水环境预警系统分类与功能分析
- 格式:pdf
- 大小:1.01 MB
- 文档页数:3
城市水务设施运行维护管理规范第一章水务设施概述 (3)1.1 设施分类与功能 (3)第二章水源管理 (4)1.1.1 水源保护的意义 (5)1.1.2 水源保护措施 (5)1.1.3 水源监测的目的 (5)1.1.4 水源监测内容 (5)1.1.5 水源评估方法 (5)1.1.6 水源监测与评估的应用 (6)第三章水厂运行管理 (6)1.1.7 预处理工艺 (6)1.1.8 主处理工艺 (6)1.1.9 后处理工艺 (6)1.1.10 水质保障措施 (7)1.1.11 水质监测方法 (7)1.1.12 设备维护原则 (7)1.1.13 设备维护措施 (7)第四章水质监测与评价 (7)1.1.14 监测目的和任务 (7)1.1.15 监测体系构成 (8)1.1.16 评价指标体系 (8)1.1.17 评价指标选取原则 (8)1.1.18 监测数据收集与处理 (8)1.1.19 监测数据分析方法 (9)1.1.20 监测数据分析应用 (9)第五章供水管网运行管理 (9)1.1.21 概述 (9)1.1.22 水源 (9)1.1.23 水厂 (10)1.1.24 输水管道 (10)1.1.25 配水管道 (10)1.1.26 调节设施 (10)1.1.27 泵站 (10)1.1.28 概述 (10)1.1.29 日常巡检 (10)1.1.30 设备维修 (10)1.1.31 水质监测 (10)1.1.32 水量调度 (11)1.1.33 概述 (11)1.1.34 水源保护 (11)1.1.35 水厂处理 (11)1.1.37 水质监测与预警 (11)第六章污水处理设施运行管理 (11)1.1.38 概述 (11)1.1.39 物理处理 (11)1.1.40 化学处理 (12)1.1.41 生物处理 (12)1.1.42 概述 (12)1.1.43 设备维护 (12)1.1.44 管道维护 (13)1.1.45 构筑物维护 (13)1.1.46 概述 (13)1.1.47 监测内容 (13)1.1.48 监测方法 (13)1.1.49 监测频次 (14)第七章污水排放与监管 (14)1.1.50 概述 (14)1.1.51 国家标准 (14)1.1.52 地方标准 (14)1.1.53 概述 (14)1.1.54 法律法规 (14)1.1.55 政策措施 (14)1.1.56 监管机构 (15)1.1.57 技术规范 (15)1.1.58 概述 (15)1.1.59 监测内容 (15)1.1.60 监测方法 (15)1.1.61 评估方法 (15)第八章水务设施安全与应急 (15)1.1.62 安全生产责任制的定义 (15)1.1.63 安全生产责任制的建立 (16)1.1.64 安全生产责任制的实施 (16)1.1.65 应急预案的定义 (16)1.1.66 应急预案的制定 (16)1.1.67 应急预案的实施 (16)1.1.68 安全生产培训的目的 (17)1.1.69 安全生产培训的内容 (17)1.1.70 安全生产考核 (17)第九章水务设施信息化管理 (17)1.1.71 平台架构设计 (17)1.1.72 平台功能模块 (18)1.1.73 信息资源整合 (18)1.1.74 信息资源共享 (18)1.1.75 网络安全防护 (19)第十章水务设施节能减排 (19)1.1.77 概述 (19)1.1.78 具体措施 (19)1.1.79 概述 (20)1.1.80 监测与评估内容 (20)1.1.81 概述 (20)1.1.82 具体技术改造方法 (20)第十一章水务设施运行维护成本控制 (20)1.1.83 成本控制的基本原则 (21)1.1.84 成本控制的实施原则 (21)1.1.85 优化运行维护流程 (21)1.1.86 提高资源利用效率 (21)1.1.87 加强成本核算与监控 (21)1.1.88 成本控制评估指标 (22)1.1.89 成本控制评估方法 (22)第十二章水务设施运行维护队伍建设 (22)1.1.90 人员配置 (22)1.1.91 培训 (23)1.1.92 考核 (23)1.1.93 激励 (23)1.1.94 人才引进 (23)1.1.95 人才培养 (24)第一章水务设施概述水务设施是保障我国水资源合理利用、水环境有效保护和水灾害有效防治的重要基础设施。
