高考热点问题和解题策略
- 格式:docx
- 大小:220.49 KB
- 文档页数:10
内容提纲1、考前篇2、考场篇3、答题技巧:(1)单项选择题的答题技巧;(2)多项选择题的答题技巧;(3)填空题的解题技巧;(4)解答题的答题技巧4、七大题型解题策略:(1)数列;(2)解三角形;(3)立体几何(4)概率统计(5)解析几何(6)导数及应用(7)新定义题型1、合理作息、调整状态适当休息、按时学习,调整状态,以最好的状态迎接高考!2、适度温习、保持题感准备好回扣材料、错题好题本、一模以来的高考综合模拟题等相应材料考前再浏览一遍重点题目,作息时间和高考保持一致,学习上做基础题练笔,看以前的错题,不要再做新题、仿真卷、猜题卷等!对新题看看思路,也可做些简单题,免得"手生".考前把一些基本数据、常用公式、重要定理"过过电影"。
再看一眼难记易忘结论、平时考试比较容易出错的地方:如抽样中的平均数、方差公式、几何体的体积面积公式、圆锥曲线和平面向量的二级结论等.3、清单物品、奔赴考场出发前,再次清点用具是否带全(笔、橡皮、作图工具、身份证、准考证等),根据学校的安排,精神放松,心态平静的奔赴考场考场。
到达考场后不要打闹喧哗,按照考场安排,按时进入考场。
1、填涂信息拿到答题卡后一定先认真填涂信息,贴好二维码,注意不要忙中出错影响考试心态,万一出现错误,也不必着急,请示监考老师后,考点会有补救措施。
2、心理调整(1)合理设置考试目标,创设宽松的应考心理,以平常心对待高考。
(2)调节呼吸,不断进行积极的心理暗示。
(3)遇事都往好处想在考试时,要相信自己的水平,相信自己已经复习的很好了,没有什么不会的了。
就算是有不会的,也要告诉自己:“这题我不会,那么大家肯定都不会,我不是一个人。
”就算数学是弱科,你也要知足常乐,把会做的题都做完,把该得的的分都得到就好了。
3、通览试卷刚拿到试卷,一般心情比较紧张。
开考铃响之前不允许答题,利用这5分钟:先从头到尾、正反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查。
高考语文阅读理解中的常见题型及解题技巧高考语文阅读理解是考生们备考中的重点和难点之一。
在阅读理解中,不同的题型要求考生具备不同的解题技巧和应对策略。
本文将详细介绍高考语文阅读理解中的常见题型,并提供相应的解题技巧。
一、主旨题主旨题是考查考生对文章主要内容的理解能力,要求找出文章的中心思想或主旨。
解决这类题目时,考生可以采用以下两种策略:1. 阅读全文:通读全文,通过整体的把握来判断文章的主旨。
关注文章的开头和结尾段落,它们通常会提供一些关键信息。
2. 重读局部:若阅读全文无法找到明显的中心思想,可以重读每段的首尾句,并结合段内关键词语,找出段落的主题词或核心句,从而推断出文章的主旨。
二、细节题细节题是考查考生对文章细节信息的理解能力,要求根据文章中提供的具体细节来做出判断。
解决这类题目时,考生可以采用以下策略:1. 仔细阅读:在阅读文章时要仔细阅读并理解每个细节,不要轻易将细节与题目中的选项对应。
2. 排除干扰:在选择答案之前,要排除那些表面看似正确但与文章内容不符的干扰选项。
三、推理判断题推理判断题是考查考生对文章逻辑推理能力的题型,要求考生根据文章提供的线索和信息进行推理。
解决这类题目时,考生可以采用以下策略:1. 注意词语:关注文章中的转折词、因果关系词等,这些词可以帮助理解作者的推理逻辑。
2. 推敲选项:对于推理判断题,选项往往是通过对文章的合理推断得出的。
仔细推敲选项,找出与文章相关的线索,从而判断其合理性。
四、观点态度题观点态度题是考查考生对文章观点和态度的理解能力,要求根据文章的表述确定作者的立场和观点。
解决这类题目时,考生可以采用以下策略:1. 关注词语:注意文章中表达观点和态度的词语。
例如,“我认为”、“可是”、“应该”等,它们往往会暗示作者的观点。
2. 对比选项:将选项与文章内容进行对比,找出与文章观点和态度相一致的选项。
总结:高考语文阅读理解中的常见题型包括主旨题、细节题、推理判断题和观点态度题。
高考历年真题的答题策略与方法高考,对于每一位学子来说,都是人生中的一次重要挑战。
而历年真题,就如同通往成功的珍贵密码,掌握了正确的答题策略与方法,便能在这场战役中更加从容自信。
首先,我们要明确一点,研究历年真题不是简单地做一遍题目,而是要深入分析,理解出题人的意图,把握考试的重点和规律。
在答题之前,做好充分的准备工作至关重要。
第一步,要收集齐全历年真题,并按照科目和年份进行整理分类。
这样可以清晰地看到不同年份的出题趋势和变化。
同时,准备好必要的学习工具,如笔记本、彩色笔等,以便在做题和分析时做好标记和记录。
拿到真题后,不要急于答题。
先整体浏览试卷,了解题型分布和分值比例。
对于自己比较擅长的题型,可以在心里先规划好答题时间和顺序;对于较难或不太熟悉的题型,要有心理准备,思考可能的解题思路。
以语文科目为例,在阅读理解部分,答题策略是先快速通读文章,把握主旨大意。
然后,仔细阅读题目,带着问题再次精读文章,找到关键语句和段落。
答题时,要条理清晰,分点作答,尽量使用文中的关键词和语句来支持自己的观点。
对于作文,要审清题目,明确立意。
平时多积累一些优秀的作文素材和开头结尾的模板,在考试时可以灵活运用。
数学真题的答题,需要注重基础知识的巩固。
遇到难题不要慌张,先从题目中提取关键信息,将复杂的问题分解成一个个小步骤。
选择题和填空题要注重技巧,如排除法、特殊值法等。
解答题要书写规范,步骤完整,因为在高考评分中,步骤分占了很大的比例。
英语科目中,听力部分要提前浏览选项,预测内容。
阅读理解要注重词汇积累和长难句分析。
写作部分,要注意语法错误,使用丰富的词汇和多样的句型,让文章更有亮点。
理综和文综的答题时间分配是关键。
要根据自己的学科优势合理安排答题顺序。
对于理综,物理部分要注重公式的运用和原理的理解;化学要记住常见的化学反应和物质性质;生物要理解概念,注重细节。
文综则需要有较强的综合分析能力和知识整合能力,答题时要结合材料,多角度思考。
高考数学答题策略与技巧一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
假如前问是证明,即使可不能证明结论,该结论在后问中也能够使用。
因此,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一样来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
因此,关于不同的学生来说,有的简单题目也可能是自己的难题,因此题目的难易只能由自己确定。
一样来说,小题摸索1分钟还没有建立解答方案,则应采取“临时性舍弃”,把自己可做的题目做完再回头解答;2.选择题有其专门的解答方法,第一重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,依照题目的已知条件与问题的联系写出可能用到的公式、方法、或是判定。
尽管不能完全解答,然而也要把自己的方法与做法写到答卷上。
多写可不能扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直截了当摸索后建立三者的联系。
第一考虑定义域,其次使用“三合一定理”。
