﹣.故选:D.3.(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是()A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n【分析】根据题目中的单项式,可以发现系数是一些连续的奇数,x的指数是一些连续的整数,从而可以写出第n个单项式.【解析】∵单项式:x,3x2,5x3,7x4,9x5,…,∴第n个单项式为(2n﹣1)x n,故选:A.4.(2022•新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98B.100C.102D.104【分析】由三角形的数阵知,第n行有n个偶数,则得出前9行有45个偶数,且第45个偶数为90,得出第10行第5个数即可.【解析】由三角形的数阵知,第n行有n个偶数,则得出前9行有1+2+3+4+5+6+7+8+9=45个偶数,∴第9行最后一个数为90,∴第10行第5个数是90+2×5=100,故选:B.5.(2022•广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为()A.252B.253C.336D.337【分析】根据图形特征,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,得出第n个图形需要的小木棒根数即可.【解析】由题意知,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,第n个图形需要6n+2(n﹣1)=(8n﹣2)个小木棒,当8n﹣2=2022时,解得n=253,故选:B.6.(2022•玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是()A.4B.2C.2D.0【分析】分别计算红跳棋和黑跳棋过2022秒钟后的位置,红跳棋跳回到A点,黑跳棋跳到F点,可得结论.【解析】∵红跳棋从A点按顺时针方向1秒钟跳1个顶点,∴红跳棋每过6秒返回到A点,2022÷6=337,∴经过2022秒钟后,红跳棋跳回到A点,∵黑跳棋从A点按逆时针方向3秒钟跳1个顶点,∴黑跳棋每过18秒返回到A点,2022÷18=112•••6,∴经过2022秒钟后,黑跳棋跳到E点,连接AE,过点F作FM⊥AE,由题意可得:AF=AE=2,∠AFE=120°,∴∠FAE=30°,在Rt△AFM中,AM=AF=,∴AE=2AM=2,∴经过2022秒钟后,两枚跳棋之间的距离是2.故选:B.7.(2022•江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【分析】列举每个图形中H的个数,找到规律即可得出答案.【解析】第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.8.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【分析】根据图形的变化规律得出第n个图形中有4n+1个正方形即可.【解析】由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.9.(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【分析】根据前面三个图案中菱形的个数,得出规律,第n个图案中菱形有(2n﹣1)个,从而得出答案.【解析】由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.10.(2022•荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形A n B n∁n D n的面积是()A.B.C.D.【分析】连接A1C1,D1B1,可知四边形A1B1C1D1的面积为矩形ABCD面积的一半,则S1=ab,再根据三角形中位线定理可得C2D2=C1,A2D2=B1D1,则S2=C1×B1D1=ab,依此可得规律.【解析】如图,连接A1C1,D1B1,∵顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1,∴四边形A1BCC1是矩形,∴A1C1=BC,A1C1∥BC,同理,B1D1=AB,B1D1∥AB,∴A1C1⊥B1D1,∴S1=ab,∵顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2,∴C2D2=C1,A2D2=B1D1,∴S2=C1×B1D1=ab,……依此可得S n=,故选:A.二.填空题(共14小题)11.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为a n,且满足+=.则a4=,a2022=.【分析】由题意可得a n=,即可求解.【解析】由题意可得:a1=2=,a2==,a3=,∵+=,∴2+=7,∴a4==,∵=,∴a5=,同理可求a6==,•••∴a n=,∴a2022=,故答案为:,.12.(2022•宿迁)按规律排列的单项式:x,﹣x3,x5,﹣x7,x9,…,则第20个单项式是﹣x39.【分析】观察指数规律与符号规律,进行解答便可.【解析】根据前几项可以得出规律,奇数项为正,偶数项为负,第n项的数为(﹣1)n+1×x2n﹣1,则第20个单项式是(﹣1)21×x39=﹣x39,故答案为:﹣x39.13.(2022•怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是744.【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有个数,再根据偶数的特征确定第几行第几个数是几.【解析】由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有个数.∴前27行共有378个数,∴第27行第21个数是一共378个数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.14.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是(10,18).【分析】根据第n行的最后一个数是n2,第n行有(2n﹣1)个数即可得出答案.【解析】∵第n行的最后一个数是n2,第n行有(2n﹣1)个数,∴99=102﹣1在第10行倒数第二个,第10行有:2×10﹣1=19个数,∴99的有序数对是(10,18).故答案为:(10,18).15.(2022•青海)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料根.【分析】观察图形可得:第n个图形最底层有n根木料,据此可得答案.【解析】由图可知:第一个图形有木料1根,第二个图形有木料1+2=3(根),第三个图形有木料1+2+3=6(根),第四个图形有木料1+2+3+4=10(根),......第n个图有木料1+2+3+4+......+n=(根),故答案为:.16.(2022•大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是49.【分析】从数字找规律,进行计算即可解答.【解析】由题意得:第一个图案中的“”的个数是:4=4+3×0,第二个图案中的“”的个数是:7=4+3×1,第三个图案中的“”的个数是:10=4+3×2,...