地表水水质自动监测系统简介随着水质自动监测技术的不断改进,地表水水质自动监测系统在我国地表水监测中得到了广泛的应用,并取得了较大的进展。
地表水水质自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测系统,可统计、处理监测数据;打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图多轨迹图、对比图等),并可输入中心数据库或上网。
收集并可长期存储指定的监测数据及各种运行资料、环境资料以备检索。
系统具有监测项目超标及子站状态信号显示、报警功能;自动运行、停电保护、来电自动回复功能;远程故障诊断,便于理性维修和应急故障处理等功能。
实施水质自动监测,可以实现水质的实时连续监测和远程监控,达到及时掌握主要流域重点断面水体的水质状况、预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制制度落实情况、排放达标情况等目的。
1、地表水水质自动监测系统的选址:地表水水质自动监测系统所选择的水域首先要有明确的水域功能,具有反映水环境质量状况的空间与时间代表性,满足环境管理的需要。
2、地表水水质自动监测系统建设需考虑:必须保证电力供应、通讯畅通、自来水供应。
●站房设计建设时要考虑站房内的监测仪器和其他辅助设备的安全。
●周围环境的交通便利。
●站点建设费用较大,在选址是考虑长期使用性。
3、地表水水质自动监测系统基本功能:●仪器基本参数和监测数据的贮存、断电保护和自动恢复●时间设置功能、设定监测频次。
●自动清洗。
●自动校对、手动校对。
●监测数据的输出。
●仪器和系统故障的自动报警。
●环境安全。
4、地表水水质自动监测系统监测因子:常见自动监测系统监测项目综合指标监测项目监测方法单项污染物浓监测项目监测方法水温热敏电阻或铂金电阻法氟离子氟离子电极法浊度表面光散射法氯离子氯离子电极法PH值玻璃电极法度氰离子氰离子电极法电导率电导电极法氨氮氨离子电极法化学需氧量湿化学法或流动池紫外线吸收光度法铬湿化学法或自动比色法总有机碳气相色谱法或非色散红外线吸收法酚湿化学自动比色法或紫外线吸收光度法德润环保地表水水质自动监测系统监测项目综合指标监测项目详细内容全光谱仪表COD、BOD、TOC、硝氮、亚硝氮、TSS、溴化物、氯化物、硫化物(pH>8.3)、氯胺、酚营养盐正磷酸盐、总磷、总氮、氨氮、硝氮、亚硝氮水质六参数pH值、电导率、温度、溶解氧、浊度、氨氮气象六参数气温、风向、风速、雨量、气压、相对湿度应急参数水中石油类(监控水上事故导致的燃油泄漏或石油企业的排污泄漏)生物类蓝藻、叶绿素、红藻有机物CDOM(有色可溶解性有机物)、苯系物(苯、氯苯等等)其他硫化物(pH<8.3);色度、物质光度;辐照度、辐亮度;离水辐亮度、后向反射及其他表观参数5、水站分类:5.1 固定式地表水水质在线自动监测系统固定式地表水水质自动在线监测系统系统概述德润环保固定式地表水水质在线自动监测系统主要用于自动监测各级行政区域交界、目标管理水域及其他重要水域断面的水质污染状况,及时掌握主要流域重点断面水体的水质污染状况,预警、预报重大或流域性水质污染事故,解决跨行政区域的水体污染事故纠纷,监督总量控制制度落实情况。
预警系统的建立与实现建立预警系统需要遵循以准确、客观的统计资料为基础,以国家的法律法规为依据,以系统实用性与可操作性为出发点,兼顾硬件系统建设与软件系统结合的原则。
一、预警系统的组成及功能(一)预警系统的组成预警系统主要由预警分析系统和预控对策系统两部分组成。
其中预警分析系统主要包括监测系统、预警信息系统、预警评价指标体系系统、预测评价系统等。
监测系统是预警系统主要的硬件部分,其功能是采用各种监测手段获得有关信息和运行数据;预警信息系统负责对信息的存储、处理、识别;预警评价指标体系系统主要完成指标的选取、预警准则和阈值的确定;预测评价系统主要是完成评价对象的选择,根据预警准则、选择预警评价方法,给出评价结果,再根据危险级别状态,进行报警。
预控对策系统根据具体警情确定控制方案。
其中监测系统、预警信息系统、预警评价指标体系系统、预测评价系统完成预警功能,预控对策系统完成对事故的控制功能。
(二)预警系统的功能1.监测系统此系统通过采集监测对象(如温度、压力、液位等)传感器的输出信号,将信号经过模拟/数字转换后形成数字信号输出,或数字式传感器直接输出信号,这些信号通过传输设施(同轴电缆、控制线、电源线、双绞线等)送入计算机进行处理,处理结果经由输出接口输出或通过人机接口输出到操作控制台的显示器、LED显示器、监控系统大屏幕、记录仪、打印机等外围设备上。