2.假如在方程或是不等式中显现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有阻碍到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中显现不等式的题目,优选专门值法;5.求参数的取值范畴,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,假如明白曲线的形状,则可选择待定系数法,假如不明白曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的专门点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范畴;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种专门数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问假如是为建系服务的,一定用传统做法完成,假如不是,能够从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练把握它们之间的三角函数值的转化;锥体体积的运算注意系数1/3,而三角形面积的运算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”制造直角三角形解题;13.导数的题目常规的一样不难,但要注意解题的层次与步骤,假如要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该舍弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目假如出解答题,应该先设事件,然后写出使用公式的理由,因此要注意步骤的多少决定解答的详略;假如有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时能够测量;16.遇到复杂的式子能够用换元法,使用换元法必须注意新元的取值范畴,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就能够,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高考各科中哪些知识点是常考的热点和难点高考对于每一位学子来说都是人生中的一次重要挑战,而了解各科中常考的热点和难点知识点,无疑是备考过程中的关键。
下面我们就来详细探讨一下高考各科中那些备受关注的常考热点和难点。
语文科目中,文言文阅读一直是重点和难点。
常见的实词、虚词的理解与运用,以及特殊句式的辨析,都是考生容易出错的地方。
例如“之”“而”“以”等虚词在不同语境中的含义变化多样,需要考生具备扎实的积累和敏锐的语境感知能力。
古诗词鉴赏也是常考热点,对于诗歌的意象、意境、表达技巧以及作者情感的把握,要求考生有较高的文学素养和分析能力。
作文更是重中之重,如何审题立意,如何组织结构,如何运用丰富的素材和生动的语言来表达观点,都是考生需要重点攻克的难题。
数学科目里,函数是永恒的热点与难点。
函数的性质,如单调性、奇偶性、周期性等,常常结合其他知识点进行综合考查。
三角函数的公式众多,变形灵活,需要考生熟练掌握并能准确运用。
解析几何中的圆锥曲线问题,计算量大,对考生的运算能力和逻辑推理能力要求较高。
立体几何中空间向量的应用,以及证明线面关系等问题,也是让不少考生头疼的难点。
英语方面,语法知识中的非谓语动词、定语从句、名词性从句等是高频考点。
非谓语动词的形式多样,用法复杂,需要考生清晰分辨。
阅读理解中的长难句分析是一大难点,考生需要具备良好的语法基础和词汇量,才能准确理解文章含义。
英语写作中,如何运用丰富的词汇和正确的语法结构,清晰连贯地表达自己的观点,并且符合英语的表达习惯,是考生需要不断练习和提高的地方。
物理学科中,牛顿运动定律、机械能守恒定律、动量守恒定律等是核心考点,也是解决力学问题的重要工具。
电学中的电场、磁场相关问题,常常涉及复杂的物理模型和综合计算,对考生的思维能力是个巨大的挑战。
电磁感应现象及相关规律的应用,也是常考的难点。
化学科目里,化学反应原理中的化学平衡、电解质溶液等知识,是考试的重点。
有机化学中的官能团性质、有机合成路线的设计,需要考生熟练掌握各类有机物的反应特点。
排列组合常见题型及解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略 .一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客” ,能重复的元素看作“店” ,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例 1】( 1)有 4 名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有 4 名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将 3封不同的信投入 4 个不同的邮筒,则有多少种不同投法?【解析】:(1)34(2)43( 3)43【例 2】把 6 名实习生分配到 7 个车间实习共有多少种不同方法?【解析】:完成此事共分6 步,第一步;将第一名实习生分配到车间有 7种不同方案,第二步:将第二名实习生分配到车间也有 7 种不同方案,依次类推,由分步计数原理知共有76种不同【例 3】 8名同学争夺 3 项冠军,获得冠军的可能性有()3 33 8A、83 B 、38 C 、A8 D 、C8 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把 8 名学生看作 8家“店”,3 项冠军看作 3个“客”,他们都可能住进任意一家“店” ,每个“客”有 8 种可能,因此共有83种不同的结果。
所以选 A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 高【例 1】A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有【解析】:把A,B 视为一人,且B固定在A的右边,则本题相当于 4 人的全排列,A44 24种【例 2】( 2009四川卷理) 3 位男生和 3位女生共 6 位同学站成一排,若男生甲不站两端, 3 位女生中有且只有两位女生相邻,则不同排法的种数是(A. 360B. 188C. 216D. 96【解析】间接法 6 位同学站成一排, 3位女生中有且只有两位女生相邻的排法有,C32A22A24A22=432 种高☆考♂资♀源?网☆其中男生甲站两端的有A12C32A22A23A 22=144,符合条件的排法故共有 288三.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端 .【例 1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余 5 个排列数为A55种,再用甲乙去插 6 个空位有A62种,不同的排法种数是52A55A62 3600种【例 2】书架上某层有 6 本书,新买 3 本插进去,要保持原有 6 本书的顺序,有种不同的插法(具体数字作答)【解析】:A17A18A91=504【例 3】高三(一)班学要安排毕业晚会的 4 各音乐节目, 2 个舞蹈节目和 1 个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为A55 A62=3600【例 4】某工程队有 6 项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