∴第16个图案中的“”的个数是:4+3×15=49,故答案为:49.17.(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB 于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为(1+)2022.【分析】根据题意和题目中的数据,可以写出前几项,然后即可得到P n K n的式子,从而可以写出线段P2023K2023的长.【解析】由题意可得,P1K1=OP1•tan60°=1×=,P2K2=OP2•tan60°=(1+)×=(1+),P3K3=OP3•tan60°=(1+++3)×=(1+)2,P4K4=OP4•tan60°=[(1+++3)+(1+)2]×=(1+)3,…,P n K n=(1+)n﹣1,∴当n =2023时,P 2023K 2023=(1+)2022,故答案为:(1+)2022.18.(2022•聊城)如图,线段AB =2,以AB 为直径画半圆,圆心为A 1,以AA 1为直径画半圆①;取A 1B 的中点A 2,以A 1A 2为直径画半圆②;取A 2B 的中点A 3,以A 2A 3为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为π.【分析】由AB =2,可得半圆①弧长为π,半圆②弧长为()2π,半圆③弧长为()3π,......半圆⑧弧长为()8π,即可得8个小半圆的弧长之和为π+()2π+()3π+...+()8π=π.【解析】∵AB =2,∴AA 1=1,半圆①弧长为=π,同理A 1A 2=,半圆②弧长为=()2π,A 2A 3=,半圆③弧长为=()3π,......半圆⑧弧长为=()8π,∴8个小半圆的弧长之和为π+()2π+()3π+...+()8π=π.故答案为:π.19.(2022•十堰)如图,某链条每节长为2.8cm ,每两节链条相连接部分重叠的圆的直径为1cm ,按这种连接方式,50节链条总长度为91cm .【分析】先求出1节链条的长度,2节链条的总长度,3节链条的总长度,然后从数字找规律,进行计算即可解答.【解析】由题意得:1节链条的长度=2.8cm,2节链条的总长度=[2.8+(2.8﹣1)]cm,3节链条的总长度=[2.8+(2.8﹣1)×2]cm,...∴50节链条总长度=[2.8+(2.8﹣1)×49]=91(cm),故答案为:91.20.(2022•常德)剪纸片:有一张长方形的纸片,用剪刀沿一条不过任何顶点的直线将其剪成了2张纸片;从这2张中任选一张,再用剪刀沿一条不过任何顶点的直线将其剪成了2张纸片,这样共有3张纸片;从这3张中任选一张,再用剪刀沿一条不过任何顶点的直线将其剪成了2张纸片,这样共有4张纸片;…;如此下去,若最后得到10张纸片,其中有1张五边形纸片,3张三角形纸片,5张四边形纸片,则还有一张多边形纸片的边数为6.【分析】根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,多边形的边数增加4,如第一次,将其中两个边分成四条边,且剪刀所在那条直线增加两条边,即为2+2×2+1×2=8=4+4×1(边),分成两个图形;第二次,边数为:8﹣2+2×2+2×1=12=4+4×2,分成三个图形;……;当剪第n刀时,边数为4+4n,分成(n+1)个图形;令n=9即可得出结论.【解析】根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,多边形的边数增加4,第一次,将其中两个边分成四条边,且剪刀所在那条直线增加两条边,即为2+2×2+1×2=8=4+4×1(边),分成两个图形;第二次,边数为:8﹣2+2×2+2×1=12=4+4×2,分成三个图形;……;当剪第n刀时,边数为4+4n,分成(n+1)个图形;∵最后得到10张纸片,设还有一张多边形纸片的边数为m,∴令n=9,有4+4×9=5+3×3+5×4+m,解得m=6.故答案为:6.21.(2022•德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,…………由此类推,图④中第五个正六边形数是45.【分析】根据前三个图形的变化寻找规律,即可解决问题.【解析】图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……图③的点数叫做五边形数,从上至下第一个五边形数是1,第二个五边形数是1+4=5,第三个五边形数是1+4+7=12,……由此类推,图④中第五个正六边形数是1+5+9+13+17=45.故答案为:45.22.(2022•遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为127.【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【解析】∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.23.(2022•黑龙江)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.【分析】由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.【解析】第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故答案为:485.24.(2022•黑龙江)如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.【分析】根据规律得出每6个数为一周期.用2013除以6,根据余数来决定数2013在哪条射线上.【解析】∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.三.解答题(共2小题)25.(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=3×4×100+25;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.【分析】(1)根据规律直接得出结论即可;(2)根据=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25即可得出结论;(3)根据题意列出方程求解即可.【解析】(1)∵①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;∴③当a=3时,352=1225=3×4×100+25,故答案为:3×4×100+25;(2)=100a(a+1)+25,理由如下:=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25;(3)由题知,﹣100a=2525,即100a2+100a+25﹣100a=2525,解得a=5或﹣5(舍去),∴a的值为5.26.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解析】(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.。
中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。