监测系统主要完成实时信息采集,并将采集信息存入计算机,供预警信息系统分析使用。
2.预警信息系统事故预警的主要依据是与事故有关的外部环境与内部管理的原始信息。
预警信息系统完成将原始信息向征兆信息转换的功能。
原始信息包括历史信息、现实和实时信息,同时包括国内外相关的事故信息。
预警信息系统主要由信息网、中央处理系统和信息判断系统组成。
信息网的作用是进行信息搜集、统计与传输;中央信息处理系统的功能是储存和处理从信息网传入的各种信息,然后进行综合、甄别和简化;信息判断系统是对缺乏的信息进行判断,并进行事故征兆的推断。
地理信息系统的分类体系地理信息系统(Geographic Information System,简称GIS)是一种用于收集、存储、管理、分析和展示空间数据的技术系统。
根据其功能和应用领域的不同,GIS可以分为多个分类体系。
下面将介绍几种常见的GIS分类体系。
一、按照功能分类1. 数据采集与处理数据采集与处理是GIS的基础工作,包括现场数据采集、数据输入和数据清理等。
现场数据采集可以通过GPS等定位设备获取地理位置信息,并通过遥感技术获取卫星影像等数据。
数据输入则将采集到的数据导入到GIS系统中,进行格式转换、拓扑处理等操作。
数据清理主要是对采集到的数据进行校验和修正,以确保数据的准确性和完整性。
2. 空间数据管理空间数据管理是GIS系统的核心功能,主要包括空间数据的存储、查询、更新和维护等操作。
GIS系统以空间数据为核心,通过建立空间数据库来管理各类地理信息,包括地理实体、属性数据和拓扑关系等。
空间查询可以通过空间分析算法实现对空间数据的查询和筛选,以满足用户的需求。
空间数据的更新和维护则是在数据采集后对数据进行更新和修正,以保证数据的时效性和准确性。
3. 空间分析与建模空间分析与建模是GIS系统的高级功能,通过对空间数据进行分析和建模,揭示地理现象的内在规律和关系。
空间分析可以通过空间统计方法、缓冲区分析、叠加分析等技术手段实现,用于分析地理现象的空间分布、相互关系和趋势变化等。
空间建模则是通过数学和统计模型来模拟和预测地理现象的发展趋势和结果,为决策提供科学依据。
二、按照应用领域分类1. 城市规划与管理GIS在城市规划与管理中的应用主要包括土地利用规划、交通规划、环境保护和城市管理等方面。
通过GIS系统可以对城市空间数据进行分析和模拟,为城市规划提供科学依据。
同时,GIS还可以用于城市资源管理和环境监测,实现城市的可持续发展。
2. 自然资源管理GIS在自然资源管理中的应用涉及土地资源、水资源、森林资源等方面。
水质自动监测系统研究与开发一、绪论水是人类必不可少的资源,也是生物和环境的基础,但随着社会经济的不断发展,水质污染问题日益严重,成为绕不开的难题。
因此,如何保证水质的安全性和可持续性,成为了各国着重研究的领域之一。
随着科技的不断进步,水质自动监测系统得以发展,可以对水质进行实时监测和分析,对于水质污染的预警、监测、处理具有重要意义。
本文将从系统的设计,技术功能等方面进行探讨。
二、系统设计水质自动监测系统的设计需要考虑到多方面因素,包括硬件设备和软件系统。
硬件设备包括传感器、数据采集器、控制器、通讯模块等。
传感器是整个系统的核心,负责采集水质数据,常见的有PH值传感器、溶解氧传感器、浊度传感器等。
数据采集器是将传感器采集的数据进行处理和转换,按照一定的格式传送给控制器和监控终端,通讯模块负责将数据发送到网络中。
在控制器中,对于数据的处理和分析是非常关键的,以及对于水质设备的控制和操作。
最后,数据可以由监控终端进行处理和分析。
软件系统主要包括数据管理系统和监测系统。
数据管理系统将采集到的数据进行分类、存储、管理、分析和处理。
监测系统主要是对监测结果进行分析比较,定位污染源,并提供可参考的处理方案。
三、技术功能1. 实时监测水质自动监测系统可以实时监测水质情况,协助确定水质污染的程度和范围。
2. 预警和报警水质自动监测系统可以及时发现水质污染异常情况,并进行预警和报警。
预警和报警通常有多种方式,如短信、邮件、电话等。
3. 数据分析水质自动监测系统可以对采集到的数据进行分析和处理,了解水质变化趋势和污染来源,进而制定对策和措施。
4. 数据共享水质自动监测系统可以将数据进行共享,包括政府、企业、媒体等,实现对水质状况的全面掌控。