试题研究2023年6月上半月㊀㊀㊀由考题定考向,探方法成策略以2021年新高考全国I卷解三角形问题为例◉江苏省连云港市城头高级中学㊀程玲强㊀㊀1真题呈现,问题解析考题㊀(2021年新高考全国Ⅰ卷第19题)记әA B C的内角A,B,C的对边分别为a,b,c.已知b2=a c,点D在A C边长,B D s i nøA B C=a s i n C.(1)证明:B D=b;(2)若A D=2D C,求c o søA B C .图1解析:本题为解三角形问题,可先绘制辅助图形,如图1所示.(1)根据题设可知,B D=a s i n Cs i nøA B C.由正弦定理得cs i n C=bs i nøA B C,即s i n Cs i nøA B C=cb.所以B D=a cb,又知b2=a c,则推出B D=b,得证.(2)由A C=b,A D=2D C,可得A D=2b3,D C=b3.所以,在әA B D中,c o søA D B=13b29-c24b23.同理可得c o søC D B=10b29-a22b23.因为øA D B=π-øC D B,所以13b29-c24b23=a2-10b292b23,整理得2a2+c2=11b23.又b2=a c,所以2a2+b4a2=11b23,整理得6a4-11a2b2+3b4=0,解得a2b2=13或a2b2=32.在әA B C中,由余弦定理,可得c o søA B C=a2+c2-b22a c=43-a22b2.当a2b2=13时,c o søA B C=76>1,不符合题意;当a2b2=32时,c o søA B C=712.综上可知,c o søA B C=712.另解:对于第(2)问,还可以从向量视角来解析.已知A D=2D C,则D是三角形边A C的三等分点,则有B Dң=13B Aң+23B Cң,两边平方,可得|B Dң|2=19|B Aң|2+49|B Aң||B Cң|c o søA B C+49|B C|2.①在әA B C中,由余弦定理,可得c o søA B C=a2+c2-b22a c.结合题目条件有b2=9D C2=a c,B D=b=3D C.将上述式子代入①式,消去B D,c o søA B C和b,可初步得到6a2-11a c+3c2=0,则c=23a或c=3a.当c=3a时,b2=a c=3a2,由余弦定理,得c o søA B C=76>1,不符合题意;当c=23a时,b2=a c=23a2,可得c o søA B C=712.2命题揭秘,技巧探究上述考题为高考常见的解三角形问题,主要考查三角函数的核心知识,如正弦定理㊁余弦定理,以及利用定理度量三角形,对学生计算分析㊁利用知识解决实际问题的能力有较高的要求.下面深入解读考题的06Copyright©博看网. All Rights Reserved.2023年6月上半月㊀试题研究㊀㊀㊀㊀命题规律,以及常用的解题技巧.2.1命题规律探究正弦定理㊁余弦定理是高考的热点知识,也是解三角形的核心知识,它们常用来求解三角形的相关问题,如已知边求其他角,判断三角形的形状,求三角形的面积,等等.同时,考题中也常将两个定理与和差公式㊁倍角公式以及三角形的面积公式相结合,转化的技巧性极强.问题解答需要灵活运用正弦定理㊁余弦定理,并有效结合函数与方程思想㊁化归转化思想等.2.2解题技巧探究正弦定理㊁余弦定理是解三角形的核心知识,对应变形式的应用也极为广泛,也是需要重点掌握的知识;另外需要掌握以下几个解析技巧.(1)正弦定理的推广:a s i n A=b s i n B=c s i n C=2R,其中R为әA B C外接圆的半径.求解әA B C外接圆的面积或周长时,可利用正弦定理的推广式来求外接圆的半径.(2)三角形面积公式:S=12a b s i n C=12b c s i n A=12c a s i n B.对于上式,可从三角形内角与边来解读,即三角形的面积可表示为任意两边及其夹角正弦值乘积的一半.(3)正弦知识与三角形个数:利用正弦定理的变形式可判断满足条件的三角形个数.由正弦定理可变形出s i n B=b s i n A a.当s i n B=b s i n A a>1,则满足条件的三角形为0个,即无解;当s i n B=b s i n A a=1,则满足条件的三角形为1个;当s i n B=b s i n A a<1,则满足条件的三角形为1个或2个.(4)正弦定理的适用问题:已知两角和任意一边,求其他边和角;已知两边和其中一边的对角,求其他边和角.(5)利用正㊁余弦定理解题常用策略:利用两个定理解题常结合转化思想,即将边转化为角,或将角转化为边,最终目标是实现角或边的统一.对于三角形中的不等式问题,可利用两个定理来适当 放缩 .对于三角形的取值范围问题,若以余弦定理为切入点,则可将问题转化为不等式;若以正弦定理为切入点,则可将问题转化为三角函数.3关联探究,解题分析解三角形问题的类型十分多样,所涉知识考点也较为众多,结合图形理解条件把握三角形特征,活用定理是解题的关键.下面结合具体问题进行关联探究.3.1倍角公式转化,破解三角函数值问题涉及倍角的三角函数问题较为特殊,需用倍角公式构建倍角与三角形内角的关系,然后利用正弦定理㊁余弦定理加以运算突破.图2例1㊀如图2所示,用三个全等的әA B F,әB C D,әC A E拼成了一个等边三角形A B C,әD E F为等边三角形,且E F=2A E,设øA C E=θ,则s i n2θ的值为.解析:设A E=k(k>0),则E F=2k.由øA C E=θ,әA B F,әB C D,әC A E全等,可得øF A B=θ, C D=k,D E=2k.又әA B C为等边三角形,所以øC A E=π3-θ.在әC A E中,由正弦定理,可得A Es i nøA C E=C Es i nøC A E,即3s i nθ=32c o sθ-12s i nθ.整理得t a nθ=37,则s i n2θ=2t a nθt a n2θ+1=2ˑ37349+1=7326.评析:例1是关于倍角的三角函数问题,问题涉及了全等三角形和等边三角形,利用正弦定理来求解所涉内角的正弦值是解题的基础,而利用倍角公式构建三角形内角和倍角之间的关系则是解题的关键.3.2正弦定理转化,破解面积取值问题三角形面积取值问题十分常见,从三角函数视角分析,可灵活运用正弦定理来求解,对于其中取值范围的分析,则可结合角度和边长的大小关系.例2㊀在锐角三角形A B C中,内角A,B,C的对边分别为a,b,c.已知b s i n B+C2=a s i n B,且c=2,则锐角三角形A B C面积的取值范围为.解析:由b s i n B+C2=a s i n B,可得b c o s A2=a s i n B.由正弦定理,可得s i n B c o s A2=s i n A s i n B.由0<B<π2,可得s i n B>0,故c o s A2=s i n A,即c o s A2=2s i n A2c o s A2.又0<A<π2,所以0<A2<π4,则c o sA2>0.故s i nA2=12,进而可得A=π3.16Copyright©博看网. All Rights Reserved.试题研究2023年6月上半月㊀㊀㊀图3如图3所示,在әA B C中B C1ʅA C,B C2ʅA B,可知A C1=A Bc o sπ3=1,A C2=A Bc o sπ3=4.因为әA B C为锐角三角形,所以点C在线段C1C2上运动,但不包括端点,于是有A C1<b<A C2,即1<b<4.而әA B C的面积可表示为SәA B C=12b c s i n A=32b,结合b的取值可得32bɪ(32,23).故әA B C面积的取值范围为(32,23).评析:例2是求三角形面积的取值范围问题,解题的关键是构建三角形模型㊁确定b的取值范围.上述解题分两阶段突破.第一阶段,结合余弦定理确定内角A的大小;第二阶段,结合图形求解b的取值范围,进而由三角形面积公式求面积的取值范围.3.3两角和差转化,破解三角函数最值问题对于与两角相关的三角函数值问题,突破的核心是两角和与差的公式,即完成两角的统一化,构建单一变量,将问题转化为简单的函数问题,然后利用函数性质求最值.例3㊀在әA B C中,内角A,B,C的对边分别为a,b,c,其面积S可表示为S=b2+c2-a24,试回答下列问题.(1)如果a=6,b=2,求c o s B的值;(2)试求s i n(A+B)+s i n B c o s B+c o s(B-A)的最大值.解析:(1)简答.利用面积公式可得A=π4,结合正弦定理可得s i n B=b s i n A a=66,分析可知B为锐角,故c o s B=306.(2)由(1)可知A=π4,所以s i n(A+B)+s i n B c o s B+c o s(B-A)=22s i n B+22c o s B+s i n B c o s B+22s i n B+22c o s B=2(s i n B+c o s B)+s i n B c o s B.令t=s i n B+c o s B=2s i n(B+π4),由Bɪ(0,3π4),得B+π4ɪ(π4,π),则s i n(B+π4)ɪ(0,1],所以tɪ(0,2].故s i n(A+B)+s i n B c o s B+c o s(B-A)=2t+t2-12=12(t+2)2-32,tɪ(0,2].分析可知,当t=2,B=π4时,原式取得最大值,且最大值为52.评析:上述第(2)问可视为是两角和差的三角函数最值问题,突破的核心策略是角的转化,即通过内角的变换将问题转化为单一内角的三角函数问题.上述解析过程充分利用了两角和与差的公式㊁内角的三角函数基本关系等,问题的转化思想和运算技巧体现得极为充分.4解后反思,教学建议解三角形问题是高考数学的重要题型,探究命题规律,总结解题技巧是教学探究的重点,下面进一步进行反思教学.4.1理解定理内涵,正确认识定理正弦定理㊁余弦定理是破解 解三角形 问题的核心定理,充分理解定理内涵㊁正确认识定理是探究学习的关键.实际上两大定理揭示了三角形边角关系.如余弦定理体现了三角形三边长与一个角余弦值的关系,是对勾股定理的推广;而正弦定理则体现了三角形各边和所对角正弦值之比的关系.教学中要帮助学生理解该知识内涵,同时引导学生体验定理的探究过程,掌握定理的证明方法,强化学生的思辨思维,以从根本上掌握解三角形问题的知识核心.4.2开展思维训练,总结通性通法边化角 和 角化边 是解三角形问题常用的两种思路,总体而言就是为了实现问题条件的 边 或角 的统一.在教学中要重视学生的思维训练,促使学生充分掌握该类问题的通性通法,正确判断解决问题应选用的方法.4.3关注类型问题,总结破题技巧解三角形问题的类型十分多样,问题的综合性㊁拓展性极强,因此关注问题的多种类型,总结破题技巧十分关键[1].实际教学中,教师要帮助学生构建解三角形问题的体系,引导学生合理变式,灵活运用定理㊁公式来转化突破.同时注意拓展解法,提升学生的思维水平.参考文献:[1]景君.不畏浮云遮望眼 一道江苏联赛解三角形题的剖析[J].中学数学,2021(7):19G20.Z26Copyright©博看网. All Rights Reserved.。
一类高考“超纲”选择题的解题方法和策略所谓“超纲”高考题,就是指那些来源于物理竞赛或大学普物,超出高中知识求解范围,却仍能对解的合理性进行一定的分析和判断的一类问题.此类问题充分体现了“过程和方法”的目标,很好地考察了学生的科学探究能力和分析推理能力.最早出现在2008年北京高考卷中,后来福建、安徽、全国新课标等高考卷也紧随其后,命出了一些高质量的此类题目.本文系统地研究了解决此类问题的三种常见方法.一、量纲法物理关系式不仅反映了物理量大小之间的关系,也确定了物理量单位间的关系.量纲法就是从解的物理量单位,分析判断出物理量之间可能合理性的关系式.例1 (2012年北京卷,第20题)“约瑟夫森结”由超导体和绝缘体制成.若在结两端加恒定电压U,则它会辐射频率为ν的电磁波,且与U成正比,即ν=kU.已知比例系数k仅与元电荷e的2倍和普朗克常量h有关.你可能不了解此现象的机理,但仍可运用物理学中常用的方法,在下列选项中,推理判断比例系数k的值可能为().A.h2eB.2ehC.2heD. 12he解析光子的能量公式E=hν,而能量也可表示为对电子做功,即E∝eU,根据以上两式,可得k=νU∝EhEe∝eh,对比四个选项,只有B选项在量纲上和eh的相同,故正确选项为C.例2 弦振动频率于波长、张力以及线密度(弦单位长度的质量)有关,求它们之间的关系.解析若弦振动频率为f,弦长、张力以及线密度分别为l、F和ρ,设它们之间的的关系为f=lαFβργ,在国际单位制中:s-1=mα(kg?ms-2)β(kgm)γ,即s-1=mα+β-γkgβ+γs-2β.应有-2β=-1、α+β-γ=0、β+γ=0,解得α=-1、β=12、γ=-12.所以f∝l-1F12ρ-12,写成f=klFρ(k是没有量纲的系数).二、特殊值法图1特殊值法指对解取某些特定值,或在某些特殊条件下取得的结果进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.例3 (2011年福建卷,第18题)如图1所示,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质量为m1和m2的物体A和B.若滑轮有一定大小,质量为m且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的摩擦.设细绳对A和B 的拉力大小分别为T1和T2,已知下列四个关于T1的表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是().A.T1=(m+2m2)m1gm+2(m1+m2)B. T2=(m+2m1)m2gm+4(m1+m2)C.T1=(m+4m2)m1gm+2(m1+m2)D. T1=(m+4m1)m2gm+4(m1+m2)解析用量纲法无法排除任何一项,可以考虑特殊情况求出解的特殊值.比如假定滑轮的质量m=0,则等同我们高中常见的轻滑轮,此时细绳对A和B的拉力大小T1和T2相等均为T.假设m1>m2,A和B一起运动的加速度大小均为a,根据牛顿第二定律分别对A、B有m1g-T=m1a、T-m2g=m2a,联立解得T=2m1m2gm1+m2.把m=0带入ABCD四个选项并化简,发现只有C 选项满足T=2m1m2gm1+m2,故正确选项为C.解法2 可假定m1=m2=m0,此时A、B恰好受力平衡,绳中的拉力大小T1和T2相等均为T,则T=m0g.把m1=m2=m0带入ABCD 四个选项并化简,只有C满足T=m0g,故答案选C.三、极限法极限法指根据函数关系式的单调性,判断解随某些已知量变化的趋势,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.例4 (2012年安徽卷,第20题)如图2所示,半径为R 的图2 图3均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P(坐标为x)的电场强度可以由库仑定律和电场强度的叠加原理求出,为E=2πkσ[1-x(R2+x2)1/2] ,方向沿x 轴.现考虑单位面积带电量为σ0的无限大均匀带电平板,从其中间挖去一半径为r的圆板,如图3所示.则圆孔轴线上任意一点Q(坐标为x)的电场强度为A.2πkσ0x(r2+x2)1/2B. 2πkσ0r(r2+x2)1/2C.2πkσ0xrD. 2πkσ0rx解析当x不变,r增大时,该值应减小,可排除BD;当x 不变,r减小时,该值应增大,r=0时该值取某一不是∞的定值,又排除C,故选A.解法2 由于带电体表面的电场强度的方向垂直于带电体表面,无限大均匀带电平板周围的电场应是垂直于平板的匀强电场,即电场强度处处相同,都等于R→∞时的电场强度.由题中给出的公式E=2πkσ[1-x(R2+x2)1/2] ,当R→∞可得单位面积带电量为σ0无限大均匀带电平板场强为E=2πkσ0 (也可以令x→0时得到).而单位面积带电量为σ0的半径为r的圆板在Q点场强为E′=2πkσ0[1-x(R2+x2)1/2] ,所以Q的合场强EQ=E-E′=2πkσ0x(R2+x2)1/2 .故答案为A.。
2025年高考生物考点及复习策略《2025 年高考生物考点及复习策略》随着时间的推移,高考的命题趋势和考点也在不断变化。