四、应用示例广西某市水质自动监测系统的应用是一个成功的案例。
该系统集成了传感器、数据采集器、控制器、通讯模块等设备,可以实时监测市内的10余个水质监测站的信息。
同时,该系统还能自动生成污染图表和数值报告,对发现的污染问题进行深入分析,从而为环保部门提供决策支持。
基于物联网的智慧水务管理与预警系统设计随着科技的不断进步,物联网技术的发展日益成熟,其在各个领域的应用也逐渐增多。
在水务行业中,物联网技术被广泛应用于智慧水务管理与预警系统的设计中。
这样的系统能够实现对水资源的科学管理和智能监测,有效预防和解决水资源短缺、水质污染等问题。
本文将详细介绍基于物联网的智慧水务管理与预警系统的设计原理和功能,并探讨其在实际应用中的优势和挑战。
一、系统设计原理基于物联网的智慧水务管理与预警系统的设计原理基于传感器技术、物联网通信技术和大数据分析技术的结合。
系统通过在各个水源地、管道、水处理设施等地点安装传感器,实时监测和采集与水务管理和安全相关的数据,如水位、水压、水质等。
传感器将数据通过物联网通信技术传输到云端服务器进行存储和分析。
通过大数据分析技术,系统能够准确预测和监测水资源的供应情况、水质状况以及潜在的风险。
二、系统功能1. 实时监测和采集水资源数据:系统能够通过传感器实时监测和采集水源地水位、水压、水质等数据,确保数据的准确性和完整性。
2. 预测和预警水资源供应:通过对历史数据和趋势进行分析,系统能够预测水资源的供应情况,并向相关部门发出预警信息,提前做好应对措施。
3. 水质监测和分析:系统能够对水源地和管道等位置的水质进行实时监测,并通过大数据分析技术对水质进行评估和预测,及时发现和处理水质问题。
4. 故障检测和维护管理:系统能够实时监测和检测水务设施的运行情况,及时发现故障并提供维护建议,确保设施的正常运行。
5. 远程控制和优化管理:系统能够远程控制和调整水务设施的运行模式和参数,实现对水务系统的优化管理,并提高水资源的利用效率。
三、系统优势1. 实时性和准确性:系统通过物联网技术实现了数据的实时监测和采集,能够及时准确地获得水资源的相关数据。
2. 预防性管理:系统通过对数据的分析和预测,可以提前预警水资源供应的问题,通过合理安排和调度,可以避免因水资源供应不足而导致的问题发生。
附件2江苏省环境水质(地表水)自动监测预警系统验收办法(试行)目录1 前言 (4)2 验收工作分工 (4)3 验收步骤与内容 (4)3.1 验收分预验收及最终验收 (4)3.2 预验收 (4)3.3 最终验收 (4)4 申请验收条件 (5)4.1 一般条件 (5)4.2 功能指标 (5)4.3 建立完整的技术档案 (5)4.4 建立水站运行管理制度及人员岗位职责等 (5)4.5 完成试运行期间的工作总结及最终验收技术报告 (5)4.6 集成商提交验收材料 (5)5 自动监测仪器设备验收 (6)5.1 交货验收 (6)5.2 仪器验收标准及要求 (6)5.3 仪器基本性能测试方法 (7)5.4 仪器考核办法及内容 (7)6 采水、配水系统基本功能 (9)7 数据采集、传输与控制系统基本功能 (9)8 系统有效数据累计捕捉率 (10)9 质量保证与质量控制 (10)10 文件资料归档 (10)11 附表 (10)附表1 江苏省环境水质(地表水)自动监测预警系统验收意见 (10)附表2 国家有关水质自动分析仪技术要求一览表 (11)附表3 部分实际样品比对实验室监测分析方法一览表 (11)12、验收记录表 (12)表1 自动监测仪器交接验收表 (12)表2 仪器安装、通电、预热情况记录表 (12)表3 仪器初始化设置记录表 (13)表4仪器基本功能核查表 (14)表5 仪器准确度与精密度考核表 (15)表6仪器空白值和检出限考核表 (15)表7 仪器标准曲线的测定 (16)表8 仪器零点漂移考核表 (16)表9 仪器量程漂移考核表 (17)表10 仪器响应时间测试结果考核表 (18)表11 仪器重复性或重复性误差考核表 (18)表12 仪器故障记录表 (19)表13 取水口实际样品测试与实验室比对结果统计汇总表 (19)表14 采水、配水系统基本功能考核表 (20)表15 数据采集、传输、控制系统考核表 (21)表16 仪器试运行情况记录表 (22)表17 仪器有效数据获取率统计表 (22)填表说明: (22)1 前言1.1 为保证江苏省环境水质(地表水)自动监测预警系统(以下简称水站)建设的工程质量和技术质量,确保水站的正常运行,特制定本规定。