对于即将参加 2025 年高考的同学们来说,了解生物学科的考点以及制定有效的复习策略至关重要。
一、2025 年高考生物考点预测1、细胞生物学细胞的结构与功能依然是重点,包括细胞膜、细胞器、细胞核等的结构和功能,以及细胞的物质运输、能量转换等生理过程。
细胞的生命历程,如细胞分裂、分化、衰老和凋亡,也是常考的知识点。
2、遗传学遗传规律的应用,如孟德尔遗传定律、基因的连锁和交换定律等,会在高考中占据一定的比例。
基因突变、基因重组和染色体变异等遗传变异的类型、特点和应用,以及人类遗传病的类型、诊断和预防也是重要考点。
3、生态学生态系统的结构和功能,包括生态系统的组成成分、食物链和食物网、物质循环和能量流动等。
生态系统的稳定性和生态环境保护也是热门考点。
4、生物技术与工程基因工程、细胞工程、发酵工程和蛋白质工程等生物技术的原理、操作步骤和应用。
生物技术在农业、医药、环境保护等领域的应用也需要重点关注。
5、生命活动的调节植物激素的调节,如生长素、赤霉素、细胞分裂素等的作用和调节机制。
动物生命活动的调节,包括神经调节、体液调节和免疫调节,尤其是神经冲动的产生和传导、激素的分泌和调节等。
6、生物进化现代生物进化理论的主要内容,如种群基因频率的改变、物种的形成等。
生物进化与生物多样性的形成关系也是常考的知识点。
二、复习策略1、构建知识体系生物学科的知识点繁多且相互关联,构建知识体系可以帮助同学们更好地理解和记忆。
可以通过制作思维导图、绘制概念图等方式,将各个知识点串联起来,形成一个完整的知识网络。
例如,在学习细胞生物学时,可以将细胞的结构、功能、生命历程等知识点整合在一张思维导图中,清晰地展示它们之间的关系。
2、注重教材教材是高考命题的重要依据,同学们要深入研读教材,理解教材中的每一个概念、每一个实验。
第三章高考热点问题和解题策略(选择题解答策略、填空题解答策略)三、选择题解答策略近几年来高考数学试题中选择题稳定在14~15道题,分值65分,占总分的43.3%。
高考选择题注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向;使作为中低档题的选择题成为具备较佳区分度的基本题型。
因此能否在选择题上获取高分,对高考数学成绩影响重大。
解答选择题的基本策略是准确、迅速。
准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间获取高分的必要条件。
高考中考生不适应能力型的考试,致使“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在不超过50分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面,是否达到《考试说明》中的“了解、理解、掌握”三个层次的要求。
历年高考的选择题都采用的是“四选一”型,即选择项中只有一个是正确的。
它包括两个部分:题干,由一个不完整的陈述句或疑问句构成;备选答案,通常由四个选项A、B、C、D组成。
选择题的特殊结构决定了它具有相应的特殊作用与特点:由于选择题不需写出运算、推理等解答过程,在试卷上配有选择题时,可以增加试卷容量,扩大考查知识的覆盖面;阅卷简捷,评分客观,在一定程度上提高了试卷的效度与信度;侧重于考查学生是否能迅速选出正确答案,解题手段不拘常规,有利于考查学生的选择、判断能力;选择支中往往包括学生常犯的概念错误或运算、推理错误,所有具有较大的“迷惑性”。
一般地,解答选择题的策略是:①熟练掌握各种基本题型的一般解法。
②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。
高考数学必考题型及答题技巧整理(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学必考题型及答题技巧整理高考数学必考题型及答题技巧整理总结高考临近,你是否还在焦虑数学做的不好。
巧妙选策略,灵活比大小---浅析基本初等函数中的大小比较策略河南 赵先举比较大小是基本初等函数中较为常见的题型,以比较大小为载体考查基本初等函数的性质更具有灵活性,因此,这类问题也是高考命题的热点.下面结合具体问题来说明在比较大小时的策略选择,以帮助大家快速解决此类问题.策略一:正负分两边,由“1”得答案例1.已知0.3log 4a =,4log 3b = ,20.3c -= ,则 ( )A .a <c <bB .c <b <aC .a <b <cD .c <a <b解析:根据对数的性质可知0.3log 40a =<,而4log 30b =>,20.30c -=>,故最小的是a ,再由对数函数及指数函数的性质可知1,1b c <> ,故a <b <c ,答案选C.点评:本题先根据对数性质分析出三个式子的正负,再利用中间变量“1”再把两个正值的大小进行比较,这种解题方法简洁明了,在实际问题中最有效.策略二:函数来相助,答案自然出例2.则,,a b c 的大小关系是 ( ) A. a >b >c B. b >c >a C. c >b >a D. a >c >b解析:由指数函数5()2x y =即b >c ,再由幂函数25y x = 在(0,)+∞即c >a ,故b >c >a ,答案选B. 点评:本题根据所给指数式的不同分别借助指数函数与对数函数的单调性进行比较,思路清晰,易于掌握,在实际问题中,不同函数之间的互相切换是解题的关键.策略三:作商巧运算,巧妙得答案例3.已知113211()()23a = ,113211()()23b = ,5121()6c =,则( ) A .a <c <b B .c <b <a C .a <b <c D .c <a <b解析:由条件可知,三个式子都是正值,而1132113211()()2311()()23a b =116611()()23-=163()12=>,故b <a , 又113251211()()231()6b c =11553212125555121212121111()()()()232311111()()()()2323=>=,即c <b ,故c <b <a ,答案选B.点评:本题所给三个式子都是正值,因此采用了作商与1进行比较,这样可以充分发挥指数的运算性质,并能体现指数函数性质的应用,在比较b 与c 时,实际上借用了指数函数1()2x y = 与1()3x y = 的单调性,在实际问题中要注意性质与运算的巧妙结合.策略四:放缩巧结合,解题更灵活例4.设323log ,log log a b c π===,则有( )A.a >b >cB.a >c >bC.b >a >cD. b >c >a解析:由322331111log 1,log log 31,0log log 22222a b c π=><==<<==<即111,1,022a b c ><<<<,故答案应选A. 点评:本题所给三个数都是正值,在比较时,先把b ,c 进行放缩与12比较,进而得出b 与c 的大小关系,这种放缩为寻找中间变量奠定了基础,所放缩后的数字通常都是一个特殊值,这样才能使我们得出结论.从以上分析可以看出,基本初等函数中,比较大小问题题目灵活多变,方法也多种多样,但无论哪种方法都体现了基本初等函数的性质,因此,掌握这些性质是解这类问题的关键.。
一.方法综述立体几何在高考中突出对考生空间想象能力、逻辑推理论证能力及数学运算能力等核心素养的考查。
考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法。
对于探索性问题(是否存在某点或某参数,使得某种线、面位置关系成立问题)是近几年高考命题的热点,问题一般有三种类型:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型。
现进行归纳整理,以便对此类问题有一个明确的思考方向和解决办法。
二.解题策略类型一 空间平行关系的探索【例1】(2020·眉山外国语学校高三期中(理))在棱长为1的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的动点(点M 与1A C 、不重合),则下列结论正确的是__________①存在点M ,使得平面1A DM ⊥平面1BC D ; ②存在点M ,使得平面DM 平面11B CD ; ③1A DM ∆的面积可能等于36;④若12,S S 分别是1A DM ∆在平面1111A B C D 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S【答案】①②③④【解析】①如图所示,当M 是1AC 中点时,可知M 也是1A C 中点且11B C BC ⊥,111A B BC ⊥,1111A B B C B =,所以1BC ⊥平面11A B C ,所以11BC A M ⊥,同理可知1BD A M ⊥,立体几何中探索性问题且1BC BD B =,所以1A M ⊥平面1BC D ,又1A M ⊂平面1A DM ,所以平面1A DM ⊥平面1BC D ,故正确;②如图所示,取1AC 靠近A 的一个三等分点记为M ,记1111AC B D O =,1OC AC N =,因为11AC AC ,所以1112OC C N AC AN ==,所以N 为1AC 靠近1C 的一个三等分点, 则N 为1MC 中点,又O 为11A C 中点,所以1A M NO ,且11A DB C ,111A MA D A =,1NOB C C =,所以平面1A DM平面11B CD ,且DM ⊂平面1A DM ,所以DM 平面11B CD ,故正确;③如图所示,作11A M AC ⊥,在11AA C 中根据等面积得:12633A M ==, 根据对称性可知:16A M DM ==,又2AD =1A DM 是等腰三角形, 则122162322326A DMS⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故正确;④如图所示,设1AM aAC =,1A DM ∆在平面1111D C B A 内的正投影为111A D M ∆,1A DM ∆在平面11BB C C 内的正投影为12B CM ∆,所以1111122222A D M aS S a ∆==⨯⨯=,122121222222B CM a S S a ∆-==⨯-⨯=,当12S S 时,解得:13a =,故正确.故答案为 ①②③④【点评】.探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论。
圆锥曲线中的定值问题思路引导处理圆锥曲线中定值问题的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.母题呈现考法1证明某些几何量为定值【例2】(2022·湖北省天门中学模拟预测)在平面直角坐标系xOy 中,已知椭圆C :x 4+y 2=1,点P (x 1,y 1),Q (x 2,y 2)是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为k 1,k 2,若m =11(,)2x y ,n =22(,)2x y ,m·n =0.(1)求证:k 1·k 2=-14;(2)试探求△OPQ 的面积S 是否为定值,并说明理由.【解题指导】【解析】(1)证明:∵k 1,k 2均存在,∴x 1x 2≠0.又m·n =0,∴x 1x 24+y 1y 2=0,即x 1x24=-y 1y 2,∴k 1·k 2=y 1y 2x 1x 2=-14.(2)①当直线PQ 的斜率不存在,即x 1=x 2,y 1=-y 2时,由y 1y 2x 1x 2=-14,得x 214-y 21=0.又∵点P (x 1,y 1)在椭圆上,∴x 214+y 21=1,∴|x 1|=2,|y 1|=22.∴S △POQ =12|x 1||y 1-y 2|=1.②当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +b .kx +b ,y 2=1,消去y 并整理得(4k 2+1)x 2+8kbx +4b 2-4=0,其中Δ=(8kb )2-4(4k 2+1)(4b 2-4)=16(1+4k 2-b 2)>0,即b 2<1+4k 2.∴x 1+x 2=-8kb4k 2+1,x 1x 2+1∵x 1x 24+y 1y 2=0,∴x 1x 24+(kx 1+b )(kx 2+b )=0,得2b 2-4k 2=1(满足Δ>0).∴S △POQ =12·|b |1+k 2·|PQ |=12|b |x 1+x 22-4x 1x 2=2|b |4k 2+1-b 24k 2+1=1.综合①②知△POQ 的面积S 为定值1.【解题技法】参数法解决圆锥曲线中最值问题的一般步骤【跟踪训练】(2020·北京卷)已知椭圆C :x 2a 2+y 2b 2=1过点A (-2,-1),且a =2b .(1)求椭圆C 的方程;(2)过点B (-4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =-4于点P ,Q ,求|PB ||BQ |的值.解(1)由椭圆过点A (-2,-1),得4a 2+1b 2=1.又a =2b ,∴44b 2+1b2=1,解得b 2=2,∴a 2=4b 2=8,∴椭圆C 的方程为x 28+y 22=1.(2)当直线l 的斜率不存在时,显然不合题意.设直线l :y =k (x +4),=k (x +4),2+4y 2=8得(4k 2+1)x 2+32k 2x +64k 2-8=0.由Δ>0,得-12<k <12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-32k 24k 2+1,x 1x 2=64k 2-84k 2+1.又∵直线AM :y +1=y 1+1x 1+2(x +2),令x =-4,得y P =-2(y 1+1)x 1+2-1.将y 1=k (x 1+4)代入,得y P =-(2k +1)(x 1+4)x 1+2.同理y Q =-(2k +1)(x 2+4)x 2+2.∴y P +y Q =-(2k +1)121244(,)22x x x x ++++=-(2k +1)·2x 1x 2+6(x 1+x 2)+16(x 1+2)(x 2+2)=-(2k +1)·2(64k 2-8)4k 2+1+6×(-32k 2)4k 2+1+16(x 1+2)(x 2+2)=-(2k +1)×128k 2-16-192k 2+64k 2+16(4k 2+1)(x 1+2)(x 2+2)=0.∴|PB |=|BQ |,∴|PB ||BQ |=1.考法2证明某些代数式为定值【例3】(2022·山东泰安·三模)已知椭圆2222:1x y E a b +=(a >b >0)的离心率2e =,四个顶点组成的菱形面积为O 为坐标原点.(1)求椭圆E 的方程;(2)过228:3O x y +=上任意点P 做O 的切线l 与椭圆E 交于点M ,N ,求证PM PN ⋅ 为定值.【解题指导】【解析】(1)由题意得2ab =,2c e a ==,222a b c =+可得a =b =2,所以椭圆的标准方程为22184x y +=.(2)当切线l的斜率不存在时,其方程为x =【提醒】求直线方程时忽略直线斜率不存在的情况.当3x =时,将3x =代入椭圆方程22184x y +=得3y =±,∴33M ⎛ ⎝⎭,,33N ⎛⎫- ⎪ ⎪⎝⎭,,03P ⎛⎫⎪ ⎪⎝⎭,,0,PM PN ⎛⎛== ⎝⎭⎝⎭ ∴83PM PN ⋅=-当x =83PM PN ⋅=- ,当切线l 的斜率存在时,设l 的方程为y kx m =+,()11,M x y ,()22,N x y ,因为l 与O3=,所以22388m k =+【技巧】圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.由22184y kx m x y =+⎧⎪⎨+=⎪⎩,得()222124280k x kmx m +++-=,∴122412km x x k +=-+,21222812m x x k -=+∴()()()2PM PN OM OP ON OP OP OP OM OP ON OM ON⋅=-⋅-=-⋅-⋅+⋅()()()22283OPOPOPOM ON OM ON=--+⋅=-+⋅()()12121212OM ON x x y y x x kx m kx m ⋅=+=+++()()2212121k x x km x x m =++++()2222222228438810121212m kmm k k km m k kk ---⎛⎫=++-+== ⎪+++⎝⎭∴8·3PM PN =-综上,PM PN 为定值83-.【解后反思】常见处理技巧:(1)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;(2)巧妙利用变量间的关系,例如点的坐标符号曲线方程等,尽量做到整体代入,简化运算.【例4】(2022·湖南怀化·一模)如图.矩形ABCD 的长AB =12BC =,以A 、B 为左右焦点的椭圆2222:1x y M a b+=恰好过C 、D 两点,点P 为椭圆M 上的动点.(1)求椭圆M 的方程,并求PA PB ⋅的取值范围;(2)若过点B 且斜率为k 的直线交椭圆于M 、N 两点(点C 与M 、N 两点不重合),且直线CM 、CN 的斜率分别为12k k 、,试证明122k k k +-为定值.【解题指导】【解析】(1)由题意得c =又点)12C 在椭圆2222:1x y M a b+=上,所以223114a b +=,且223a b -=,所以2a =,1b =,故椭圆M 的方程为2214x y +=.(3分)设点(,)P x y ,由A ,(B 得222223331244x x PA PB x y x ⋅=-+=-+-=- .又[2,2]x ∈-,所以PA PB ⋅[]2,1∈-.(5分)【技巧】利用隐含的不等关系,即点P 在圆上转化为[2,2]x ∈-,从而确定PA PB ⋅的取值范围(2)设过点B 且斜率为k 的直线方程为(y k x =-,联立椭圆M 方程得2222(14)1240k x x k +-+-=.设两点M 11(,)x y 、N 22(,)x y ,故21228314x x k+=+,212212414k x x k -=+.(7分)因为())()121212121212111222y y y x x y y y x x k k --++-++==,其中()1212121228214k y x x y kx x x x k -+=+=+,12y y +=(9分)故221222228614141421242414143k k k k k k k k k k k k -+++++==---+++所以122k k k +-=(12分)【解题技法】圆锥曲线中的定值问题的常见类型及解题策略(1)证明代数式为定值:依题意设条件,得出与代数式中参数有关的等式,代入代数式并化简,即可得出定值;(2)证明点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、证明。
高考数学科面临的关键问题与解决路径1. 高考数学科面临的关键问题应试教育现象严重:由于高考制度的存在,许多学生和家长过于关注分数和排名,导致数学学科的教学过程中过分强调应试技巧和解题方法,而忽视了培养学生的实际能力和创新思维。
课程设置不合理:当前高考数学科的课程设置仍然存在一定的问题,如知识点的重复性较强,缺乏针对性和前瞻性;课程内容与实际生活和社会需求脱节,难以激发学生的兴趣和动力。
教学方法单一:传统的教学方法在很大程度上限制了学生的学习兴趣和主动性,导致学生在面对复杂的数学问题时缺乏独立思考和解决问题的能力。
评价体系不完善:现行的高考数学科评价体系过于注重学生的考试成绩,而忽视了学生的综合素质、创新能力和实践能力等方面的培养。
这使得学生在追求高分的过程中,容易出现盲目攀比、恶性竞争的现象。
师资力量不足:尽管我国数学教育的投入逐年增加,但在一些地区和学校,数学教师的整体素质和教育教学水平仍然有待提高。
数学教师的数量相对较少,难以满足广大学生的需求。
1.1 知识点掌握不牢固部分学生对基础知识点的理解不够深入,导致在实际应用中出现困难。
对于函数的概念、性质和分类等基础知识点,学生可能只停留在表面理解,而无法将其运用到具体的题目中。
学生在学习过程中容易忽视一些重要的知识点,导致知识体系的不完整。
这使得学生在遇到综合性较强的题目时,难以迅速找到解题思路,从而影响考试成绩。
由于数学学科的知识点繁多且相互关联,学生在学习过程中很容易出现知识点之间的遗漏和混淆。
这使得学生在解决具体问题时,难以将各个知识点有机地结合起来,从而影响解题效果。
加强课后复习,对学过的知识点进行巩固和拓展,确保每个知识点都能熟练掌握。
注重基础知识的学习,通过大量练习来加深对基础知识点的理解和记忆。
1.2 应试能力不足加强基础知识学习。
学生应该重视数学基础知识的学习,通过课堂听讲、课后复习、做题巩固等方式,确保自己对数学基本概念、定理和公式有清晰的理解和记忆。
高考热点问题和解题策略Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】第三章高考热点问题和解题策略(选择题解答策略、填空题解答策略)三、选择题解答策略近几年来高考数学试题中选择题稳定在14~15道题,分值65分,占总分的%。
高考选择题注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向;使作为中低档题的选择题成为具备较佳区分度的基本题型。
因此能否在选择题上获取高分,对高考数学成绩影响重大。
解答选择题的基本策略是准确、迅速。
准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间获取高分的必要条件。
高考中考生不适应能力型的考试,致使“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在不超过50分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面,是否达到《考试说明》中的“了解、理解、掌握”三个层次的要求。
历年高考的选择题都采用的是“四选一”型,即选择项中只有一个是正确的。
它包括两个部分:题干,由一个不完整的陈述句或疑问句构成;备选答案,通常由四个选项A、B、C、D组成。
选择题的特殊结构决定了它具有相应的特殊作用与特点:由于选择题不需写出运算、推理等解答过程,在试卷上配有选择题时,可以增加试卷容量,扩大考查知识的覆盖面;阅卷简捷,评分客观,在一定程度上提高了试卷的效度与信度;侧重于考查学生是否能迅速选出正确答案,解题手段不拘常规,有利于考查学生的选择、判断能力;选择支中往往包括学生常犯的概念错误或运算、推理错误,所有具有较大的“迷惑性”。
一般地,解答选择题的策略是:①熟练掌握各种基本题型的一般解法。
②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。
③挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。
Ⅰ、示范性题组:一、直接法:直接从题设条件出发,运用有关概念、性质、定理、法则等知识,通过推理运算,得出结论,再对照选择项,从中选正确答案的方法叫直接法。
【例1】(96年高考题)若sin 2x>cos 2x,则x 的取值范围是______。
A .{x|2k π-34π<x<2k π+π4,k ∈Z} B. {x|2k π+π4<x<2k π+54π,k ∈Z} C. {x|k π-π4<x<k π+π4,k ∈Z} D. {x|k π+π4<x<k π+34π,k ∈Z} 【解】直接解三角不等式:由sin 2x>cos 2x 得cos 2x -sin 2x<0,即cos2x<0,所以: π2+2k π<2x<32π+2k π,选D ; 【另解】数形结合法:由已知得|sinx|>|cosx|,画出单位圆:利用三角函数线,可知选D 。
【例2】(96年高考题)设f(x)是(-∞,∞)是的奇函数,f(x +2)=-f(x),当0≤x ≤1时,f(x)=x ,则f 等于______。
A. B. - C. D. -【解】由f(x +2)=-f(x)得f =-f =f =-f =f(-,由f(x)是奇函数得f(-=-f =-,所以选B 。
也可由f(x +2)=-f(x),得到周期T =4,所以f =f(-=-f =-。
【例3】(87年高考题)七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是_____。
A. 1440B. 3600C. 4320D. 4800【解一】用排除法:七人并排站成一行,总的排法有P 77种,其中甲、乙两人相邻的排法有2×P 66种。
因此,甲、乙两人必需不相邻的排法种数有:P 77-2×P 66=3600,对照后应选B ;【解二】用插空法:P 55×P 62=3600。
直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。
直接法适用的范围很广,只要运算正确必能得出正确的答案。
提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错。
二、特例法:用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确判断的方法叫特例法。
常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。
【例4】(97年高考题)定义在区间(-∞,∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是( )A. ①与④B. ②与③C. ①与③D. ②与④【解】令f(x)=x ,g(x)=|x|,a =2,b =1,则:f(b)-f(-a)=1-(-2)=3, g(a)-g(-b)=2-1=1,得到①式正确;f(a)-f(-b)=2-(-1)=3, g(b)-g(-a)=1-2=-1,得到③式正确。
所以选C 。
【另解】直接法:f(b)-f(-a)=f(b)+f(a),g(a)-g(-b)=g(a)-g(b)=f(a)-f(b),从而①式正确;f(a)-f(-b)=f(a)+f(b),g(b)-g(-a)=g(b)-g(a)=f(b)-f(a),从而③式正确。
所以选C 。
【例5】(85年高考题)如果n 是正偶数,则C n 0+C n 2+…+C n n -2+C n n=______。
A. 2nB. 2n -1C. 2n -2D. (n -1)2n -1【解】用特值法:当n =2时,代入得C 20+C 22=2,排除答案A 、C ;当n =4时,代入得C 40+C 42+C 44=8,排除答案D 。
所以选B 。
【另解】直接法:由二项展开式系数的性质有C n 0+C n 2+…+C n n -2+C n n =2n -1,选B 。
当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得愈简单愈好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。
近几年高考选择题中可用或结合特例法解答的约占30%左右。
三、筛选法:从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确判断的方法叫筛选法或剔除法。
【例6】(95年高考题)已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是_____。
A. [0,1]B. (1,2]C. (0,2)D. [2,+∞)【解】∵ 2-ax是在[0,1]上是减函数,所以a>1,排除答案A、C;若a=2,由2-ax>0得x<1,这与[0,1]不符合,排除答案C。
所以选B。
【例7】(88年高考题)过抛物线y2=4x的焦点,作直线与此抛物线相交于两点P 和Q,那么线段PQ中点的轨迹方程是______。
A. y2=2x-1B. y2=2x-2C. y2=-2x+1D. y2=-2x +2【解】筛选法:由已知可知轨迹曲线的顶点为(1,0),开口向右,由此排除答案A、C、D,所以选B;【另解】直接法:设过焦点的直线y=k(x-1),则y kxy x=-=⎧⎨⎩142,消y得:k2x2-2(k2+2)x+k2=0,中点坐标有xx x kky kkk k=+=+=+-=⎧⎨⎪⎪⎩⎪⎪12222222212(),消k得y2=2x-2,选B。
筛选法适应于定性型或不易直接求解的选择题。
当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,直到得出正确的选择。
它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%。
四、代入法:将各个选择项逐一代入题设进行检验,从而获得正确判断的方法叫代入法,又称为验证法,即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案。
【例8】(97年高考题)函数y=sin(π3-2x)+sin2x的最小正周期是_____。
A.π2B. πC. 2πD. 4π【解】代入法:f(x+π2)=sin[π3-2(x+π2)]+sin[2(x+π2)]=-f(x),而f(x+π)=sin[π3-2(x+π)]+sin[2(x+π)]=f(x)。
所以应选B;【另解】直接法:y=32cos2x-12sin2x+sin2x=sin(2x+π3),T=π,选B。
【例9】(96年高考题)母线长为1的圆锥体积最大时,其侧面展开图的圆心角ϕ等于_____。
A. 223π B.233π C. 2π D.263π【解】代入法:四个选项依次代入求得r分别为:23、33、22、63,再求得h分别为:73、63、22、33,最后计算体积取最大者,选D。
【另解】直接法:设底面半径r,则V=13πr212-r=23πr2r212-r≤…其中r2=12-r,得到r=23,所以ϕ=2π23/1=263π,选D。
代入法适应于题设复杂,结论简单的选择题。
若能据题意确定代入顺序,则能较大提高解题速度。
五、图解法:据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确判断的方法叫图解法或数形结合法。
【例10】(97年高考题)椭图C 与椭圆()x -392+()y -242=1关于直线x +y =0对称,椭圆C 的方程是_____。
A .()x +242+()y +392=1 B. ()x -292+()y -342=1 C. ()x +29+()y +342=1 D. ()x -242+()y -392=1 【解】图解法:作出椭圆及对称的椭圆C ,由中心及焦点位置,容易得到选A 。
【另解】直接法:设椭圆C 上动点(x,y),则对称点(-y ,-x),代入已知椭圆方程得()--y 392+()--x 242=1,整理即得所求曲线C 方程,所以选A 。
【例11】(87年高考题)在圆x 2+y 2=4上与直线4x +3y -12=0距离最小的点的坐标是_____。